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Block I
Real Analysis I



Unit 1
Course Structure

1. Cardinal Number

2. Schröder Berstein Theorem

3. Order Relation of cardinal numbers

4. Arithmetic of cardinal numbers

5. Continuum hypothesis

1 Introduction

Cardinal numbers, or cardinals for short, are a generalization of the natural
numbers used to measure the cardinality (size) of sets. The cardinality of a finite
set is a natural number: the number of elements in the set.

The notion of cardinality, as now understood, was formulated by Georg Can-
tor, the originator of set theory, in 1874–1884. Cardinality can be used to com-
pare an aspect of finite sets; e.g. the sets {1, 2, 3} and {4, 5, 6} are not equal, but
have the same cardinality. We will now move on to the formal definitions and
preliminaries.

1.1 Cardinal Numbers

Definition 1.1. A set A is said to be equipotent to a set B written as A ≈ B,
there exists a bijective mapping from A to B.

For arbitrary sets A, B, C we have
(i) A ≈ A (identity map)
(ii) A ≈ B ⇒ B ≈ A (inverse map)
(iii) A ≈ B and B ≈ C ⇒ A ≈ C (composite map).
It, therefore, follows that in any given family of sets, the relation of equipo-

tence is an equivalence relation which therefore partitions the given family into
pairwise disjoint equivalence classes, the members of of the same class being mu-
tually equipotent. Intuitively, we think that every two equipotent sets have the
same number of elements. This leads to the following postulates:

With each set A there is associated a unique object, to be called the cardinal

number (or, power) of the set A, denoted by A, such that two sets have the same

cardinal number if and only if they are equipotent. That is A = B ⇐⇒ A ≈ B.

1



By saying that m is the cardinal number of the set A, we shall mean that

m = A. However the cardinal number of a finite set is taken to be the number
of elements in the set. Thus Φ = 0 and {1} = 1,

{
1, 2, . . . , n

}
= n.

Two finite sets are equipotent iff they have the same number of elements.
If A = {1, 2, 3, . . .}, B = {2, 4, 6, . . .} and C = {−1,−2,−3, . . .}, we can

easily see that A ≈ B ≈ C.

Theorem 1.1. Given any index set {mi}i∈Γ of cardinal numbers, there exists

pairwise disjoint set such that mi = Ai for each i ∈ Γ.

Proof. By definition there exists sets such that mi = Bi for each i ∈ Γ. We
evidently have Ai ∩ Aj = φ for i 6= j. Thus {Ai}i∈Γ is a family of pairwise
disjoint set. Now for each i ∈ Γ, the prescription b → (b, i) for all b ∈ Bi

obviously defines a bijective mapping from Bi to Ai. So we have mi = Ai for
each i ∈ Γ. This proves the theorem.

1.2 Addition of Cardinal numbers:

For any two cardinal numbers m and n, the sum m + n is defined to be the

cardinal number of the set A ∪ B, where A and B are disjoint sets with m = A

and n = B.
Justification:
Given the cardinal numbers m and n, we know that there exists disjoint sets

A and B such that m = A and n = B. Then by definition m + n = A ∪B.

Suppose A1 and B1 are also disjoint sets with m = A1 and n = B1. Then to

show that m+n is unambiguously defined, we are to show that A ∪B = A1 ∪B1.

Now, since A = m = A1 and B = n = B1, there exist bijections f : A −→ A1

and g : B −→ B1.
Let h : A ∪B −→ A1 ∪B1 be defined by

h(x) =

{
f(x), if x ∈ A
g(x), if x ∈ B.

Since A∩B = φ, h is a well defined function. Also since, f and g are surjective,
we have h[a ∪B] = h[A] ∪ h[B] = A1 ∪B1. Thus h is surjective.

We now show that h is injective. Let x1, x2 be any two distinct points of
A ∪ B. If both x1, x2 ∈ A, then h(x1) = f(x1) 6= f(x2) = h(x2), since f is
injective.
If both x1, x2 ∈ B, then h(x1) = g(x1) 6= g(x2) = h(x2), since g is injective.

The remaining possibility is that one of x1, x2 be in A and the other is in B.
But then one of h(x1), h(x2) belongs to f [A] = A1 and the other to g[B] = B1.
Since A ∩ B = φ, we can not have h(x1) = h(x2). Thus h is bijective map from

A ∪B to A1 ∪B1. Therefore, A ∪B = A1 ∪B1.
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Theorem 1.2. For any two cardinals m and n, m+n = n+m
[
A ∪B = B ∪ A

]
.

Theorem 1.3. For any three cardinals m, n, p, we have (m+n)+p = m+(n+p).

1.3 Multiplications of Cardinal numbers:

Definition 1.2. The product of two cardinal numbers m and n denoted by mn

is defined by mn = A×B, where m = A and n = B.

To show that the product is uniquely defined, we show that if m = A = A1

and n = B = B1, then A×B = A1 ×B1.
Now there exists bijections f : A −→ A1 and g : B −→ B1.
Let us define h : A×B −→ A1×B1 by h(a, b) = (f(a), f(b)) for all (a, b) ∈ A×B.
Then h is a function from A×B −→ A1 ×B1. If h(a, b) = h(a1, b1), then

(f(a), g(b)) = (f(a1, g(b1)) =⇒ f(a) = f(a1) and g(b) = g(b1)

=⇒ a = a1 and b = b1

=⇒ (a, b) = (a1, b1).

So h is injective. Now we shall show that h is surjective.
Again, if (a1, b1) ∈ A1 × B1, then a1 ∈ A1 and b1 ∈ B1, but then we have
a ∈ A such that f(a) = a1 and b ∈ B such that g(b) = b1. It follows that
h(a, b) = (f(a), g(b)) = (a1, b1). So, h is surjective. Therefore, h is bijective.

Theorem 1.4. For any three cardinals, we have (i) mn = nm, (ii) (mn)p =
m(np), (iii) m(n+ p) = mn+mp.

Proof. (ii) Suppose m = A, n = B and p = C. Then np = B × C.

Also, (mn)p = (A×B)× C and m(np) = A× (B × C).
clearly the map h : (A×B)× C −→ A× (B × C) defined by

h((a, b), c) = (a, (b, c))

is a bijection.
Hence, (mn)p = m(np).

(iii) We assume that B ∩ C = Φ. Then (n + p) = B ∪ C and so m(n + p) =

A× (B ∪ C)

Also mn = A×B and mp = A× C.
Since B ∩ C = Φ, we have (A×B) ∩ (A× C) = Φ.

So, mn + mp = (A×B)(A× C). But we know that A × (B ∪ C) = (A ×
B) ∪ (A× C).

It follows that
m(n+ p) = mn+mp.
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Example 1.1. Show that for any two cardinal m.0 = 0 and m.1 = m.

Proof. Let m = A. We have Φ = 0 and {a} = 1. Then m.0 = A× Φ = Φ = 0.

Also m.1 = A× {1} −→ A. But the prescription a −→ (a, 1), a ∈ A obviously
defines a bijection from A −→ A× {1}. i.e.,

A× {1} = A = m = m.1.

Theorem 1.5. Let A be the union of an indexed family {Ai} of pairwise disjoint

sets such that Ai = m (a fixed cardinal) for all i ∈ Γ. Then Ai = mn, where

n = Γ.

Proof. Let m = B. Then for each i ∈ Γ, there is a bijection fi :→ B. WE define
a mapping f : A→ B × Γ by stipulating that f(x) = (fi(x), i) if x ∈ Ai, i ∈ Γ.

Since A is the sum of the sets Ai and since the sets Ai are pairwise disjoint to
each x, there corresponds a unique i ∈ Γ such that x ∈ Ai. From this observation
it follows that f is a well defined function from A to B × Γ.
Now if f(x) = f(y) for some x, y ∈ A, then (fi(x), i) = (fj(y), j), where i is the
unique index for which x ∈ Ai and j is the unique index for which y ∈ Aj.

Then fi(x) = fj(y) and i = j. So fi(x) = fi(y), x, y ∈ Ai.
m Since fi is injective, we have x = y. Thus f is injective.
Again given any (b, i) ∈ B × Γ, we note that fi : Ai → B is surjective and hence
there is an x ∈ Ai for which fi(x) = b. Then f(x) = (fi(x), i) = (b, i), since
x ∈ Ai.
Thus f is surjective and hence bijective. Consequently, A = B × Γ = BΓ =
mn.

1.4 Exponentiation of the Cardinals:

If m and n are two cardinals, then we explain the meaning of mn.

Definition 1.3. A set of all functions from a given set X to a given set Y is
denoted by Y X . i.e., f ∈ Y X =⇒ f is a function from X −→ Y .

A set of two elements is usually denoted by 2. We specially take 2 = {0, 1}.
Thus for any set X, 2X denotes the set of all functions from X to 2 = {0, 1}.
The set of Y X is clearly a subset of power set of X × Y i.e., P (X × Y ).
If X = φ, then Y X consists of only one member the empty subset of X×Y . This
is the only subset of X × Y , since when X is empty so is X × Y . If Y = φ and
X 6= φ, then Y X is empty. When X = φ, then Y φ = {φ}. φX = φ if X = φ.

Definition 1.4. For any two cardinal numbers m and n, mn is defined to be the

cardinal number of the set AB of all functions from B to A, where m = A and

n = B, AB = A
B

, AB = AB1
1 , m = A = A1 and n = B = B1.
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Definition 1.5. Given a function f : X → Y and a subset A ⊂ X, the function
f |A : A→ Y defined by (f |A)(x) = f(x) for all x ∈ A, is called the restriction of
f to the subset A.

Theorem 1.6. For any three cardinals m, n, p, we have
(i) mn+p = mnmp

(ii) (mn)p = mnmp

(iii) (mn)p = mnp.

Proof. Let A, B, C be pairwise disjoint sets with m = A, n = B and p = C.

(i) We have n + p = B ∪ C, mn = AB, mp = AC . mn+p = AB∪C , mnnp =

AB × AC .

We are to show the existence of a bijection φ : AB∪C → AB × AC .
We define φ as follows:
φ(f) = (f |B, f |C) for all f ∈ AB∪C .
Then φ is a well defined function from AB∪C to AB × AC .
Suppose φ(f) = φ(g) for some f, g ∈ AB∈C . Then (f |B, f |C) = (g|B, g|C)

whence f |B = g|C and f |C = g|C which imply that f = g. Thus φ is injective.
Consider any element (f1, f2) ∈ AB × AC . Then f1 : B → A, f2 : C → A.

Since B and C are disjoint, obviously f(x) = f1(x), if x ∈ B and f(x) = f2(x),
if x ∈ C defines a function from B ∪ C to A, i.e., f ∈ AB∪C . Then we have
φ(f) = (f |B, f |C) = (f1, f2). So φ is surjective. Thus φ is bijective.
Hence mn+p = mnmp.

(ii) We have (mn)p = (A×B)C , i.e., mpnp = (A×B)C . We note that
if f ∈ (A × B)C , then for every c ∈ C we have f(c) ∈ A × B, so that
f(c) = (fA(c), fB(c)), where fA(c) and fB(c) are elements of A and B respectively
uniquely determined by f and C. Thus f determines a unique pair of functions
fA : C → A and fB : C → B such that f(c) = (fA(c), fB(c)) for all c ∈ C. We
define φ(f) = (fA, fB). Then φ is a function from (A×B)C to AC ×BC .

To show that φ is injective, we suppose φ(f) = φ(g) for some f, g ∈ (A×B)C .
Then (fA, fB) = (gA, gB) whence fA = gA and fB = gB. Then for all c ∈ C we
have

f(c) = (fA(c), fB(c)) = (gA(c), gB(c)) = g(c).

So f = g. Thus, φ is injective.
To show φ is surjective, consider any element (f1, f2) ∈ AC × BC . Then

f1 : C → A and f2 : C → B. We define f : C → A × B by f(c) = (f1(c), f2(c))
for all c ∈ C.

Then f ∈ (A × B)C and obviously fA = f1 and fB = f2 for this f . Thus
φ(f) = (fA, fB) = (f1, f2). Thus φ is surjective and hence bijective. So, (mn)p =
mpnp.

(iii) We have (mn)p = (AB)C and mnp = (AB×C). We note that for every
f ∈ (AB)C , the value fc of f at a point c ∈ C is a member of AB. i.e., fc : B → A

5



for every c ∈ C and so fc(b) ∈ A for all b ∈ B. Thus, every f ∈ (AB)C includes a
unique function f ∗ : B×C → A defined by f ∗(b, c) = fc(b) for all (b, c) ∈ B×C.

Thus we get a function φ : (AB)C → AB×C defined by φ(f) = f ∗ for all
f ∈ (AB)C .

To show φ is injective suppose φ(f) = φ(g) for some f, g ∈ (AB)C . Then
f ∗ = g∗ so that f (b,c) = g∗(b, c) for all (b, c) ∈ B × C. i.e., fc(b) = gc(b) for all
b ∈ B and all c ∈ C. i.e., fc = gc for all c ∈ C. So, f = g. Hence, φ is injective.

To show φ is surjective, we consider any h ∈ AB×C for all (b, c) ∈ B × C, we
have h(b, c) ∈ A.

Let us define f : C → AB by stipulating that for every c ∈ C, fc is that
function from B → A for which fc(b) = h(b, c) for all b ∈ B. For this f and for
all (b, c) ∈ B × C, we have

f ∗(b, c) = fc(b) = h(b, c).

In other words, φ(f) = f ∗ = h. Thus φ is surjective and hence bijective. So,
(mn)p = mnp.

Theorem 1.7. For any set A, power set P (A) = 2A = 2A.

Proof. For each B ∈ P (A), let 1B denote the characteristic function of Bin A.
i.e.,

1B(x) =

{
1, if x ∈ B
0, if x ∈ A−B.

1B is a function from A −→ 2. So 1B ∈ 2A.
Now we define Φ : P (A) −→ 2A by Φ(B) = 1B for all B ∈ P (A).

We show that Φ is injective. Suppose Φ(B) = Φ(C) for some B,C ∈ P (A). Then

1B = 1C .

i.e., 1B(x) = 1C(x) for all x ∈ A. In-particular, x ∈ B ⇐⇒ 1B(x) = 1 =
1C(x)⇐⇒ x ∈ C. So, B = C. Hence, Φ is injective.

Next we show that Φ is surjective.
Consider any g ∈ 2A. Put B = g−1[{1}]. Since, the set of the functions maps
from A to {0, 1} belongs to 2A, clearly B ∈ P (A), we have 1B = g. i.e., Φ(B) = g.
Thus Φ is surjective and hence bijective. Thus

P (A) = 2A = 2A.

Note: The result of the above theorem is an extension of the fact that for a
finite set A of n elements, P (A) consists of exactly 2n elements.
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Example 1.2. Let m be any cardinal number. Then

(i) m1 = m (ii) 1m = 1 (iii) m0 = 1 (iv) 0m = 0, if m 6= 0.

Soln: (i) Suppose m = A, m1 = A{1}. Let Φ : A{1} −→ A given by Φ(f) =
f(1).
Clearly, for every a ∈ A, Φ(fa) = a, where fa(1) = a.
Clearly,

Φ(fa(1)) = Φ(fb(1))

⇒ a = b

⇒ fa(1) = fb(1)

⇒ fa = fb.

Thus for every a ∈ A, there exists fa ∈ A{1} such that fa(1) = a. So, Φ is
surjective.

(ii) 1m = {1}A. But {1}A consists of exactly one function which is f : A←−
{1}; i.e.,

1m = 1.

Example 1.3. Let m, n denote cardinal numbers. Show that
(i) mn = 1 if and only if m = n = 1

(ii) mn = 0 if and only if atleast one of m and n is zero.

Soln: Suppose m = A, n = B. Then mn = A×B.
(i) A×B consists of one element if and only if A and B consists of only one

element.i.e., n = B = 1 if and only if n = A = 1 and n = B = 1. Therefore,
mn = 1 if and only if m = 1 and n = 1.

(ii) n = A×B = 0 if and only if either n = A = 0 or n = B = 0. Therefore,
mn = 0 if and only if either m = 0 or n = 0.

1.5 Ordering of Cardinal Numbers:

A cardinal number m is said to be less than or equal to a cardinal number n,

written as m ≤ n, if there exists sets A and B with m = A and n = B such that
there is an injective map from A to B (i.e., m is the cardinal number of a subset
of B). If m ≤ n but m 6= n, then we write m < n.

Theorem 1.8. If m ≤ n, then for every two sets A, B with m = A and n = B,
there is an injection from A to B.

7



Proof. Since m ≤ n, by definition, there is a pair of sets A0 and B0 with m = A0

and n = B0 for which there is an injection f from A0 to B0. Now, since m =

A0 = A and n = B0 = B, there exists bijections g : A −→ A0 and h : B0 −→ B.
Thus h ◦ f ◦ g is an injection from A −→ B.

Example 1.4. If A ⊂ B, then A ≤ B.
Soln: I : A −→ B is the identity mapping from A to B.

Example 1.5. If A = m, then 0 ≤ m.

Soln: Φ ⊂ A⇒ Φ ≤ A⇒ 0 ≤ m.

Example 1.6. If m 6= 0, then 1 ≤ m.

Soln: Let A = m 6= 0 and a ∈ A. Then

{a} ⊂ A

⇒ {1} ≤ A

⇒ 1 ≤ m.

Theorem 1.9. If m ≤ n and n ≤ p, then m ≤ p.

Proof. Let A = m, B = n and C = p. Suppose f : A −→ B is an injection and
g : B −→ C is an injection. So, g ◦ f : A −→ C is an injection. So, m ≤ p.

Theorem 1.10. (Schroder-Bernstein theorem) [S. B. theorem] If m ≤ n
and n ≤ m, then m = n. (Antisymmetry)

Proof. We first suppose that m ≤ n. Then if m = A and n = B, there is an

injective map f : A −→ B. Let us put C = B − f [A] and P = C.

Since f : A −→ f [A] is a bijection, we have P [A] = A = m. Since f [A] and

C are disjoint sets, we have m+ p = f [A] ∪ [B − f [A]] = n. i.e., m+ p = n.
Conversely, suppose that m + p = n for some p. Then there exists disjoint

sets A and P with A = m and P = p and n = A ∪ P .

Since A ⊂ A ∪ P , we have A ≤ A ∪ P . i.e., m ≤ n.

Theorem 1.11. If m, n, p be three cardinals with m ≤ n, then (i) m+p ≤ n+p,
(ii) mp ≤ np, (iii) mp ≤ np.

Proof. (i) Since m ≤ n, there is a cardinal r such that n = m + r. Then
n+p = (m+r)+p = m+(r+p) = m+(p+r) = (m+p)+r. i.e., m+p ≤ n+p.

(ii) Also, np = (m+ r)p = mp+ rp. Therefore, mp ≤ np.

(iii) To prove (iii), let m = A, n = B, where A∩B = Φ. Then n = A ∪B. If

p = C, then since Ac ⊂ (A ∪B)c, it follows that mp ≤ np.

Theorem 1.12. Given the cardinal numbers m and n, we have m ≤ n if and
only if there is a cardinal p such that n = m+ p.

8



Proof. We first suppose that m ≤ n. Then if m = A and n = B. There is an

injective map f : A→ B. Let us put C = B − f [A] and p = C.

Since f : A→ f [A] is a bijection, we have f [A] = A = m.
Since f [A] and C are disjoint sets, we have

m+ p = f [A] ∪ (B − f [A]) = n.

Conversely, suppose m + p = n for some p. Then there exists disjoint sets A

and P with A = m and P = p and n = A ∪ P . Since, A ⊂ A ∪ P , we have

A ≤ A ∪ P . i.e., m ≤ n.

Theorem 1.13. For any cardinal m, m < 2m.

Proof. Let m = A. Then we know that 2m = P (A). Now the prescription
x → {x}, x ∈ A clearly defines a injective map from A to P (A). So, we have
m ≤ 2m.

We show that m 6= 2m. Consider any map f : A → P (A). We note that for
every x ∈ A, f(x) ∈ P (A). i.e., f(x) is a subset of A. Let then B = {x ∈ A : x /∈
f(x)}. We have B ∈ P (A). Consider any x ∈ A. If x ∈ B, then by definition of
B, we have x /∈ f(x) and so f(x) 6= B. If x /∈ B, then by definition of B, we have
x ∈ f(x) and hence f(x) 6= B. Thus no function from A to P (A) is surjective.

Hence we can not have A = P (A), so that m 6= 2m. Consequently, m < 2m.

Some Particular Cardinals:
The letters a and c will be used to denote some particular cardinals.

Definition 1.6. a = N, where N = {1, 2, 3, . . .}. Here a is called the denumerable

cardinal. c = R, where R is the set of all real numbers. Here, c is called the power
of the continuum, R is called the arithmetic continuum.

Example 1.7. {0,±1,±2, . . .} = a.

Definition 1.7. A set X is said to be denumarable (or, enumarable, or countably

infinite) if X = a. A set Y is called countable if it is either finite or denumarable.
A set is said to be uncountable if it is not countable. Thus a set X is denumarable
iff the elements of X can be arranged in a sequence (infinite) x1, x2, . . . of distinct
terms.

Cardinal numbers of finite sets are called finite cardinals and those of infinite sets
are called infinite or transfinite cardinals. Thus a and c are transfinite cardinals,
while 0, 1, 2, . . . are finite cardinals. Now, we require the knowledge of radix
fraction.

Definition 1.8. Let r be any integer ≥ 2. A number of the form p
rm

where p is
any integer and m is any integer ≥ 0 is called a radix fraction with radix r.

9



Every real number x can be represented uniquely by a series of radix fraction
with any given radix r(≥ 2) as follows:

x = x0+
x1
r

+
x2

r2
+ . . .+

xn
rn

+ . . . .

The representation is unique if x is not a number of the form m
2n

(m = 1, 3, . . . , 2n−
1).

3

8
=

{
0.011000 . . .

0.010111 . . .

If however we do not use representation where xk = 1 for some steps occurred.
Then for every real number x ∈ (0, 1), the representation is unique.

Here (i) x0 is the greatest integer not greater than x.
(ii) Each xn is an integer on 0 ≤ xn ≤ (r − 1) for all n = 1, 2, 3, . . ..
(iii) xn ≤ (r − 2) for infinitely many n.
The above representation is uniquely written as

x = x0x1 . . . (radix r).

For r = 2, the representation is called binary rdyadic.
For 2 = 3, the representation is called ternary.

For r = 10, the representation is called decimary.
For r = n, the representation is called n-ary.

Theorem 1.14. The open interval (0, 1) of real numbers is uncountable.

Proof. The set (0, 1) is evidently infinite. Any real number in (0, 1) can be written
as an infinite decimal of the form d1d2d3 . . ., where d1, d2, . . . are digital numbers
0, 1, 2, . . . , 9.

Suppose for a contradiction that (0, 1) is denumerable. So we can enumerate
the set of all real numbers in (0, 1) as {a1, a2, a3, . . .}, where

a1 = .d11d12d13 . . .

a2 = .d21d22d23 . . .

. . . . . . . . . . . .

an = .dn1dn2dn3 . . .

Every dij being a digital number. Now, we choose a real number a in the following
manner:

a = .d1d2d3 . . . ,

where di = 1 if dii 6= 1 and di = 2 if dii = 1 for i = 1, 2, . . .. Clearly, a ∈ (0, 1)
and a is different from a1, a2, . . . , an, . . ., which is a contradiction. Hence, the
interval (0, 1) is uncountable.

10



Note:- In choosing a, we should avoid 0 or 9 for di’s since many rational num-
bers in (0, 1)may have two decimal expansions, one of them having 0 recurring
and the other 9 recurring.

i.e.,

1

2
= .5000 . . .

1

4
= .2500 . . . = .2499.

Verification:-

4

10
+

9

102
+

9

103
+ . . .

=
4

10
+ 9(−1− 1

10
+ 1 +

1

10
+

1

102
+

1

103
+ . . .)

=
4

10
+ 9(

1

1− 1
10

− 1− 1

10
)

=
4

10
+ 9(

10

9
− 11

10
)

=
4

10
+ 9

1

10
=

5

10
=

1

2
.

Theorem 1.15. Every infinite subset of a denumerable set is denumerable.

Proof. Let B be an infinite subset of a denumerable set A. The elements of A
can be arranged in a sequence of distinct terms as

a1, a2, a3, . . . , an, . . . .

Let n1 be the smallest index such that an1 ∈ B. In general, having defined
n1, n2, . . . , nk, let nk+1 denotes the smallest index such that ank+1

∈ B−{an1 , an2 , . . . , ank}.
Since B ⊂ A and since B is infinite, we get a well defined sequence of positive

integers n1 < n2 < . . .
Since all the elements of B occur in, it is clear that every x ∈ B is some ank .
Thus B = {an1 , an2 , . . . , ank} which shows that B is denumerable.

Corollary 1.1. R is non-denumerable. For if R is denumerable and since
(0, 1) ⊂ R, then (0, 1) is denumerable, which is a contradiction. So R is non-
denumerable.

Corollary 1.2. a < c.

Proof. We have N ⊂ R. This implies N ≤ R. Therefore, a ≤ c.
It is clear that (0, 1) is not equivalent to any subset of N. But a subset of (0, 1) can
be found out such that N is equivalent to that subset. Hence a 6= c. Therefore,
a < c.
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Theorem 1.16. The union of a countable family of countable sets is countable.

Proof. Let B denotes the union of a countable family B of countable sets. If
B = φ, then B = φ and B is of course finite and hence countable. If B 6= φ, then
being countable, its non-empty members can be arranged in a finite or infinite
sequence B1, B2, B3, . . . so that B = ∪iBi. Since each Bi is countable and non-
empty, the members of Bi can be arranged in a finite or infinite sequence of
distinct terms as bi1, bi2, bi3 . . .. Now each x ∈ B, let m(x) denote the smallest
positive integer such that x ∈ bm(x)n(x). We define a mapping f : B → N by
saying that f(x) = 2m(x)3n(x).

If f(x) = f(y), then 2m(x)3n(x) = 2m(y)3n(y). Since 2 and 3 are distinct primes,
it follows that m(x) = m(y) and n(x) = n(y).

Then x = bm(x)n(x) = bm(y)n(y) = y. Thus f is injective. Hence, B ≤ N and B
is countable.

Corollary 1.3. The cartesian product of two denumerable sets is denumerable.

Proof. Let A and B be denumerable sets. Then A × B = ∪b∈B{(x, b) : x ∈ A}
shows that A×B is the denumerable union of the denumerable sets {(x, b) : x ∈
A}. Hence, A× B is denumerable. It follows from the definition of the product
of two cardinals and the above corollary that aa = a.

Theorem 1.17. (i) a+ a = a, (ii) n+ a = a if n is finite. (iii) c+ a = c.

Proof. Let λ denote a or a finite cardinal. Let a = A and λ = B, where A∩B = φ.

Then λ + a = B ∪ A. Since, B ∪ A is the union of two countable sets of which

atleast one is denumerable, so B ∪ A is denumerable. i.e., B ∪ A = a. Thus
λ+ a = a. This proves (i) and (ii).

Now since a < c, we have c = a + m for some cardinal m. So, c + a =
(a+m) + a = (a = a) +m = a+m = c.

Theorem 1.18. The set of all rational numbers is denumerable.

Proof. Let Q = { p
n

: n ∈ {1, 2, 3, . . .}, p ∈ {0,±1,±2, . . .}}. Let Qn = { p
n

: p ∈
{0,±1,±2, . . .}}, n = 1, 2, 3, . . .. Then each Qn is obviously denumerable and we
have Q = ∪∞n=1Qn. Hence, Q is denumerable.

A real number is called an algebraic number if it is a root of a polynomial equation
of the form

f(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0 = 0,

where an 6= 0 and all ak’s are integers. A real number which is not algebraic is
called transcendental number.
A rational number is algebraic since x = p

q
is a root of the equation qx− p = 0.

But all algebraic numbers are not rational. For example, x =
√

2 is not rational
but is a root of the equation x2 − 2 = 0 and hence, it is algebraic.

12



Theorem 1.19. The set of all algebraic numbers is denumerable.

Proof. Let f(x) = anx
n + an−1x

n−1 + . . . + a1x + a0, where an 6= 0 and all ak’s
be integers. We assume that an > 0. We associated with every polynomial f(x),
its height h defined by h = n+ |an|+ |an−1|+ |an−2|+ . . .+ |a1|+ |a0|. Clearly,
h is a positive integer≥ 1, there is only a finite number of polynomials with h as
height, since, n ≤ h and every |ak| ≤ h. So, corresponding to any height h, there
exists only a finite number of algebraic numbers [omitting complex roots]. If h
runs through the set of all positive integers {1, 2, 3, . . .}, then writing down the
roots in succession omitting those which have already occurred, we get a sequence
of distinct algebraic numbers. Since every polynomial has a height, all algebraic
numbers appear in the sequence. This shows that the set of all algebraic numbers
is denumerable.

Theorem 1.20. Every open interval has the power of the continuum.

Proof. Given any open interval (a, b) ⊂ R, we define f : (a, b) −→ R by

f(x) =
1

x− a
+

1

x− b
.

Clearly, f
′
(x) = − 1

(x− a)2
− 1

(x− b)2
. Therefore, f is continuous and strictly

decreasing in (a, b).
Since further, lim

x→a+
f(x) = +∞ and lim

x→b−
f(x) = −∞, it follows that f is

one-one and onto in R. i.e., f is a bijective mapping. Hence (a, b) = R = c.

Corollary 1.4. For any set E of real numbers containing an interval, E = c.

Proof. Since E contains an interval, we can find an open interval I ⊂ E ⊂ R.

Then c = I ≤ E ≤ R = c. So, by S.B. theorem, we have

E = c.

Note:- cardinal numbers of finite sets are called finite cardinals and those of
infinite sets are called infinite or transfinite cardinals. So, a and c are transfinite
cardinals where as 0, 1, 2, . . . are finite cardinals.

Theorem 1.21. a < c.

Theorem 1.22. (i) a+ a = a, (ii) n+ a = a, if n is finite, (iii) c+ a = c.

Proof. Suppose λ denotes a of a finite cardinal. Let a = A and λ = B, where

A ∩B = φ. Then λ+ a = A ∪B.
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Since B ∪ A is the union of two countable sets of which at-least one is de-
numerable (countable infinite). So, B ∪ A is denumerable. i.e., B ∪ A = a

[B + A = a].
Thus λ+ a = a. This proves (i) or (ii).
Since a < c, we have c = a+m. Therefore,

c+ a = (a+m) + a = (m+ a) + a = m(a+ a) = a+m = c.

Theorem 1.23. Suppose T be a countable subset of a set S having the power of
the continuum. Then S − T also has the power of the continuum.

Proof. We have S = R, where R is a set of real numbers. We may suppose that
S = R and T ⊂ R = S. Then if T is finite, we can evidently find an open interval

contained in R− T . In which case we know that R− T = c. So, we assume that

T is countably infinite. i.e., T = a. Now let, A = {x + y : x ∈ T, y ∈ T}. Since
A = ∪y∈T{x + y : x ∈ T}, so A is denumerable. But R is uncountable so R− A
and set B = {ξ − x : x ∈ T}. Then clearly B = T = a. we also observe that
B ∩ T = φ.

For otherwise, ξ − x = y for some x, y ∈ T . or, ξ = x + y for some x, y ∈ T
which contradicts that ξ /∈ A. Thus, B ⊂ R − T , so B ≤ R− T . or, a ≤ c

′
,

where c
′
= R− T .

So, c
′

= a + m for some cardinal m. Then c = T ∪ (R− T ) = T + R− T =
a+ c

′
= a+ a+m = a+m = c

′
.

Corollary 1.5. The set of all irrational numbers in any interval has the power
of the continuum.

Theorem 1.24. 2a = c.

Proof. Let A = {0, 1}, N = {1, 2, 3, . . .}, I = [0, 1). Then a = N, AN = 2a, I = c.
We note that for every f ∈ AN and every n ∈ N, f(n) is either 0 or 1. We define
φ : AN → I by stipulating that for all f ∈ AN,

φ(f) =
f(1)

3
+
f(2)

32
+ . . .+

f(n)

3n
+ . . . . . .

Since f(n) = 0 or 1 for each n, so

0 ≤ φ(f) ≤ 1

3
+

1

32
+ . . . . . . =

1

2
(< 1).

Thus φ is a well defined function from AN into I.
To show that φ is injective, we suppose φ(f) = φ(g) for some f, g ∈ AN.

Then
∑∞

n=1
f(n)
3n

=
∑∞

n=1
g(n)
3n

, where every f(n) and g(n) is 0 or 1. Hence, by
the uniqueness of ternary representation of real numbers, we have f(n) = g(n)
for all n. Then f = g. Thus φ is injective.
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Hence, AN ≤ I. i.e., 2a ≤ c.
Again, each x ∈ [0, 1) = I can be represented uniquely as

x =
x1

2
+
x2

22
+ . . .+

xn
2n

+ . . . ,

where each xn is 0 or 1 and xn = 0 for infinitely many n.
We define ψ : I → AN by stipulating that for each x ∈ I, ψ(x) is the function

fx : N→ A defined by fx(x) = xn for all n ∈ N.
We now show that ψ is injective.

Suppose for some x, y ∈ I. Then fx = fy. So, fx(n) = fy(n) for all n. So,
xn = yn for all n. i.e., x = y. Thus ψ is injective.

So, I ≤ AN. i.e., c ≤ 2a. Hence, by S.B. theorem, 2a = c.

Theorem 1.25. The family of the finite subsets of a denumerable set is denu-
merable and the family of the infinite subset has the power of the continuum.

Proof. Let F denote the family of the finite subsets of a denumerable set A. Let
the elements of A be arranged in a sequence a1, a2, . . . , an, . . . of distinct terms.
For each E ∈ F and for each positive integer n. Let us define

||En|| =

{
1 if an ∈ E
0 ifan /∈ E

.

Let Q denote the set of all rational numbers and let φ : F → Q be defined by

φ(E) =
||E||

3
+
||E||2

32
+ . . .+

||E||n
3n

+ . . . .

Since every E is a finite set, so all but finitely many ||E||n are zero. So, φ is a
well defined function from F to Q. So if φ(E) = φ(f), then by the uniqueness
of ternary representation of real numbers, we have ||E||n = ||F ||n for all n. This

means that an ∈ E iff an ∈ F whence E = F . Thus φ is injective. So, F ≤ Q = a.
On the other hand, F contains the denumerable family {{a1}, {a2}, . . . , {an}, . . .}

which implies that a ≤ F . Hence, by S.B.’s theorem F = a.

Now, we know that P (A) = 2A = 2a = c. Since, F ⊂ P (A) and F is

denumerable, it follows that (from previous theorem) P (A)/F = c. In other
words, the family of the infinite subset has the power of the continuum.

Theorem 1.26. ca = c, cc = c, ca = c, c+ c = c, aa = c, 2c = ac = cc.

Proof. We know that aa = a = a + a and 2a = c. So, ca = (2a)a = 2aa = 2a = c
and cc = caca = ca+a = ca = c.

Since, 1 < a < c, so c.1 ≤ ca ≤ cc. i.e., c ≤ ca ≤ c. Here, ca = c.
c + c = ca + ca = c(a + a) = ca = c. Since, 2 < a < c, so 2a ≤ aa ≤ ca ≤ c.

Hence, aa = c. Finally, 2 < a < c =⇒ 2c ≤ ac ≤ cc. But cc = (2a)c = 2ac =
2ca = 2c. Hence, 2c = ac = cc.
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Theorem 1.27. The set F of the real valued continuous functions from one
interval to another interval J has the power of the continuum.

Proof. For each y ∈ J , let fy denote the constant function fy : I → J , defined
by fy(x) = y for each x ∈ I. Then fy ∈ F and the mapping φ : J → F defined

by φ(y) = fy is clearly injective. So, J ≤ F . i.e., c ≤ F . Again, let Q denotes

the set of rationals in I. For each f ∈ F , let fQ denote the restriction of f to Q.
Then fQ ∈ JQ. Consider the map ψ : F → JQ, defined by ψ(f) = fQ, then ψ is
injective. Suppose, ψ(f) = ψ(g); f, g ∈ F . Then fQ = gQ . i.e., f(x) = g(x) for
all x ∈ Q.

Since, the rational numbers in I are dense in I and since the functions f and
g are continuous on I, it follows that f(x) = g(x) for all x ∈ I. Then f = g and

ψ is injective. Therefore, F ≤ JQ = J
Q
ca = c. Hence, F = c.

f(x) = g(x), x ∈ I, φ(x) = f(x)− g(x), φ(x) = 0 at rational point. If φ(x) 6= 0
at some point α by continuity of φ then φ(α) > 0.

(φ(α)− ε < φ(x) < φ(α) + ε =⇒ φ(x) > φ(α)− ε > 0 =⇒ ε < φ(α).)
This implies φ(x) > c − ε > 0 for all nbd of α which contains φ(x) = 0 at

rational point.

Summary
In this unit, we have studied about cardinal numbers and their relevant properties
and their application.
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Unit 2
Course Structure

1. Cantor Set:its construction

2. And its presentation as an uncountable set of measure zero.

2 Introduction

The Cantor set, denoted by C is a subset of the interval [0, 1] which is left after
the removal of certain specified countable (infinite) collection of open intervals
from [0, 1]. To construct the set C, we proceed as follows:

Let C0 denote the interval [0, 1]. Remove the following from C0 in succession
(one-by-one):

1. The open interval (a1, b1) =
(

1
3
, 2

3

)
, the middle third of the interval C0

leaving behind the set C1 = [0, 1
3
] ∪ [2

3
, 1].

2. The open intervals (a2, b2) = (1
9
, 2

9
) and (a3, b3) = (7

9
, 8

9
), the middle third

of the two closed intervals [0, 1
3
] and [2

3
, 1] in C1, leaving behind the set

C2 =

[
0,

1

9

]
∪
[

2

9
,
1

3

]
∪
[

2

3
,
7

9

]
∪
[

8

9
, 1

]
3. The open intervals (a4, b4) = ( 1

27
, 2

27
), (a5, b5) = ( 7

27
, 8

27
), (a6, b6) = (19

27
, 20

27
)

and (a7, b7) = (25
27
, 26

27
), the middle thirds of the four closed intervals in C2, leaving

behind the set[
0,

1

27

]
∪
[

2

27
,
1

9

]
∪
[

2

9
,

7

27

]
∪
[

8

27
,
1

3

]
∪
[

2

3
,
19

27

]
∪
[

20,

27
,
7

9

]
∪
[

8

9
,
25

27

]
∪
[

26

27
, 1

]
.

and
4. Continue this process generating a sequence {Cn} of sets, where Cn+1 is
obtained from Cn by removing the middle thirds of the 2n disjoint closed intervals
of which Cn is composed of. The points of the interval [0, 1] which are never
removed in the process constitute the cantor set C. More precisely, the points
common to all the sets Cn, i.e., C = ∩∞n=1Cn.

Each of the set Cn is nonempty, closed and bounded. Also Cn+1 ⊂ Cn for all
n. Hence the set C is nonempty closed and bounded.

Let En denote the set composed of all open intervals removed at the n-th
stage, for instance E1 = (a1, b1) = (1

3
, 2

3
), E2 = (a2, b2)∪ (a3, b3) = (1

9
, 2

9
)∪ (7

9
, 8

9
),

E3 = (a4, b4) ∪ (a5, b5) ∪ (a6, b6) ∪ (a7, b7)

=

(
1

27
,

2

27

)
∪
(

7

27
,

8

27

)
∪
(

19

27
,
20

27

)
∪
(

25

27
,
26

27

)
.
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Thus, it follows that the Cantor set C can also be expressed as the complement
of the union ∪∞n=1En with respect to the set [0, 1]. i.e., C = [0, 1] − ∪∞n=1En.
Hence C is closed.
Note: In the following, the Cantor set C, the length of the open intervals removed
at different stages are given by

l(E1) =
1

3
, l(E2) =

2

32
, l(E3) =

4

33
and in general, l(En) =

1

3

(
2

3

)n−1

.

Thus the sum of the lengths of all open intervals removed upon the n-th stage is
given by,

Sn =
n∑
n=1

l(Ei) = 1−
(

2

3

)n

which implies lim
n→∞

Sn = lim
n→∞

[
1−

(
2

3

)n]
= 1.

Hence, the sum of lengths of all intervals removed is the length of the original
C0 which is [0, 1]. As such the set remaining on [0, 1] which in fact is the cantor
set may seem so sparse as to be insignificant. Intuitively it may appear that the
only points left in the Cantor set are the end points 0, 1, 1

3
, 2

3
, 1

9
, 2

9
, 7

9
, 8

9
, . . . which

are denumerable in number but this is wrong.

2.1 Some important results

Theorem 2.1. The Cantor set C has power c.

Proof. We express all the real numbers in [0, 1] in ternary decimals. Then every
point in this interval is of the form

x = 0.α1α2α3 . . . (αk = 0 or 1 or 2)

That is
x =

α1

3
+
α2

32
+
α3

33
+ . . . .

Then each of the end intervals renamed in the construction of C admits of two
such representations.

1

3
=

{
0.1222 . . .

0.200 . . .
,

2

3
=

{
0.100 . . .

0.0222 . . .
,

1

32
=

{
0.0100 . . .

0.0022 . . .
,

2

32
=

{
0.01222 . . .

0.02000 . . .

In general, the point of En has the representation

x =
1

3n
+

n−1∑
i=1

bi

3i
+

∞∑
i=n+1

ai
3i
,

where bi = 0 or 2 and ai = 0, 1, 2 but ai’s are neither all zeros nor all 2’s.
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So the construction of the set C at the finite steps when we remove the interval
(1

3
, 2

3
), actually we remove those points which lie in (1, 2) i.e., those points whose

ternary expansion have α1 = 1.
At the second step, removal of the intervals ( 1

32
, 2

32
) and ( 7

32
, 8

9
) means removal

of the points which lie in (.01, .02) and (.21, .22) respectively i.e., those points for
we have α2 = 1 in the ternary expansion.

We note that

7

9
= .21000 = .202222,

8

9
= .220000 = .21222.

Proceeding in this way, we see that C contains those points x only which can be
expressed as x = 0.α1α2α3 . . ., where αk = 0, or 2.

Thus, P0 = C = {0.α1α2α3 . . . , } (αk = 0 or 2).
Now, if we express the points of U = [0, 1] in binary expansions like 0.β1β2β3 . . .

(βk = 0, or 1) and establish a correspondence between P0 and [0, 1], we see
that for every point of [0, 1], there correspondence a point of P0 and conversely.
(Here the correspondence is an interchange between 1 and 2 in 0.α1α2α3 . . . and
0.β1β2β3 . . .). So, P0 = C has power c.

Theorem 2.2. The Cantor set C is perfect.

Proof. In the construction of C, when the interval (1
3
, 2

3
) is removed, we denote

by C1 =
[
0, 1

3

]
∪
[

2
3
, 1
]
.

Similarly, let C2 =
[
0, 1

32

]
∪
[

2
32
, 3

32

]
∪
[

6
32
, , 7

32

]
∪
[

8
32
, 1
]

and so on.
Therefore, continuing in this way, we get a sequence C1 ⊃ C2 ⊃ C3 ⊃ . . . and
C = ∩∞i=1Cn and clearly C is closed.

Now let x0 ∈ C and (α, β) be any neighbourhood of xo. Also let In be that
interval of Cn which contains x0. Then for sufficiently large n, In ⊂ [α, beta]
and xn is an end point of In such that xn 6= x0.Obviously xn ∈ C. Thus every
neighbourhood (α, β) of x0 contains a point of C which is distinct from x0. Hence,
x0 is a limit point of C and hence C is dense in itself. C being closed and dense
in itself is perfect.

Theorem 2.3. The Cantor set is uncountable.

Proof. Let, if possible, the Cantor set C be countable. Then we may write C = P0

as C = {x1, x2, x3, . . . , xn, . . .}.
Write the elements in C in ternary expansion as

x1 = .3a11a12a13 . . . a1n . . . ,

x2 = .3a21a22a23 . . . a2n . . . ,
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xn = .3an1an2an3 . . . ann . . . ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

where aij = 0 or 2. Consider a sequence {an}, where

an =

{
0, if ann = 2

2, if ann = 0
.

Clearly, the element

x = .3a1a2a3 . . . an . . .

in C. But x 6= x1 since it differs from xn atleast in the n-th place. This is true
for each n and as much x should not be in C. Hence, the result is proved by
contradiction.

Summary
In this section, we have studied about Cantor set, its properties, applications and
examples.
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Unit 3
Course Structure

1. Functions of bounded variation : Definition and basic properties

2. Lipschitz condition, Jordan decomposition

3. Nature of points of discontinuity, Nature of points of non-differentiability

4. Convergence in variation (Helly’s First theorem)

3 Introduction

A function of bounded variation, also known as BV function, is a real-valued
function whose total variation is bounded (finite): the graph of a function hav-
ing this property is well behaved in a precise sense. For a continuous function
of a single variable, being of bounded variation means that the distance along
the direction of the y-axis, neglecting the contribution of motion along x-axis,
travelled by a point moving along the graph has a finite value. We now move on
to the various definitions and preliminary ideas related to the chapter.

3.1 Functions of Bounded Variation

Definition 3.1. Let S be a non-empty subset of R. A real number u is said to
be an upper bound of S if x ∈ S ⇒ x ≤ u. A real number l is said to be a lower
bound of S if x ∈ S ⇒ x ≥ l.

A non-empty set S ⊆ R is said to be bounded above if there exists a real
number u such that x ≤ u, for all x ∈ S. A non-empty S is said to be bounded
below if there exists a real number l such that x ≥ l, for all x ∈ S.

A non-empty S is said to be a bounded set if S is bounded above as well as
bounded below.

Definition 3.2. A real number M is said to be a least upper bound(or supremum)
of a non-empty S (lub S or Sup S ) if it has the following two properties.
(i) M is an upper bound of S i.e., x ≤M , for all x ∈ S.
(ii) for each ε > 0, there exists an element y(ε) in S such that M − ε < y ≤M .

A real number m is said to be a greatest lower bound(or infimum) of a non-
empty S (glb S or inf S ) if it has the following two properties.

(i) m is a lower bound of S i.e., x ≥ m, for all x ∈ S.
(ii) for each ε > 0, there exists an element y(ε) in S such that m ≤ y < m+ ε

We now state some fundamental properties of the set R.

(1) Algebraic properties of R.
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(2) Order properties of R.

(3) Completeness property of R.

Every non-empty subset of R that is bounded above has a least upper
bound (or a supremum) or every non-empty subset of R that is bounded
below has a greatest lower bound (or an infimum).

(4) Archimedean property of R.

If x, y ∈ R and y > 0, then there exists a natural number n such that
ny > x.

(5) Density property of R.
If x, y are real numbers with x < y, then there exists a rational number r
such that x < r < y. If x, y are real numbers with x < y, then there exists
an irrational number s such that x < s < y.

Definition 3.3. Let [a, b] be a closed and bounded interval. A partition P of
[a, b] is a finite ordered set {x0, x1, . . . , xn} of points of [a, b] such that a = x0 <
x1 < . . . < xn = b.

The family of all partitions of [a, b] is denoted by P [a, b] and the partition
P = {x0, x1, . . . , xn} is a member of P [a, b].

For example P = {0, 1
2
, 1} is a partition of [0, 1], Q = {0, 1

8
, 1

2
, 7

8
, 1} is another

partition of [0, 1].
The partition P = {x0, x1, . . . , xn} of [a, b] divides the interval [a, b] into non-

overlapping subintervals [a, x1], [x1, x2], . . . , [xn−1, b].

Definition 3.4. Let [a, b] be a closed and bounded interval and f : [a, b]→ R be
a function. Let P = {x0, x1, . . . , xn} be a partition of [a, b]. Let us consider the
sum

V (P, f) =
n∑
i=1

|f(xi)− f(xi−1)|.

For different partitions P ∈ P [a, b], V (P, f) gives a set of non-negative real
numbers. If the set

{V (P, f) : P ∈ P [a, b]}

is bounded above, then f is said to be a function of bounded variation (or a BV-
function) on [a, b].
The supremum of the set {V (P, f) : P ∈ P [a, b]} is said to be the total variation
of f on [a, b] and is denoted by V (a, b; f) i.e.,

V (a, b; f) = sup{V (P, f) : P ∈ P [a, b]}.

Thus the function f is said to be of bounded variation on [a, b] if total variation
is finite i.e., V (a, b; f) < +∞.
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Note 3.1. Since each sum V (P, f) ≥ 0, it follows that V (a, b; f) = 0 iff f is a
constant function on [a, b].

Note 3.2. V (P, f) ≤ V (a, b; f), for all P ∈ P [a, b].

Example 3.1. Let k ∈ R and f(x) = k, for all x ∈ [a, b].
Let P = {x0, x1, . . . , xn}, where a = x0 < x1 < . . . < xn = b be a partition of
[a, b]. Then

V (P, f) =
n∑
i=1

|f(xi)− f(xi−1)|

=
n∑
i=1

|k − k| = 0.

Consequently V (a, b; f) = sup{V (P, f) : P ∈ P [a, b]} = 0. Therefore f is a
function of bounded variation on [a, b].

Example 3.2. Let f(x) = x, x ∈ [a, b].
Let P = {x0, x1, . . . , xn}, where a = x0 < x1 < . . . < xn = b be a partition of
[a, b]. Then

V (P, f) =
n∑
i=1

|f(xi)− f(xi−1)|

=
n∑
i=1

|xi − xi−1|

=
n∑
i=1

(xi − xi−1)

= (x1 − x0) + (x2 − x1) + . . .+ (xn − xn−1)

= xn − x0

= b− a.

Consequently V (a, b; f) = sup{V (P, f) : P ∈ P [a, b]} = b − a. Therefore f is a
function of bounded variation on [a, b].

Example 3.3. Let f(x) = sinx, x ∈ [a, b].
Let P = {x0, x1, . . . , xn}, where a = x0 < x1 < . . . < xn = b be a partition of
[a, b]. Then

V (P, f) =
n∑
i=1

|f(xi)− f(xi−1)|

= | sinx1 − sinx0|+ | sinx2 − sinx1|+ . . .+ | sinxn − sinxn−1|.

By Mean Value Theorem we have

|f(xr)− f(xr−1)| = |xr − xr−1|| cos ξr|,
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for some ξr satisfying xr−1 < ξr < xr. This holds for r = 1, 2, . . . , n.
Therefore |f(xr)− f(xr−1)| ≤ |xr − xr−1|, since | cos ξr| ≤ 1. Now

V (P, f) ≤ |x1 − x0|+ |x2 − x1|+ . . .+ |xn − xn−1|
= (x1 − x0) + (x2 − x1) + . . .+ (xn − xn−1)

= xn − x0

= b− a.

Consequently V (a, b; f) = sup{V (P, f) : P ∈ P [a, b]} ≤ b − a. i.e., V (a, b; f) <
+∞. Therefore f is a function of bounded variation on [a, b].

Theorem 3.1. Let [a, b] ⊂ R and f : [a, b] → R be a function of bounded
variation on [a, b]. Then f is bounded on [a, b].

Proof. Let f(x) is of bounded variation on [a, b] on all divisions of [a, b]. Then
there is some positive real number M such that Vf [a, b] ≤ M . If x ∈ [a, b], we
have a ≤ x ≤ b and

|f(x)− f(a)|+ |f(b)− f(x)| ≤ Vf [a, b] ≤M.

i.e.,
|f(x)| − |f(a)| ≤ |f(x)− f(a)| ≤ Vf [a, b] ≤M.

i.e.,
|f(x)| − |f(a)| ≤M.

i.e.,
|f(x)| ≤M + |f(a)|

showing that f is bounded on [a, b].

Following example shows that the converse of the above theorem is not always
true.

Example 3.4. Let f : [0, 1]→ R be defined by

f(x) = 1, if x is rational,

= 0, if x is irrational.

Let P = {x0, x1, . . . , x2n} be a partition of [0, 1] such that x0, x2, . . . , x2n are all
rational and x1, x3, . . . , x2n−1 are all irrational. Then

V (P, f) =
2n∑
i=1

|f(xi)− f(xi−1)|

= |f(x1)− f(x0)|+ |f(x2)− f(x1)|+ . . .+ |f(x2n)− f(x2n−1)|
= |1− 0|+ |1− 0|+ . . .+ |1− 0| (2n − times)
= 2n.

Clearly the set {V (P, f) : P ∈ P [0, 1]} is not bounded above and therefore f is
not a function of bounded variation on [0, 1].
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Note 3.3. The function f is bounded but not a function of bounded variation.

Theorem 3.2. If a function f(x) be monotonic on [a, b], then it is of function
of bounded variation [a, b].

Proof. Let f be monotonic increasing on [a, b].
Let P = {a = x0, x1, . . . , xn = b} be any partition of [a, b]. Then

V (P, f) =
n∑
i=1

|f(xi)− f(xi−1)|

=
n∑
i=1

[f(xi)− f(xi−1)]

= [f(x1)− f(x0)] + [f(x2)− f(x1)] + . . .+ [f(xn)− f(xn−1)]

= f(xn)− f(x0)

= f(b)− f(a).

Therefore V (a, b; f) = sup{V (P, f) : P ∈ P [a, b]} = f(b)− f(a), a finite number.
Thus a monotonic increasing bounded function is of bounded variation on

[a, b].
Similarly, it may be shown that a monotonic decreasing bounded function is

of bounded variation with V (a, b; f) = f(a)− f(b).

Note 3.4. The function f(x) = [x], where [x] denotes the greatest integer not
greater than x is a function of bounded variation on [0, 2].

Theorem 3.3. A function of bounded variation is necessarily bounded.

Proof. Let f : [a, b]→ R be a function of bounded variation on [a, b]. Since f is
a function of bounded variation on [a, b], it follows that V (a, b; f) is finite. Let
V (a, b; f) = M , where M is a non-negative real number.

Let x ∈ (a, b). Let P0 = {a, x, b} be a partition of [a, b]. Then

V (P0, f) ≤ V (a, b; f) = M

⇒ |f(x)− f(a)|+ |f(b)− f(x)| ≤M

⇒ |f(x)− f(a)| ≤M.

Therefore

|f(x)| = |f(x)− f(a) + f(a)|
≤ |f(x)− f(a)|+ |f(a)|
≤ |f(a)|+M.

If however x = a, then |f(x)| = |f(a)| ≤ |f(a)|+M and also if x = b, then

V (P0, f) = |f(x)− f(a)|+ |f(b)− f(b)| = |f(x)− f(a)|

and so |f(x)− f(a)| ≤M . This implies that |f(x)| ≤ |f(a)|+M .
Thus |f(x)| ≤ |f(a)|+M , ∀ x∈ [a, b] and so f is bounded on [a, b].
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Remark 3.1. The converse of the theorem is not true. A function f bounded on
[a, b] may not be a function of bounded variation on [a, b].

For example, let f : [0, 1]→ R be defined by

f(x) = x sin
π

x
, x 6= 0

= 0, x = 0.

Then f is bounded on [0, 1], since |f(x)| ≤ 1, ∀ x ∈ [0, 1].
Let us choose the partition P = {0, 2

2n+1
, 2

2n−1
, . . . , 2

5
, 2

3
, 1}. Therefore

V (P, f) =
n∑
i=1

|f(xi)− f(xi−1)|

=
∣∣∣f( 2

2n+ 1

)
− f(0)

∣∣∣+
∣∣∣f( 2

2n− 1

)
− f

( 2

2n+ 1

)∣∣∣+ . . .+
∣∣∣f(2

3

)
− f

(2

5

)∣∣∣
+
∣∣∣f(1)− f

(2

3

)∣∣∣
=

∣∣∣f(1)− f
(2

3

)∣∣∣+
∣∣∣f(2

3

)
− f

(2

5

)∣∣∣+ . . .+
∣∣∣f( 2

2n− 1

)
− f

( 2

2n+ 1

)∣∣∣
+
∣∣∣f( 2

2n+ 1

)
− f(0)

∣∣∣
=

2

3
+
(2

3
+

2

5

)
+
(2

5
+

2

7

)
+ . . .+

( 2

2n− 1
+

2

2n+ 1

)
+

2

2n+ 1

= 4
[1

3
+

1

5
+

1

7
+ . . .+

1

2n+ 1

]
.

Since the infinite series 1
3

+ 1
5

+ 1
7

+ . . . is not convergent, its partial sums
sequence {Sn}, where Sn = 1

3
+ 1

5
+ 1

7
+ . . .+ 1

2n+1
is not bounded above.

Thus V (P, f) can be made arbitrarily large by taking n sufficiently large.
Consequently V (0, 1; f)→∞ and so f is not of bounded variation on [0, 1].

Remark 3.2. A continuous function f defined on a closed and bounded interval
[a, b] may not be a function of bounded variation on [a, b].

For example let,

f(x) = x sin
π

x
, x 6= 0

= 0, x = 0.

Then f is continuous on [0, 1]. But f is not a function of bounded variation on
[0, 1].

Theorem 3.4. If the derivative f
′

exists and is bounded on [a, b], then the func-
tion f is of bounded variation on [a, b].
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Proof. Since f
′

is bounded on [a, b], therefore there exists k > 0 such that
|f ′(x)| ≤ k, ∀ x ∈ [a, b].

Let P = {a = x0, x1, . . . , xn = b} be any partition of [a, b]. Then

V (P, f) =
n∑
i=1

|f(xi)− f(xi−1)|.

By Mean Value Theorem we have

f(xi)− f(xi−1) = (xi − xi−1)f
′
(ξi)

for some ξi satisfying xi−1 < ξ < xi. Therefore

|f(xi)− f(xi−1)| = |xi − xi−1||f
′
(ξi)| ≤ k(xi − xi−1),

for all i = 1, 2, . . . , n. This implies that

V (P, f) ≤ k
n∑
i=1

(xi − xi−1) = k(b− a).

Consequently V (a, b; f) ≤ k(b − a) and so f is a function of bounded variation
on [a, b].

Remark 3.3. Boundedness of f
′

is sufficient condition.
Boundedness of f

′
is not necessary for the function f to be of bounded vari-

ation on [a, b]. For example let f(x) =
√
x, x ∈ [0, 1]. Then f is a monotonic

increasing function on [0, 1] and therefore it is a function of bounded variation
on [0, 1]. But f

′
is not bounded on [0, 1].

Example 3.5. A function f : [0, 1]→ R is defined by,

f(x) = x2 cos
1

x
, if x 6= 0

= 0, if x = 0.

we have,

f
′
(x) = sin

1

x
+ 2x cos

1

x
, if x 6= 0

= 0, if x = 0.

so that |f ′(x)| ≤ 3, ∀x ∈ [0, 1]. Hence f(x) is of bounded variation on [0, 1].

Definition 3.5. A function f : [a, b]→ R is said to satisfy a Lipschitz condition
on [a, b] if there exists a positive real number M such that

|f(x1)− f(x2)| ≤M |x1 − x2|

for any two points x1, x2 in [a, b]. In this case f is also said to be a Lipschitz
function on [a, b].
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Note 3.5. M must be independent upon the choice of x1 and x2.

Theorem 3.5. Let f : [a, b] → R be a Lipschitz function on [a, b]. Then f is a
function of bounded variation on [a, b].

Proof. Let P = {a = x0, x1, . . . , xn = b} be any partition of [a, b]. Since f is a
Lipschitz function on [a, b], there is a positive real number M such that

|f(xr)− f(xr−1)| ≤M |xr − xr−1|, for r = 1, 2, . . . , n.

Therefore

V (P, f) =
n∑
r=1

|f(xr)− f(xr−1)| ≤ M

n∑
r=1

|xr − xr−1|

= M

n∑
r=1

(xr − xr−1) = M(b− a).

Consequently V (a, b; f) ≤M(b− a) and so f is a function of bounded variation
on [a, b].

Remark 3.4. The converse of the theorem is not true. A function f of bounded
variation on [a, b] may not be a Lipschitz function on [a, b]. For example let
f : [0, 1]→ R be defined by f(x) =

√
x, x ∈ [0, 1].

Then f being a monotonic increasing function on [0, 1] is a function of bounded
variation on [0, 1]. But f is not a Lipschitz function on [0, 1], because if x1 = 0,
no positive real number M can be found to satisfy the condition

|f(x2)− f(x1)| ≤M |x2 − x1|,∀x2 ∈ (0, 1].

3.2 Some properties of functions of bounded variation

Theorem 3.6. The sum(difference) of two functions of bounded variation is also
of bounded variation.

Proof. Let f and g be two functions of bounded variation on [a,b].
For any partition P = {a = x0, x1, . . . , xn = b} of [a, b] we have

V (P, f + g) =
n∑
i=1

|(f + g)(xi)− (f + g)(xi−1)|

=
n∑
i=1

|{f(xi)− f(xi−1)}+ {g(xi)− g(xi−1)}|

≤
n∑
i=1

|f(xi)− f(xi−1)|+
n∑
i=1

|g(xi)− g(xi−1)|

= V (P, f) + V (P, g)

≤ V (a, b; f) + V (a, b; g),
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i.e.,

V (P, f + g) ≤ V (a, b; f) + V (a, b; g), ∀P ∈ P [a, b].

Therefore,

V (a, b; f + g) = sup{V (P, f + g) : P ∈ P [a, b]}
≤ V (a, b; f) + V (a, b; g)

and so f + g is of bounded variation.
Similarly it may be shown that f − g is of bounded variation.

Theorem 3.7. The product of two functions of bounded variation is also of
bounded variation.

Proof. Let f and g be two functions of bounded variation on [a, b]. Clearly f and
g are bounded and therefore a positive number K exists such that |f(x)| ≤ K,
|g(x)| ≤ K, ∀ x ∈ [a, b].
For any partition P = {a = x0, x1, . . . , xn = b}, we have

V (P, fg) =
n∑
i=1

|(fg)(xi)− (fg)(xi−1)|

=
n∑
i=1

|f(xi)g(xi)− f(xi−1)g(xi−1)|

=
n∑
i=1

|f(xi){g(xi)− g(xi−1)}+ g(xi−1){f(xi)− f(xi−1)}|

≤
n∑
i=1

|f(xi)||g(xi)− g(xi−1)|+
n∑
i=1

|g(xi−1)||f(xi)− f(xi−1)|

≤ K

n∑
i=1

|g(xi)− g(xi−1)|+K

n∑
i=1

|f(xi)− f(xi−1)|

= KV (P, g) +KV (P, f)

≤ K[V (a, b; f) + V (a, b; g)],

i.e.,

V (P, fg) ≤ K[V (a, b; f) + V (a, b; g)],∀ P ∈ P [a, b].

Therefore

V (a, b; fg) = sup{V (P, fg) : P ∈ P [a, b]} ≤ K[V (a, b; f) + V (a, b; f)]

and so fg is a function of bounded variation on [a, b].
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Theorem 3.8. If f is a function of bounded variation on [a, b] and if there exists
a positive number K such that |f(x)| ≥ K, ∀ x ∈ [a, b], then 1

f
is also of bounded

variation on [a, b].

Proof. For any partition P = {a = x0, x1, . . . , xn = b}, we have

V
(
P,

1

f

)
=

n∑
i=1

∣∣∣ 1
f

(xi)−
1

f
(xi−1)

∣∣∣
=

n∑
i=1

∣∣∣f(xi−1)− f(xi)

f(xi)f(xi−1)

∣∣∣
≤

n∑
i=1

1

|f(xi)|
1

|f(xi−1)|
|f(xi)− f(xi−1)|

≤ 1

K2

n∑
i=1

|f(xi)− f(xi−1)|

=
1

K2
V (P, f) ≤ 1

K2
V (a, b; f).

Therefore,

V

(
P,

1

f

)
≤ 1

K2
V (a, b; f), ∀ P ∈ P [a, b].

Hence

V

(
a, b;

1

f

)
= sup{V

(
P,

1

f

)
: P ∈ P [a, b]} ≤ 1

K2
V (a, b; f)

and so
1

f
is of bounded variation on [a, b].

Theorem 3.9. If f is a function of bounded variation on [a, b], then it is also a
of bounded variation on [a, c] and [c, b], where c is a point of [a, b] and conversely.
Also V (a, b; f) = V (a, c; f) + V (c, b; f).

Theorem 3.10. Let f : [a, b] → R be a function of bounded variation on [a, b].
Then |f | is a function of bounded variation on [a, b].

Proof. For any partition P = {a = x0, x1, . . . , xn} we have

V (P, f) =
n∑
i=1

|f(xi)− f(xi−1)|

and

V (P, |f |) =
n∑
i=1

∣∣∣|f(xi)| − |f(xi−1)|
∣∣∣.
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But ∣∣∣|f(xi)| − |f(xi−1)|
∣∣∣ ≤ |f(xi)− f(xi−1)|

and so

V (P, |f |) =
n∑
i=1

∣∣∣f(xi)| − |f(xi−1)|
∣∣∣

≤
n∑
i=1

|f(xi)− f(xi−1)|

= V (P, f) ≤ V (a, b; f),

i.e.,

V (P, |f |) ≤ V (a, b; f), ∀ P ∈ P [a, b].

Therefore,

V (a, b; |f |) = sup{V (P, |f |) : P ∈ P [a, b]} ≤ V (a, b; f)

and so |f | is a function of bounded variation on [a, b].

Theorem 3.11. Let f be defined on [a, b]. If f ∈ V [a, c] for any 0 < c < b
and if there exists a number M such that Vf [a, c] ≤ M for any a < c < b, then
f ∈ V [a, b].

Proof. Let P = {x0, x1, . . . , xn} be any partition of [a, b]. Set P
′
= {x0, x1, . . . , xn−1}.

Then P
′

is a partition of [a, xn−1] and hence Vf [a, xn−1] ≤M , we have

V (P, f) = V (P
′
, f) + |f(a)− f(xn−1)|

≤ Vf [a, xn−1] + |f(a)− f(xn−1)|
≤ M + |f(b)− f(c)|+ |f(c)− f(xn−1)|
≤ M + |f(b)− f(c)|+ Vf [a, xn−1]

≤ 2M + |f(b)− f(c)|.

Thus V (P, f) is bounded by 2M + |f(b)− f(c)| and therefore f ∈ V [a, b].

3.3 Variation Function

Let f be a function of bounded variation on [a, b] and x is a point of [a, b].
Then the total variation of f , V (a, x; f) on [a, x], which clearly is a function of
x, is called the total variation function or simply the variation function of f and
is denoted by Vf (x). Thus,

Vf (x) = V (a, x; f), x ∈ [a, b].
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If x1, x2 are two points of [a, b] such that x2 > x1, then

0 ≤ |f(x2)− f(x1)| ≤ V (x2, x1; f)

= V (a, x2; f)− V (a, x1; f)

= Vf (x2)− Vf (x1).

Therefore Vf (x2) ≥ Vf (x1), i.e., Vf (x) is a monotonic increasing function on [a, b].

Note 3.6. If f is of bounded variation on [a, b], then Vf ± f is a monotonic
increasing function on [a, b].

Note 3.7. The variation function of a function f of bounded variation is con-
tinuous iff f is a continuous function.

Theorem 3.12. A function f is of bounded variation on [a, b] iff f is the differ-
ence of two monotone functions on [a, b].

Theorem 3.13. If f is of bounded variation on [a, b], then f
′
(x) exists for at

most all x in [a, b].

Theorem 3.14. Let f : [a, b] → R be a function of bounded variation on [a, b].
Then f can have only discontinuities of the first kind and the points of disconti-
nuity of f form a countable set.

Proof. Since f is a function of bounded variation on [a, b], f can be expressed as
f(x) = g(x)− h(x), where g and h are monotone functions on [a, b].

A monotone function can have only discontinuities of the first kind and the
set of points of discontinuities is a countable set.

Let c ∈ (a, b). Then each of g(c + 0), g(c − 0), h(c + 0), h(c − 0) exists and
therefore each of f(c+ 0), f(c− 0) exists. Also each of f(a+ 0), f(b− 0) exists.
If follows that f can have only discontinuities of the first kind on [a, b].

Let E1, E2 be respectively the sets of points of discontinuities of g and h.
Then E1 ∪ E2 is the set of points of discontinuity of f . But both E1 and E2 are
countable sets. Therefore the set E1 ∪ E2 is countable.

Theorem 3.15. The set of points of discontinuity of a function which is mono-
tonic in an interval [a, b] is at most denumerable.

Proof. We shall prove the theorem for a monotonic increasing function f(x) de-
fined on [a, b]. If c ∈ [a, b] then it follows that f(c− 0) ≤ f(c) ≤ f(c+ 0).

Thus a monotonic function is discontinuous at a point c iff. f(c+0)−f(c−0) >
0, where we agree that f(a− 0) = f(a) and f(b+ 0) = f(b). We suppose that

a = x0 < x1 < x2 < . . . < xn < xn+1 = b

and choose points y0, y1, . . . , yn such that xk < yk < xk+1, k = 0, 1, . . . , n.
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Then since

f(xk + 0) ≤ f(yk) (for a point k = 0)

f(xk − 0) ≥ f(yk−1) (for b point k = n+ 1),

we have f(xk + 0)− f(xk − 0) ≤ f(yk)− f(yk−1) for k = 1, 2, . . . , n
and for 

f(a+ 0)− f(a) ≤ f(y0)− f(a) (k = 0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
f(b)− f(b− 0) ≤ f(b)− f(yn) (k = n+ 1)

Now adding the above inequalities we obtain

[f(a+ c)− f(0)] + [f(b)− f(b− 0)] +
n∑
k=1

[f(xk + 0)− f(xk − 0)]

≤ f(b)− f(a)

Therefore it follows that if the interior points x1, x2, . . . , xn are points of discon-
tinuity with

f(xk + 0)− f(xk − 0) ≥ σ =
1

p
(say),

Then n1
p
≤ f(b)− f(a)

i.e.,n ≤ p{f(b)− f(a)}
Thus n can not be arbitrary large.So number of points of discontinuity such

that
f(x+ 0)− f(x− 0) ≥ 1

p
is finite.

If N be the set of points of discontinuity of f(x) on [a, b] and Np(p = 1, 2, . . .)
be the set of points of discontinuity where f(x+0)−f(x−0) ≥ 1

p
then obviously

N = N1 ∪N2 ∪N3 ∪ . . .
where each Np is finite . So N is denumerable.
This prove the theorem.

Theorem 3.16. A function of b.v. has at most a denumerable number of points
of discontinuity.

Proof. From the penultimate theorem we have f(x) = φ(x) − ψ(x) where φ(x)
and ψ(x) are increasing. Also since φ(x) and ψ(x) has at most denumerable
number of points of discontinuity. The function f(x) has at most denumerable
no. of points of discontinuity.

Theorem 3.17. Let f(x) be a function of b.v. on [a, b]. If f(x) is continuous at
the point x0 ∈ [a, b]. Thus the function F (x) = Vf [a, x] is also continuous at x0.
Conversely if F (x) is continuous at x0 the function f(x) is continuous at x0.
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Proof. Let f(x) be continuous and x0 < b.Let ε(> 0) be arbitrary. Then there
exists a δ(> 0) such that
|f(x)− f(x0)| < ε

2
whenever |x− x0| < δ.

We consider a division of [x0, b] given by x0 < x1 < x2 < . . . < xn = b such
that

∑n−1
p=0 |f(xp+1)− f(xp)| > Vf [x0, b]− ε

2
.

Since the sum in the above inequality increases on introduction of new points
of divisions, we may assume that
|f(x1)− f(x0)| < ε

2
whenever (x− x0) < δ. Therefore,

Vf [x0, b] =
ε

2
< |f(x1)− f(x0)|+

n−1∑
p=1

|f(xp+1)− f(xp)|

<
ε

2
+

n−1∑
p=1

|f(xp+1)− f(xp)|

<
ε

2
+ Vf [x1, b]

So, Vf [x0, b]−Vf [x1, b] < ε and we have Vf [x0, x1] < ε

[
x0 < x1 < b , Vf [x0, b] =

Vf [x0, x1] + Vf [x1, b]

]
Consequently, for 0 < (x1 − x0) < δ we have

|F (x1)− F (x0)| < ε

[
a < x0 < x1 , Vf [a, x1] = Vf [a, x0] + Vf [x0, x1]

]
.

This implies that lim
x→x+0

F (x) = F (x0).

Similarly, we can show that if x0 > a, then lim
x→x−0

F (x) = F (x0).

This proves the continuity of F (x) at x0.
Conversely, let F (x) be continuous at x0.Then for any ε(> 0) ∃ a δ > 0 such

that
|F (x)− F (x0)| < ε for |x− x0| < δ.
Also |f(x)− f(x0)| ≤ Vf [x0, x] = F (x)− F (x0) if x > x0

|f(x)− f(x0)| ≤ Vf [x, x0] = F (x0)− F (x) if x < x0

Hence, it follows that
|f(x)− f(x0)| ≤ |F (x)− F (x0)| < ε whenever |x− x0| < δ.
Hence, f(x) is continuous at x0.

Corollary 3.1. A continuous function f(x) of b.v. can be expressed as the
difference of two continuous increasing functions.

Proof. In fact f(x) can be expressed as

f(x) = F (x)−G(x),

where both F (x) and G(x) are increasing. Since f(x) is continuous, by the above
theorem F (x) is continuous and G(x) = F (x)− f(x) being the difference of two
continuous function is continuous.
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Corollary 3.2. If a function f(x) defined on the interval [a, b] is of b.v. on [a, b].
Then f(x) is measurable on [a, b].

Proof. For f(x) has at most denumerable number of points of discontinuity that
is f(x) is continuous almost everywhere. But a function which is continuous a.e.
is measurable.

3.4 Some Examples on Bounded variation

Example 3.6. Show that the following function given by

f(x) =

{
xα sin 1

xβ
if 0 < x ≤ 1

0 if x = 0,

where α and β are positive numbers is of bounded variation on [0, 1] if α > β+1.

Solution: Since for x 6= 0,

f
′
(x) = αxα−1 sin

1

xβ
− βxα 1

xβ+1
cos

1

xβ

= αxα−1 sin
1

xβ
− βxα−β−1 cos

1

xβ

= xα−β−1
[
αxβ sin

1

xβ
− β cos

1

xβ

]
.

Therefore, when α > β + 1, we have |f ′(x)| ≤ α + β, x ∈ (0, 1].
Thus, f is a function of bounded variation on (0, 1] when α > β + 1.

Example 3.7. Verify either the following functions is of B.V.

f(x) =

{√
x sin 1

x
if x 6= 0

0 if x = 0

Example 3.8. Show that a polynomial f is of bounded variation on every closed
interval [a, b].

Example 3.9. Let f be a function of bounded variation on [a, b]. Then
(i) f is of bounded variation on every closed subinterval of [a, b]
(ii) kf is of bounded variation on [a, b], k be a constant.

Example 3.10. If f : [a, b] → R is of bounded variation on every closed subin-
terval of (a, b) it may yet found to be of bounded variation on [a, b].

Example 3.11. Verify whether the following functions is of B.V. on [0, 1].
(i)

f(x) =

{√
x sin 1

x
if x 6= 0

0 if x = 0
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(ii)

f(x) =

{
x

1
3 sin π

x
if x 6= 0

0 if x = 0

Summary
In this unit, we have been acquainted with the Functions of Bounded variations,
its various relevant properties; about variation function, and their applications.
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Unit 4
Course Structure

1. Absolutely continuous functions : Definition and basic properties

2. Deduction of the class of all absolutely continuous functions as a proper
subclass of all functions of bounded variation

3. Characterization of an absolutely continuous function in terms of its deriva-
tive vanishing almost everywhere

4 Introduction

Absolute continuity is a smoothness property of functions that is stronger
than continuity and uniform continuity. The notion of absolute continuity allows
one to obtain generalizations of the relationship between the two central opera-
tions of calculus— differentiation and integration. This relationship is commonly
characterized (by the fundamental theorem of calculus) in the framework of Rie-
mann integration, but with absolute continuity it may be formulated in terms
of Lebesgue integration. For real-valued functions on the real line two interre-
lated notions appear: absolute continuity of functions and absolute continuity of
measures.

4.1 Absolute Continuity

A real-valued function f defined on [a, b] is said to be absolutely continuous
on [a, b] if given ε > 0 there exists a δ > 0 such that

n∑
i=1

|f(x
′

i)− f(xi)| < ε

for every finite collection {(xi, x
′
i)} of non-overlapping intervals with

n∑
i=1

|x′i − xi| < δ.

If in the above definition we consider only one interval (n = 1), then it is seen
that an absolutely continuous function is continuous. Therefore, f is continuous
on [a, b] and so f is uniformly continuous on [a, b].

Definition 4.1. (Uniform Continuity) Let f(x) be defined on the interval
[a, b]. Then f(x) is said to be uniformly continuos on [a, b] if corresponding
to ε(> 0) arbitrary, there exists a δ(> 0) depending only on (ε) such that |f(x

′
)−

f(x
′′
)| < ε whenever |x′ − x′′ | < δ for arbitrary pair of points x

′
, x
′′

in [a, b].
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Note: Any uniformly continuous function is obviously continuous but the con-
verse is not true.

Example 4.1. f(x) = x2 and x ∈ (−∞,∞). But |f(x
′
)− f(x

′′
)| < 1 whenever

|x′ − x′′ | < δ implies |f(x+ δ
2
)− f(x)| < 1 = ε. [since |(x+ δ

2
)− x| < δ]

or, δ
2
|2x + δ

2
| < 1 for all x ∈ (−∞,∞). But this inequality does not hold for all

sufficiently large values of x. So, f(x) is not uniformly continuous.

Definition 4.2. (AbsoluteContinuity) Let a function f(x) be defined and
finite in the interval [a, b]. Also, let (x1, y1), (x2, y2), . . . , (xn, yn) be non-
overlapping intervals in [a, b] such that yi ≤ xi+1 (i = 1, 2, . . . , n − 1). Then,

given ε(> 0), if there exists a δ(> 0) such that
n∑
i=1

|f(yi) − f(xi)| < ε for∑n
i=1 |yi − xi| < ε, then the function f(x) is said to be absolutely continuous

or AC in [a, b].

If in the above definition, we consider only one interval (n = 1), then it is
seen that an absolutely continuous function is continuous. In fact any absolutely
continuous function is uniformly continuous and so continuous but the converse
is not true.

Example 4.2. Let f(x) =
√
x, 0 ≤ x ≤ 1

2
. Let f(1) = 0 and define f to be

linear on [1
2
, 1]. Let f(x + k) = f(x) for each k ∈ Z and each x. Show that f is

continuous on R but not absolutely continuous.

Solution: From the definition, f is continuous on [0, 1]. Given δ, 0 < δ < 1
2
,

let xi = i, yi = i+ δ
i2

. Then for each n,
n∑
i=1

|xi−yi| < 2δ but
n∑
i=1

|xi−yi| =
n∑
i=1

√
δ

i

which tends to infinity with n. So, f is not absolutely continuous.

4.2 Some basic results

Theorem 4.1. An absolutely continuous function is of bounded variation

Proof. Let an absolutely continuous function f be defined in the interval [a, b].
Then corresponding to any positive number K there exists δ > 0 such that for
every finite collection {(xi, x

′
i)} of non-overlapping intervals we have,

n∑
i=1

|f(x
′

i)− f(xi)| < K whenever
n∑
i=1

|xi − x
′

i| < δ (4.1)

Now we divide the interval [a, b] by the points a = z0 < z1 < . . . < zp = b. in
such a way that zi − zi−1 < δ, for i = 1, 2, . . . , p.
We consider the subinterval [zi−1, zi] and let P = {zi−1 = t0, t1, t2, . . . , tq = zi}
be any partition of [zi−1, zi]. Note that

q∑
k=1

|tk − tk−1| = |zi − zi−1| < δ,
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i.e.,
q∑

k=1

|tk − tk−1| < δ. (4.2)

Then from (4.1) and (4.2) we get,

V (P, f) =

q∑
k=1

|f(tk)− f(tk−1)| < K

and so

V (zi−1, zi; f) ≤ K.

Consequently,

V (a, b; f) ≤ Kp ≤ ∞,

which shows that f is a function of bounded variation on [a, b].

Remark 4.1. Converse of the theorem is not true. For example let f : [0, 2]→ R
be defined by f(x) = [x]. Clearly f is a function of bounded variation on [0, 2].
Since every absolutely continuous function is continuous, it follows that f is not
absolutely continuous on [0, 2].

Theorem 4.2. If f(x) has bounded derivative in [a, b], then f(x) is absolutely
continuous in [a, b].

Proof. Let |f ′(x)| ≤ K, ∀x ∈ [a, b]. By mean value theorem for any pair of points
x1, x2 in [a, b], we have

|f(x2)− f(x1)| = |x2 − x1||f
′
(ξ)|, where ξ ∈ (x1, x2)

≤ K|x2 − x1| ( since |f ′(ξ)| ≤ K)

⇒ |f(x2)− f(x1)| ≤ K|x2 − x1|

So f(x) satisfies Lipschitz condition in [a, b]. Choose ε > 0 arbitrarily. If δ = ε
k

and (x1, y1), (x2, y2), . . . , (xn, yn) be any system of non-overlapping intervals in
[a, b] with

n∑
i=1

|yi − xi| < δ.

Then,
n∑
i=1

|f(yi)− f(xi)| ≤
n∑
i=1

K|yi − xi|

= K

n∑
i=1

|yi − xi|

≤ Kδ = ε

Hence f(x) is absolutely continuous in [a, b].
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Note 4.1. If f(x) satisfies the Lipschitz condition on [a, b], then f(x) is absolutely
continuous in [a, b].

Example 4.3. Give an example of a function f which is continuous but not
absolutely continuous.

Solution:- Let f : [0, 1]→ R be defined by,

f(x) = x sin
π

x
, if x 6= 0

= 0 if x = 0.

Then f is continuous on [0, 1]. But f is not a function of bounded variation
on [0, 1]. Since every absolutely continuous function is a function of bounded
variation , it follows that f is not absolutely continuous on [0, 1].

Theorem 4.3. If f(x) and g(x) are two absolutely continuous functions then

(i) f(x) + g(x)

(ii) f(x)− g(x)

(iii) f(x)g(x) and

(iv) f(x)
g(x)

(g(x) 6= 0) are absolutely continuous.

Proof. (i) Since f(x) and g(x) are both absolutely continuous, given ε > 0
there exists a δ > 0 such that for any system of non-overlapping intervals
{(xi, yi)} (i = 1, 2, . . . , n) in [a, b],

n∑
i=1

|f(yi)− f(xi)| <
ε

2

and

n∑
i=1

|g(yi)− g(xi)| <
ε

2
,

whenever

n∑
i=1

|yi − xi| < δ.

Now we have,∣∣∣[f(yi) + g(yi)]− [f(xi) + g(xi)]
∣∣∣ ≤ |f(yi)− f(xi)|+ |g(yi)− g(xi)|,
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for i = 1, 2, . . . , n. Therefore,

n∑
i=1

∣∣∣[f(yi) + g(yi)]− [f(xi) + g(xi)]
∣∣∣ ≤ n∑

i=1

|f(yi)− f(xi)|+
n∑
i=1

|g(yi)− g(xi)|

≤ ε

2
+
ε

2
= ε,

whenever

n∑
i=1

|yi − xi| < δ.

Hence f + g is absolutely continuous.
(ii) Do yourself.
(iii) Since f and g are absolutely continuous on [a, b], it follows that f and g
are continuous on [a, b] and hence f and g are bounded. Let |f(x)| ≤ B and
|g(x)| ≤ B, ∀x ∈ [a, b].
Since f and g are both absolutely continuous on [a, b], given ε > 0 there exists
a δ > 0 such that for every system of non-overlapping intervals {(xi, yi)} (i =
1, 2, . . . , n) of [a, b] we have,

n∑
i=1

|f(yi)− f(xi)| <
ε

2B
and

n∑
i=1

|g(yi)− g(xi)| <
ε

2B
, (4.3)

whenever
n∑
i=1

|yi − xi| < δ.

Note that,

|f(yi)g(yi)− f(xi)g(xi)|
= |g(yi){f(yi)− f(xi)}+ f(xi){g(yi)− g(xi)}|
≤ |g(yi)||f(yi)− f(xi)|+ |f(xi)||g(yi)− g(xi)|

Therefore,

n∑
i=1

|f(yi)g(yi)− f(xi)g(xi)| ≤
n∑
i=1

|g(yi)||f(yi)− f(xi)|+
n∑
i=1

|f(xi)||g(yi)− g(xi)|

≤
n∑
i=1

B|f(yi)− f(xi)|+
n∑
i=1

B|g(yi)− g(xi)|

= B
n∑
i=1

|f(yi)− f(xi)|+B
n∑
i=1

|g(yi)− g(xi)|. (4.4)

Now from (4.3) and (4.4) we have,

n∑
i=1

|f(yi)g(yi)− f(xi)g(xi)| < B
ε

2B
+B.

ε

2B
= ε,
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whenever

n∑
i=1

|yi − xi| < δ.

Thus fg is absolutely continuous.
(iv) Since g is continuous and g(x) 6= 0, it follows that 1

g(x)
is continuous on [a, b]

and hence 1
g(x)

is bounded on [a, b]. Then there exists M > 0 such that
∣∣∣ 1
g(x)

∣∣∣ ≤ 1
M

.

Since g is absolutely continuous on [a, b], given ε > 0, there exists a δ > 0 such
that for any system of non-overlapping intervals {(xi, yi)} (i = 1, 2, . . . , n) of
[a, b], we have

n∑
i=1

|g(yi)− g(xi)| < M2ε, whenever

n∑
i=1

|yi − xi| < δ.

Note that,

n∑
i=1

∣∣∣ 1

g(yi)
− 1

g(xi)

∣∣∣ =
n∑
i=1

|g(xi)− g(yi)|
|g(xi)||g(yi)|

≤
n∑
i=1

|g(yi)− g(xi)|
M2

=
1

M2

n∑
i=1

|g(yi)− g(xi)|

<
1

M2
εM2 = ε, whenever

n∑
i=1

|yi − xi| < δ.

This shows that 1
g(x)

is absolutely continuous on [a, b].

Now by applying (iii) f
g

is absolutely continuous on [a, b].

Example 4.4. Prove that the function f : [0, 1]→ R be defined by,

f(x) = x2 cos
1

x
, if 0 < x ≤ 1

= 0, if x = 0.

is absolutely continuous on [0, 1].

Solution: Note that

f
′
(x) = 2x cos

1

x
+ sin

1

x
, if 0 < x ≤ 1

= 0, if x = 0.

and so |f ′(x)| ≤ 3 on [0, 1]. Then f has bounded derivatives on [0, 1] and so f is
absolutely continuous on [0, 1].
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Example 4.5. Give an example to show that every monotone function is not
necessarily absolutely continuous.

Solution: Let f(x) = [x],∀ x ∈ [0, 2]. Clearly f is monotone increasing
function on [0, 2]. But f is not absolutely continuous, because every absolutely
continuous function is continuous.

Example 4.6. The function f(x) =
√
x is absolutely continuous on [0, 1].

Theorem 4.4. If f is absolutely continuous on [a, b], then f has derivative almost
everywhere.

Theorem 4.5. If f is absolutely continuous on [a, b] and f
′
(x) = 0 almost ev-

erywhere, then f is constant.

Theorem 4.6. Let a function f defined in [a, b] be absolutely continuous. If
c ≤ f(x) ≤ d,∀ x ∈ [a, b] and F (y) satisfies Lipschitz condition in [c, d], then
F (f(x))is absolutely continuous in [a, b].

Proof. Since F (y) satisfies Lipchitz condition, there exists constant K > 0 such
that

|F (y1)− F (y2)| ≤ K|y1 − y2| (4.5)

for any two points y1and y2 in [c, d].
Now if {(xi, yi)} (i = 1, 2, . . . , n) be any system of non-overlapping intervals

in [a, b].
Then given any ε > 0 there exists a δ > 0 such that,

n∑
i=1

|f(yi)− f(xi)| <
ε

K
, (4.6)

whenever

n∑
i=1

|yi − xi| < δ.

Therefore from (4.5) and (4.6) we get ,

n∑
i=1

|F (f(yi))− F (f(xi))| ≤ K
n∑
i=1

|f(yi)− f(xi)| < K.
ε

K
= ε,

whenever
n∑
i=1

|yi − xi| < δ. Hence F (f(x)) is absolutely continuous on [a, b].

Theorem 4.7. Let f be a function of bounded variation on [a, b]. Then f is abso-
lutely continuous on [a, b] iff the variation function F (x) = Vf [a, x] is absolutely
continuous on [a, b].
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Proof. The absolute continuity of F (x) clearly implies that of f since |f(xi) −
f(xi−1)| ≤ Vf [xi−1, xi] = V − f [a, xi] − Vf [a, xi−1] = F (xi) − F (xi−1) for a ≤
xi−1 < xi ≤ b.

Thus for a finite collection of disjoint intervals (xi, yi) ⊂ [a, b], we have due
to the absolute continuity of F (x).

Then for arbitrary ε > 0, there corresponds a δ > 0 such that
∑n

i=1 |F (xi)−
F (yi)| < ε whenever

∑n
i=1 |xi − yi| < δ.

Clearly,
∑n

i=1 |f(xi) − f(yi)| < ε whenever
∑n

i=1 |xi − yi| < δ. Hence, f is
absolutely continuous.

On the other hand, assume f is absolutely continuous. Then given an ε > 0,
there exists a δ > 0 such that for any finite collection C = {(xi, x

′
i) : i =

1, 2, . . . , n} of pairwise disjoint intervals in [a, b] with
∑n

i=1 |x
′
i− xi| < δ, we have

n∑
i=1

|f(x
′

i)− f(xi)| < ε.

For each i, let Pi = |{xi = ai0 < ai1 < ai2 < . . . < amii = x
′
i} be a partition of

[xi, x
′
i]. Since

n∑
i=1

mi∑
j=1

|aij − aij−1| =
n∑
i=1

|x′i − xi| < δ,

we have

n∑
i=1

mi∑
j=1

|f(aij)− f(aij−1)| < ε.

This implies

mi∑
j=1

|f(a
′

j)− f(a
′

j−1)|+
mi∑
j=1

|f(a2
j)− f(a2

j−1)|+ . . .+

mi∑
j=1

|f(anj )− f(anj−1)| < ε.

Now fixing the collection C but varying the partition Pi of each [xi, x
′
i], we have,

upon taking the supremum over all such partitions Pi,

Vf [x1, x
′

1] + Vf [x2, x
′

2] + · · ·+ Vf [xn, x
′

n] < ε

=⇒
n∑
i=1

{Vf [a, x
′

i]− Vf [a, xi]} < ε

=⇒
n∑
i=1

{F (x
′

i)− F (xi)} < ε.

So, F (x) is absolutely continuous.
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Set of measure zero:

Definition 4.3. A property P is said to hold good almost everywhere (abbreviated
a.e.) on a set S if the set of points of S where P fails to hold has measure zero.

Theorem 4.8. If f is absolutely continuous on [a, b] and f
′

= 0 a.e., then f is
a constant function.

Theorem 4.9. Let a function f(x) defined on [a, b] be absolutely continuous.
If for all x, c ≤ f(x) ≤ d and F (y) satisfies Lipschitz condition in [c, d], then
F (f(x)) is absolutely continuous in [a, b].

Proof. Since F (y) satisfies Lipschitz condition, there exists a constant k such
that |F (y1)− F (y2)| ≤ k|y1 − y2| for any two points y1 and y2 in [c, d].
Now if {(xi, yi) : i = 1, 2, . . . , n} be any system of non-overlapping intervals in
[a, b], then given ε > 0, there exists a δ > 0 such that

n∑
i=1

|f(yi)− f(xi)| <
ε

k

when
∑n

i=1(yi − xi) < δ. So,

n∑
i=1

|F (f(yi))− F (f(xi))| ≤ k
n∑
i=1

|f(yi)− f(xi)| < k.
ε

k
= ε

when
∑n

i=1(yi − xi) < δ. So, F (f(x)) is absolutely continuous.

Outer measure:
Let us consider the family F of all countable collections of open intervals.For

any arbitrary I ∈ F , the sum
∑
I∈I

l(I) is a non-negative extended real number.

Let E be an arbitrary set. Consider the sub family C of F containing of countable
collections I of open intervals {Ii} such that E ⊂ ∪Ii i.e.,

C = {I : I ∈ F and I covers E}.

The subfamily C is obviously non-empty. Thus we obtain a well defined number
m∗(E) in the set of all non negative extended real numbers given by

m∗(E) = inf{
∑
I∈I

l(I) : I ∈ C}.

Definition 4.4. The Lebesgue outer measure m∗(E) of an arbitrary set is given

by m∗(E) = inf
∑
i

l(Ii), where the infimum is taken over all countable collec-

tions {Ii} of open intervals such that E ⊂ ∪iIi.

Vitali cover:
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Definition 4.5. Let E ⊂ R. A collection γ of intervals is said to be a Vitali
cover of the set E if for each x ∈ E and each ε > 0, there exists an interval I ∈ I
with x ∈ I and l(I) < ε.

Example 4.7. Let rn be an enumeration of the rationals in [a, b]. Then the
collection In,i, where In,i = [rn− 1

i
, rn + 1

i
], n, i ∈ N forms a Vitali cover of [a, b].

4.3 Vitali’s covering Theorem:

Let E be a set of finite outer measure and I be a collection of intervals which
covers E in the sense of Vitali. Then given ε > 0, there is a finite disjoint
collection {I1, I2, . . . , In} of intervals in I such that m∗(E − ∪Ni=1) < ε, m∗(E −
∪Ni=1) < ε.

Theorem 4.10. Let {En} be a countable collection of sets. Then m∗(∪n) ≤∑
nm

∗(En).

Theorem 4.11. If f(x) is absolutely continuous on [a, b] and f
′

= 0 a.e., then
f(x) is constant.

Proof. It is sufficient to prove that f(a) = f(b). For then, for any x in a < x ≤ b,
we have in [a, x] f(x) = f(a) which implies f(x) is constant. Let E = {x ∈ [a, b] :
f
′
(x) = 0} so that m∗(E) = b − a. Then for every x ∈ E and arbitrary ε(> 0),

we get a sufficiently small h(> 0) such that |f(x+h)−f(x)|
h

< ε.
i.e.,

|f(x+ h)− f(x)| < εh (4.7)

The closed interval [x, x + h] covers the set E in Vitali’s sense. So we can pick
out a finite set of non-overlapping intervals out of these, say δr = [xr, xr + hr],
r = 1, 2, . . . , n such that m∗(E −∪ni=1) < δ, where δ(> 0) is a given number. Let
xr < xr+1, r = 1, 2, . . . , n.

Now

b− a = m∗(E) ≤
n∑
r=1

mδr +m∗(E − ∪nr=1δr)

<
n∑
r=1

mδr + δ.

i.e.,

(b− a)−
n∑
r=1

mδr < δ. (4.8)
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From (4.8), it is clear that the lenght of the intervals (a, x1), (x1 + h1, x2),. . .,
(xn + hn, b) is less than δ.
We have

|f(b)− f(a)|
= |f(x1)− f(a) + f(x1 + h1)− f(x1) + f(x2) + . . .+ f(b)− f(xn + hn)|
≤ {|f(x1)− f(a)|+ |f(x2)− f(x1 + h1)|+ . . .+ |f(b)− f(xn + hn)|}

+{|f(x1 + h1)− f(x1)|+ |f(x2 + h2)− f(x2)|
+ . . .+ |f(xn + hn)− f(xn)|} (4.9)

Since f(x) is a.c., the first sum on the right hand side of (4.9) is less than ε. Also
since

∑n
r=1 hr =

∑n
r=1 mδr ≤ (b− a), by (4.7), the second sum on the right hand

side of (4.9) is < ε(b− a). Consequently, from (4.9), it follows that

|f(b)− f(a)| < ε+ ε(b− a) = ε(1 + b− a).

Since ε(> 0) is arbitrary, f(b) = f(a).

Inner Measure:
Let the set E is in the bounded interval [a, b]. Then the inner measure of the

set E is defined to be m∗(E) = b− a = m∗(Ec). A set is said to be measurable
if m∗(E) = m∗(E).

Corollary 4.1. If f(x) and g(x) are two a.c. functions and f
′
(x) = g

′
(x) a.e.,

then f(x)− g(x) is constant.

Summary
In this unit, we have learnt about absolute continuity and its properties, the
Vitali’s Covering Theorem.
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Unit 5
Course Structure

1. Riemann-Stieltjes integral : Existence and basic properties

2. Integration by parts, Integration of a continuous function with respect to
a step function

3. Convergence theorems in respect of integrand

4. Convergence theorem in respect of integrator (Helly’s Second theorem)

5 Introduction

The Riemann–Stieltjes integral is a generalization of the Riemann integral,
named after Bernhard Riemann and Thomas Joannes Stieltjes. The definition of
this integral was first published in 1894 by Stieltjes. It serves as an instructive
and useful precursor of the Lebesgue integral, and an invaluable tool in unifying
equivalent forms of statistical theorems that apply to discrete and continuous
probability.

5.1 Riemann Stieltjes Integral

Definition 5.1. Let [a, b] be a finite closed interval. Let P = {a = x0, x1, . . . , xn =
b} be a partition of [a, b] and Ir = [xr−1, xr], r = 1, 2, . . . , n. The length of the
r-th sub-interval Ir is denoted by δr, i.e., δr = xr − xr−1. The set of all possible
partitions of [a, b] is denoted by P [a, b].
The length of the greatest of all the intervals Ir of the partition P will be called
its norm and denoted by ||P || or µ(P ). Thus

||P || = µ(P ) = max{δr : r = 1, 2, . . . , n}.

If P1 and P2 be two partitions of [a, b] such that P2 ⊇ P1, then we say that P2 is
finer than P1 or P2 is a refinement of P1.
If P1 and P2 are two partitions of [a, b], then P1∪P2 is called a common refinement
of P1 and P2.

Let f and α be bounded functions on [a, b] and α be monotonic increasing on
[a, b].
Corresponding to any partition P = {a = x0, x1, . . . , xn = b} of [a, b] we write

δαr = α(xr)− α(xr−1), r = 1, 2, . . . , n.

Note that
n∑
r=1

δαr = α(b)− α(a).
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Since α is monotonic increasing on [a, b], we have

δαr ≥ 0, ∀ r = 1, 2, . . . , n.

The function f which is bounded on [a, b] is also necessarily bounded in each
sub-interval Ir = [xr−1, xr]. Let Mr, mr be the supremum and the infimum of f
on Ir. We define two sums,

U(P, f, α) =
n∑
r=1

Mrδαr

L(P, f, α) =
n∑
r=1

mrδαr.

U(P, f, α) and L(P, f, α) are called upper and lower Riemann-Stieltjes sums re-
spectively of f with respect to α and corresponding to the partition P . If M , m
are respectively the upper and lower bounds of f on [a, b], we have

m ≤ mr ≤Mr ≤M, r = 1, 2, . . . , n

⇒ mδαr ≤ mrδαr ≤Mrδαr ≤Mδαr, r = 1, 2, . . . , n.

Adding all inequalities we get

m{α(b)− α(a)} ≤ L(P, f, α) ≤ U(P, f, α) ≤M{α(b)− α(a)}. (5.1)

From (5.1) we see that both the sets {U(P, f, α) : P ∈ P [a, b]} and {L(P, f, α) :
P ∈ P [a, b]} are bounded. We now define two integrals, which always exist as
follows:

b∫
a

fdα = inf{U(P, f, α) : P ∈ P [a, b]} (5.2)

and

b∫
a

fdα = sup{L(P, f, α) : P ∈ P [a, b]}. (5.3)

These are respectively called the upper and the lower integrals of f with respect
to α on [a, b].
These two integrals may or may not be equal. In case these two integrals are
equal, i.e.,

b∫
a

fdα =

b∫
a

fdα
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we say that f is integrable with respect to α in the Riemann sense and write
f ∈ R(α). Their common value is denoted by

b∫
a

fdα.

and is called the Riemann-Stieltjes integral of f with respect to α on [a, b].

Theorem 5.1. The lower Riemann-Stieltjes integral cannot exceed the upper
Riemann-Stieltjes integral, i.e.,

b∫
a

fdα ≤
b∫

a

fdα.

Remark 5.1. From (5.2) and (5.3), it follows that

b∫
a

f dα ≤ U(P, f, α) and L(P, f, α) ≤
b∫

a

f dα,

∀ P ∈ P [a, b] and so

L(P, f, α) ≤
b∫

a

f dα ≤
b∫

a

f dα ≤ U(P, f, α),

∀ P ∈ P [a, b]. If f ∈ R(α), then
b∫
a

fdα lie between U(P, f, α) and L(P, f, α).

Remark 5.2. As a particular case, if α(x) = x, then the so called Riemann-
Stieltjes sums reduce to the Riemann sums. So by taking α(x) = x, the Riemann
integral can be easily seen to be a special case of Riemann-Stieltjes integral.

Remark 5.3. In this chapter, unless otherwise stated, all functions will be taken
as bounded and the function α will be always monotonic increasing.

Theorem 5.2. If P ∗ is a refinement of P , then

(i) L(P, f, α) ≤ L(P ∗, f, α) (ii) U(P ∗, f, α) ≤ U(P, f, α).

Theorem 5.3. If P1 and P2 be any two partitions of [a, b], then U(P2, f, α) ≥
L(P1, f, α).

Theorem 5.4. If a ∈ R and 0 ≤ a < ε holds for every positive ε, then a = 0.
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5.2 A Condition Of Integrability

Theorem 5.5. A function f is integrable with respect to α on [a, b] if and only
if for every ε > 0 there exists a partition P of [a, b] such that

U(P, f, α)− L(P, f, α) < ε.

Proof. The condition is necessary.
Let f ∈ R(α) over [a, b]. Then

b∫
a

fdα =

b∫
a

fdα =

b∫
a

fdα.

Let ε > 0 be any real number. Since
b∫
a

fdα = inf{U(P, f, α) : P ∈ P [a, b]} and

b∫
a

fdα = sup{L(P, f, α) : P ∈ P [a, b]}, it follows that there exist partitions P1

and P2 of [a, b] such that

U(P1, f, α) <

b∫
a

fdα +
1

2
ε or U(P1, f, α) <

b∫
a

fdα +
1

2
ε (5.4)

and

L(P2, f, α) >

b∫
a

fdα− 1

2
ε or

b∫
a

fdα < L(P2, f, α) +
1

2
ε. (5.5)

Let P = P1 ∪ P2. Then P is the common refinement of P1 and P2. Now from
(5.4) and (5.5) we have

U(P, f, α) ≤ U(P1, f, α) <

b∫
a

fdα +
1

2
ε < L(P2, f, α) + ε < L(P, f, α) + ε.

Thus U(P, f, α)− L(P, f, α) < ε, showing that the condition is necessary.
The condition is sufficient.
Let for every ε > 0, there exists a partition P such that

U(P, f, α)− L(P, f, α) < ε. (5.6)

We know that

b∫
a

f dα ≤ U(P, f, α) and L(P, f, α) ≤
b∫

a

f dα
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⇒
b∫

a

f dα ≤ U(P, f, α) and −
b∫

a

f dα ≤ −L(P, f, α). (5.7)

Now from (5.7) we get

b∫
a

f dα−
b∫

a

f dα ≤ U(P, f, α)− L(P, f, α). (5.8)

Therefore from (5.6) and (5.8) we get

0 ≤
b∫

a

f dα−
b∫

a

f dα < ε,

for every ε > 0. This shows that

b∫
a

f dα−
b∫

a

f dα = 0, i.e.,

b∫
a

f dα =

b∫
a

f dα,

showing that the function f ∈ R(α) over [a, b] and so the condition is sufficient.

Example 5.1. Let f : [0, 1] −→ R be defined by

f(x) =

{
1, if x is rational
−1, if x is irrational

and α is a bounded monotonic increasing function on [0, 1] such that α(0) < α(1).
Then prove that f 6∈ R(α) on [0, 1].

Proof. Clearly f is bounded on [0, 1]. Let P = {0 = x0, x1, . . . , xr−1, xr, . . . , xn =
1} be any partition of [0, 1]. Let mr and Mr be the infimum and the supremum
of f on [xr−1, xr]. Then mr = −1 and Mr = 1 for r = 1, 2, . . . , n. Note that

U(P, f, α) =
n∑
r=1

Mrδαr =
n∑
r=1

δαr = α(1)− α(0)

and

L(P, f, α) =
n∑
r=1

mrδαr = −
n∑
r=1

δαr = −[α(1)− α(0)].

Therefore

1∫
0

fdα = inf{U(P, f, α) : P ∈ P [0, 1]} = α(1)− α(0)
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and

1∫
0

fdα = sup{L(P, f, α) : P ∈ P [0, 1]} = −[α(1)− α(0)].

Since
1∫
0

fdα 6=
1∫
0

fdα, it follows that f 6∈ R(α) on [0, 1].

Example 5.2. Let f(x) = k be a constant function defined on [a, b] and α
a monotonic increasing function on [a, b]. Prove that f ∈ R(α) on [a, b] and
b∫
a

f dα = k[α(b)− α(a)].

Proof. Hints: mr = Mr = k.

5.3 Integral as a limit sum

Let f be a bounded function and α be a monotonic increasing function on
[a, b]. Let P = {a = x0, x1, . . . , xr−1, xr, . . . , xn = b} be any partition of [a, b].
Let ξr ∈ [xr−1, xr], for r = 1, 2, . . . , n. Then the sum

S(P, f, α) =
n∑
r=1

f(ξr)δαr

is called the Riemann-Stieltjes sum of f relative to α on [a, b] corresponding to
the partition P . We say that S(P, f, α) converges to A as µ(P )→ 0, i.e.,

lim
µ(P )→0

S(P, f, α) = A

if for every ε > 0 there exists δ > 0 such that |S(P, f, α) − A| < ε for every
partition P = {a = x0, x1, . . . , xr−1, xr, . . . , xn = b} of [a, b] with µ(P ) < δ and
every choice of ξr in [xr−1, xr].

Remark 5.4. Let Mr = sup
x∈Ir

f(x) and mr = inf
x∈Ir

f(x) for r = 1, 2, . . . , n.

Then

mr ≤ f(ξr) ≤Mr for r = 1, 2, . . . , n

⇒ mrδαr ≤ f(ξr)δαr ≤Mrδαr for r = 1, 2, . . . , n

⇒
n∑
r=1

mrδαr ≤
n∑
r=1

f(ξr)δαr ≤
n∑
r=1

Mrδαr

L(P, f, α) ≤ S(P, f, α) ≤ U(P, f, α).
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Theorem 5.6. If lim
µ(P )→0

S(P, f, α) exists, then f ∈ R(α) and

lim
µ(P )→0

S(P, f, α) =

∫ b

a

f dα.

Remark 5.5. The theorem asserts that the existence of the limit of S(P, f, α)
implies that f ∈ R(α). The existence of the limit is a sufficient condition for
f ∈ R(α) but it is not a necessary condition, i.e., functions exist which are
integrable but for which limit of S(P, f, α) does not exist.

Example 5.3. Let f, α : [−1, 1] −→ R be defined by

f(x) =

{
0, if x < 0
1, if x ≥ 0

and

α(x) =

{
0, if x ≤ 0
1, if x > 0

Then f ∈ R(α) but lim
µ(P )→0

S(P, f, α) does not exist.

Theorem 5.7. If f is continuous on [a, b], then f ∈ R(α) and lim
µ(P )→0

S(P, f, α) =∫ b
a
f dα.

Proof. Let ε > 0 be given. Let us choose η > 0 such that

η[α(b)− α(a)] < ε. (5.9)

Since f is continuous on [a, b], so f is uniformly continuous on [a, b]. Hence for
η > 0 , there exists δ > 0 such that

|f(x
′
)− f(x

′′
)| < η (5.10)

whenever |x′ − x′′ | < δ. Let P = {a = x0, x1, . . . , xr−1, xr, . . . , xn = b} be any
partition of [a, b] with µ(P ) < δ.
Let mr, Mr be the infimum and supremum of f in [xr−1, xr]. Since f is continuous
on [a, b], so it is continuous on each sub-interval [xr−1, xr] and hence f will attain
its bounds mr, Mr on [xr−1, xr]. Therefore there exist y

′
, y
′′ ∈ [xr−1, xr] such that

f(y
′
) = Mr and f(y

′′
) = mr. Since |y′ − y′′| ≤ |xr − xr−1| < δ, from (5.10)

|f(y
′
)− f(y

′′
)| < η

⇒Mr −mr < η, r = 1, 2, . . . , n. (5.11)
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Now from (5.9) and (5.11),

U(P, f, α)− L(P, f, α) =
n∑
r=1

(Mr −mr)δαr < η
n∑
r=1

δαr

= η
n∑
r=1

[α(xr)− α(xr−1)]

= η[α(b)− α(a)] < ε.

Hence f ∈ R(α) over [a, b]. We know that S(P, f, α) and
b∫
a

fdα lie between

U(P, f, α) and L(P, f, α) for all partition P with µ(P ) < δ and for every choice
of ξr in [xr−1, xr]. Hence we have

|S(P, f, α)−
b∫

a

fdα| ≤ U(P, f, α)− L(P, f, α) < ε.

Therefore lim
µ(P )→0

S(P, f, α) =
b∫
a

f dα.

Remark 5.6. From the above theorem, it follows that continuity is sufficient
condition for integrability of a function. But it is not necessary condition, i.e.,
there exist functions which are integrable but function is not continuous. See
Example 2.3.

Theorem 5.8. Suppose f is bounded on [a, b], f has only finitely many points
of discontinuity on [a, b] and α is continuous at every point at which f is discon-
tinuous. Then f ∈ R(α) on [a, b].

Theorem 5.9. Suppose f is continuous on [a, b] and α is of bounded variation
on [a, b]. Then f ∈ R(α) on [a, b].

Theorem 5.10. Suppose f ∈ R(α) on [a, b], m ≤ f(x) ≤ M , ∀ x ∈ [a, b], φ is
continuous on [m,M ] and h(x) = φ(f(x)) on [a, b]. Then h ∈ R(α) on [a, b].

Theorem 5.11. If f is monotonic on [a, b] and if α is continuous and monotonic
increasing on [a, b], then f ∈ R(α).

Proof. Let ε > 0 be given. Since α is monotonic increasing on [a, b], it follows that
sup
x∈[a,b]

α(x) = α(b) and inf
x∈[a,b]

α(x) = α(a). Again since α is continuous on [a, b], so

α attains every value between its bounds α(a) and α(b). Consequently for any
positive integer n, choose a partition P = {a = x0, x1, . . . , xr−1, xr, . . . , xn = b}
of [a, b] such that

δαr =
α(b)− α(a)

n
, for r = 1, 2, . . . , n.
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Let f be monotonic increasing on [a, b].
LetMr = sup

x∈[xr−1,xr]

f(x) andmr = inf
x∈[xr−1,xr]

f(x). Since f is monotonic increasing

on [a, b], it follows that mr = f(xr−1) and Mr = f(xr) for r = 1, 2, . . . , n.
Now

U(P, f, α)− L(P, f, α) =
n∑
r=1

(Mr −mr)δαr

=
α(b)− α(a)

n

n∑
r=1

[f(xr)− f(xr−1)]

=
α(b)− α(a)

n
[f(b)− f(a)]

< ε,

for large n. This shows that f ∈ R(α) over [a, b].
Similarly we can prove that f ∈ R(α) over [a, b], when f is monotonic decreasing.

5.4 First mean value theorem

Theorem 5.12. If f is continuous function on [a, b] and α is monotonic increas-
ing on [a, b], then there exists a number ξ in [a, b] such that

b∫
a

f dα = f(ξ){α(b)− α(a)}.

Proof. LetM = sup
x∈[a,b]

f(x) andm = inf
x∈[a,b]

f(x). Let P = {a = x0, x1, . . . , xr−1, xr, . . . , xn =

b} be any partition of [a, b]. Let Mr = sup
x∈Ir

f(x) and mr = inf
x∈Ir

f(x) for r =

1, 2, . . . , n.
Then

m ≤ mr ≤Mr ≤M for r = 1, 2, . . . , n

⇒ mδαr ≤ mrδαr ≤Mrδαr ≤Mδαr for r = 1, 2, . . . , n

⇒
n∑
r=1

mδαr ≤
n∑
r=1

mrδαr ≤
n∑
r=1

Mrδαr ≤
n∑
r=1

Mδαr

m{α(b)− α(a)} ≤ L(P, f, α) ≤ U(P, f, α) ≤M{α(b)− α(a)}.
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Since f is continuous and α is monotonic increasing, therefore f ∈ R(α) on [a, b]
and so

L(P, f, α) ≤
b∫

a

f dα ≤ U(P, f, α).

Consequently

m{α(b)− α(a)} ≤
b∫

a

f dα ≤M{α(b)− α(a)}.

Hence there exists a number µ, with m ≤ µ ≤M such that

b∫
a

f dα = µ{α(b)− α(a)}.

Again since f is continuous, there exists ξ ∈ [a, b] such that f(ξ) = µ and so

b∫
a

f dα = f(ξ){α(b)− α(a)}.

Corollary 5.1. If f ∈ R(α) over [a, b] and f(x) ≥ 0, for all x ∈ [a, b], then
b∫
a

f dα ≥ 0.

Proof. Let m = inf
x∈[a,b]

f(x). Since f(x) ≥ 0, for all x ∈ [a, b], it follows that

m ≥ 0. We know that
b∫
a

f dα ≥ m{α(b)− α(a)} and so
b∫
a

f dα ≥ 0.

Corollary 5.2. Let f1, f2 ∈ R(α) on [a, b] and f1(x) ≤ f2(x) for all x ∈ [a, b],

then
b∫
a

f1 dα ≤
b∫
a

f2 dα.

Lemma 5.1. Let f : [a, b] −→ R be bounded on [a, b] and M = sup
x∈[a,b]

f(x),

m = inf
x∈[a,b]

f(x). Then

M −m = sup{|f(α)− f(β)| : α, β ∈ [a, b]}.

Remark 5.7. Mr − mr = sup{|f(α) − f(β)| : α, β ∈ [xr−1, xr]}, where Mr =
sup

x∈[xr−1,xr]

f(x), mr = inf
x∈[xr−1,xr]

f(x).

57



Theorem 5.13. If f ∈ R(α) on [a, b], then |f | ∈ R(α) on [a, b] and |
b∫
a

f dα| ≤
b∫
a

|f | dα.

Proof. Since f ∈ R(α), therefore for a given ε > 0, there exists a partition
P = {a = x0, x1, . . . , xn = b} of [a, b] such that

U(P, f, α)− L(P, f, α) < ε. (5.12)

Let Mr,mr and M
′
r,m

′
r be respectively the supremum and infimum of f and |f |

respectively in the sub-interval [xr−1, xr]. Now if ξ1 and ξ2 be any two points in
[xr−1, xr], then we have∣∣∣|f(ξ1)| − |f(ξ2)|

∣∣∣ ≤ |f(ξ1)− f(ξ2)|. (5.13)

From (5.13) we see that

sup{
∣∣∣|f(ξ1)| − |f(ξ2)|

∣∣∣ : ξ1, ξ2 ∈ [xr−1, xr]} ≤ sup{|f(ξ1)− f(ξ2)| : ξ1, ξ2 ∈ [xr−1, xr]}

⇒M
′

r −m
′

r ≤Mr −mr

⇒
n∑
r=1

(M
′

r −m
′

r)δαr ≤
n∑
r=1

(Mr −mr)δαr

⇒ U(P, |f |, α)− L(P, |f |, α) ≤ U(P, f, α)− L(P, f, α).

Then from (5.12) we have U(P, |f |, α) − L(P, |g|, α) < ε and so |f | ∈ R(α) on
[a, b]. We know that

−|f(x)| ≤ f(x) ≤ |f(x)|, ∀ x ∈ [a, b].

Since f, |f |,−|f | ∈ R(α) on [a, b], it follows that

−
b∫

a

|f |dα ≤
b∫

a

fdα ≤
b∫

a

|f |dα

and so |
b∫
a

f dα| ≤
b∫
a

|f | dα.

Remark 5.8. The converse of the theorem is not true. For example, let f :
[0, 1] −→ R be defined by

f(x) =

{
1, if x is rational
−1, if x is irrational

and α(x) = x. Clearly f 6∈ R(α) on [0, 1]. Note that |f(x)| = 1 for all x ∈ [0, 1]
and so |f | ∈ R(α) on [0, 1].
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Theorem 5.14. If f ∈ R(α) on [a, b] and g ∈ R(α) on [a, b], then fg ∈ R(α) on
[a, b].

Proof. Since f and g are bounded on [a, b], there exists M > 0, such that |f(x)| <
M and |g(x)| < M , for all x ∈ [a, b].
Since f ∈ R(α) and g ∈ R(α), for a given ε > 0, there exists a partition P =
{a = x0, x1, . . . , xn = b} of [a, b] such that

U(P, f, α)− L(P, f, α) <
ε

2M
and U(P, g, α)− L(P, g, α) <

ε

2M
. (5.14)

Let Mr,mr, M
′
r,m

′
r and M

′′
r ,m

′′
r be respectively the supremum and infimum of

f , g and fg on [xr−1, xr]. Then for any two points ξ1, ξ2 ∈ [xr−1, xr], we have

|f(ξ1)g(ξ1)− f(ξ2)g(ξ2)| = |f(ξ1){g(ξ1)− g(ξ2)}+ g(ξ2){f(ξ1)− f(ξ2)}|
≤ |f(ξ1)||g(ξ1)− g(ξ2)|+ |g(ξ2)||f(ξ1)− f(ξ2)|

< M
[
|f(ξ1)− f(ξ2)|+ |g(ξ1)− g(ξ2)|

]
.

This shows that

sup{|f(ξ1)g(ξ1)− f(ξ2)g(ξ2)| : ξ1, ξ2 ∈ [xr−1, xr]}
≤ M sup{|f(ξ1)− f(ξ2)| : ξ1, ξ2 ∈ [xr−1, xr]}+M sup{|g(ξ1)− g(ξ2)| : ξ1, ξ2 ∈ [xr−1, xr]},

i.e.,

M
′′

r −m
′′

r ≤M [Mr −mr] +M [M
′

r −m
′

r]

⇒
n∑
r=1

[M
′′

r −m
′′

r ]δαr ≤M
n∑
r=1

[Mr −mr]δαr +M
n∑
r=1

[M
′

r −m
′

r]δαr

U(P, fg, α)− L(P, fg, α) ≤M [U(P, f, α)− L(P, f, α)] +M [U(P, g, α)− L(P, g, α)].

Then from (5.14) we have U(P, fg, α) − L(P, fg, α) < ε. This shows that fg ∈
R(α) on [a, b].

Remark 5.9. The converse of the theorem is not true. For example, let f, g :
[0, 1] −→ R be defined by

f(x) =

{
1, if x is rational
−1, if x is irrational

and

g(x) =

{
−1, if x is rational
1, if x is irrational

where α(x) = x. Clearly f, g 6∈ R(α) on [0, 1]. Note that f(x)g(x) = −1 for all
x ∈ [0, 1] and so fg ∈ R(α) on [0, 1].
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Theorem 5.15. If f ∈ R(α) on [a, b], then f 2 ∈ R(α) on [a, b].

Proof. Hints:

|f 2(ξ1)− f 2(ξ2)| = |f(ξ1)− f(ξ2)||f(ξ1) + f(ξ2)|
≤ |f(ξ1)− f(ξ2)|[|f(ξ1)|+ |f(ξ2)|]
< 2M |f(ξ1)− f(ξ2)|.

Remark 5.10. The converse of the theorem is not true. For example, let f :
[0, 1] −→ R be defined by

f(x) =

{
1, if x is rational
−1, if x is irrational

and α(x) = x. Clearly f 6∈ R(α) on [0, 1]. Note that f 2(x) = 1 for all x ∈ [0, 1]
and so f 2 ∈ R(α) on [0, 1].

Theorem 5.16. If f ∈ R(α) on [a, b] and c is a constant, then cf ∈ R(α) on
[a, b] and

b∫
a

cf dα = c

b∫
a

f dα.

Theorem 5.17. If f1, f2 ∈ R(α) on [a, b], then f1 + f2 ∈ R(α) on [a, b] and

b∫
a

(f1 + f2) dα =

b∫
a

f1 dα +

b∫
a

f2 dα.

Proof. Since f1, f2 ∈ R(α) on [a, b], therefore for a given ε > 0, there exist
partitions P1 and P2 of [a, b] such that

U(P1, f1, α)− L(P1, f1, α) <
ε

2
, U(P2, f2, α)− L(P2, f2, α) <

ε

2
. (5.15)

Let P = P1 ∪ P2. Then P is a refinement of both P1 and P2. Now from (5.15)
(see Theorem 1) we have

U(P, f1, α)− L(P, f1, α) <
ε

2
, U(P, f2, α)− L(P, f2, α) <

ε

2
. (5.16)

Let f = f1 + f2. Corresponding to the partition P = {a = x0, x1, . . . , xn = b},
let m

′
r,M

′
r, m

′′
r ,M

′′
r and mr,Mr be the infimum and supremum of f1, f2 and f

respectively on [xr−1, xr]. Then for any two points ξ1, ξ2 ∈ [xr−1, xr], we have

|f(ξ1)− f(ξ2)| = |{f1(ξ1)− f1(ξ2)}+ {f2(ξ1)− f2(ξ2)}|
≤ |f1(ξ1)− f1(ξ2)|+ |f2(ξ1)− f2(ξ2)|.
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This shows that

sup{|f(ξ1)− f(ξ2)| : ξ1, ξ2 ∈ [xr−1, xr]}
≤ sup{|f1(ξ1)− f1(ξ2)| : ξ1, ξ2 ∈ [xr−1, xr]}+ sup{|f2(ξ1)− f2(ξ2)| : ξ1, ξ2 ∈ [xr−1, xr]},

i.e.,

Mr −mr ≤M
′

r −m
′

r +M
′′

r −m
′′

r

⇒
n∑
r=1

[Mr −mr]δαr ≤
n∑
r=1

[M
′

r −m
′

r]δαr +
n∑
r=1

[M
′′

r −m
′′

r ]δαr,

i.e.,

U(P, f, α)− L(P, f, α) ≤ U(P, f1, α)− L(P, f1, α) + U(P, f2, α)− L(P, f2, α).

Then from (5.16) we have U(P, f, α)−L(P, f, α) < ε. This shows that f ∈ R(α)
on [a, b].
Let us now proceed to prove the second part.
Since the upper integral is the infimum of the upper sums, therefore there exists
partitions P1 and P2 such that

U(P1, f1, α) <

b∫
a

f1dα +
ε

2
, U(P2, f2, α) <

b∫
a

f2dα +
ε

2
.

If P = P1 ∪ P2, we have

U(P, f1, α) <

b∫
a

f1dα +
ε

2
, U(P, f2, α) <

b∫
a

f2dα +
ε

2
.

For such a partition P , we have

b∫
a

fdα ≤ U(P, f, α) ≤ U(P, f1, α) + U(P, f2, α) ≤
b∫

a

f1dα +

b∫
a

f2dα + ε.

Since ε > 0 is arbitrary, we get

b∫
a

fdα ≤
b∫

a

f1dα +

b∫
a

f2dα. (5.17)

Proceeding with (−f1) and (−f2) instead of f1 and f2 we get

b∫
a

fdα ≥
b∫

a

f1dα +

b∫
a

f2dα. (5.18)
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From (5.17) and (5.18) we get

b∫
a

fdα =

b∫
a

f1dα +

b∫
a

f2dα.

Theorem 5.18. If f ∈ R(α1) and f ∈ R(α2) on [a, b], then f ∈ R(α1 + α2) on
[a, b] and

b∫
a

f d(α1 + α2) =

b∫
a

f dα1 +

b∫
a

f dα2.

Proof. Since f ∈ R(α1) and f ∈ R(α2) on [a, b], therefore for a given ε > 0, there
exist partitions P1 and P2 of [a, b] such that

U(P1, f, α1)− L(P1, f, α1) <
ε

2
, U(P2, f, α2)− L(P2, f, α2) <

ε

2
. (5.19)

Let P = P1 ∪ P2. Then P is a refinement of both P1 and P2. Now from (5.19)
(see Theorem 1) we have

U(P, f, α1)− L(P, f, α1) <
ε

2
, U(P, f, α2)− L(P, f, α2) <

ε

2
. (5.20)

Let α = α1 + α2. Corresponding to the partition P = {a = x0, x1, . . . , xn = b},
let mr and Mr be the infimum and supremum of f on [xr−1, xr]. Note that
δαr = δα1r + δα2r and so from (5.20) we get

U(P, f, α)− L(P, f, α) =
n∑
r=1

(Mr −mr)δαr

=
n∑
r=1

(Mr −mr)δα1r +
n∑
r=1

(Mr −mr)δα2r

= U(P, f, α1)− L(P, f, α1) + U(P, f, α2)− L(P, f, α2) < ε.

This shows that f ∈ R(α1 + α2) on [a, b].
Now to prove the second part, we see that

b∫
a

fdα = inf{U(P, f, α) : P ∈ P [a, b]} (5.21)

= inf{U(P, f, α1) + U(P, f, α2) : P ∈ P [a, b]}
≥ inf{U(P, f, α1) : P ∈ P [a, b]}+ inf{U(P, f, α2) : P ∈ P [a, b]}

=

b∫
a

fdα1 +

b∫
a

fdα2.
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Similarly

b∫
a

fdα = sup{L(P, f, α) : P ∈ P [a, b]} ≤
b∫

a

fdα1 +

b∫
a

fdα2. (5.22)

From (5.21) and (5.22) we have

b∫
a

fdα =

b∫
a

fdα1 +

b∫
a

fdα2.

Theorem 5.19. If f ∈ R(α) on [a, b] and c be a point such that a < c < b, then
f ∈ R(α) on [a, c] as well as on [c, b] and

b∫
a

f dα =

c∫
a

f dα +

b∫
c

f dα.

Remark 5.11. The converse of the above theorem is not always true. For ex-
ample, let f and α be defined on [0, 2] as follows

f(x) =

{
0, if 0 ≤ x < 1
1, if 1 ≤ x ≤ 2

and

α(x) =

{
0, if 0 ≤ x < 1
1, if 1 ≤ x ≤ 2

Clearly
1∫
0

f dα and
2∫
1

f dα both exist, but the
2∫
0

f dα does not exist.

5.5 Reduction of Riemann-Stieltjes integral into Rie-
mann Integral

Theorem 5.20. If f ∈ R[a, b] and α be a monotonic increasing function on [a, b]

such that α
′ ∈ R[a, b], then f ∈ R(α) on [a, b] and

b∫
a

f dα =
b∫
a

f(x)α
′
(x)dx.

Proof. Since f ∈ R[a, b], it follows that f is bounded on [a, b] and so there exists
a positive real number k such that

|f(x)| ≤ k, ∀ x ∈ [a, b]. (5.23)
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Let ε > 0 be given. Since f, α
′ ∈ R[a, b], it follows that fα

′ ∈ R[a, b]. Then there
exists δ1 > 0 such that

∣∣∣ n∑
r=1

f(ξr)α
′
(ξr)δr −

b∫
a

fα
′
dx
∣∣∣ < ε

2
, (5.24)

for µ(P ) < δ1 and for all ξr ∈ Ir, where Ir = [xr−1, xr] is the r-th sub-interval of
the partition P = {a = x0, x1, . . . , xn = b} of [a, b]. Again since α

′ ∈ R[a, b], so
there exists δ2 > 0 such that

U(P, α
′
)− L(P, α

′
) =

n∑
r=1

(Mr −mr)δr <
ε

2k
, (5.25)

for µ(P ) < δ2 and Mr = sup
x∈Ir

α
′
(x), mr = inf

x∈Ir
α
′
(x) .

Now for µ(P ) < δ2 and for all ξr, ηr ∈ Ir, we have (see Remark 7)

Mr −mr = sup{|α′(ξr)− α
′
(ηr)| : ξr, ηr ∈ Ir}

and so we have

|α′(ξr)− α
′
(ηr)| ≤Mr −mr,

for all ξr, ηr ∈ Ir.

⇒
n∑
r=1

|α′(ξr)− α
′
(ηr)|δr ≤

n∑
r=1

(Mr −mr)δr, (5.26)

for all ξr, ηr ∈ Ir. Now from (5.25) and (5.26) we have

n∑
r=1

∣∣∣α′(ξr)− α′(ηr)∣∣∣δr < ε

2k
, (5.27)

for µ(P ) < δ2 and for all ξr, ηr ∈ Ir.
Let δ = min{δ1, δ2}. Let P be a partition with µ(P ) < δ and ξr ∈ [xr−1, xr].
Then by Lagrange’s Mean Value theorem, there exists ηr ∈ (xr−1, xr) such that

α
′
(ηr) =

α(xr)− α(xr−1)

xr − xr−1

=
δαr
δr
,

i.e.,
δαr = α

′
(ηr)δr. (5.28)

64



Now from (5.23), (5.24), (5.27) and (5.28) we have

∣∣∣ n∑
r=1

f(ξr)δαr −
b∫

a

fα
′
dx
∣∣∣

=
∣∣∣ n∑
r=1

f(ξr)α
′
(ηr)δr −

b∫
a

fα
′
dx
∣∣∣

=
∣∣∣ n∑
r=1

f(ξr)α
′
(ξr)δr −

b∫
a

fα
′
dx+

n∑
r=1

f(ξr){α
′
(ηr)− α

′
(ξr)}δr

∣∣∣
≤

∣∣∣ n∑
r=1

f(ξr)α
′
(ξr)δr −

b∫
a

fα
′
dx
∣∣∣+

n∑
r=1

∣∣∣f(ξr)
∣∣∣∣∣∣α′(ηr)− α′(ξr)∣∣∣δr

<
ε

2
+ k

ε

2k
= ε.

Hence for any ε > 0, there exists δ > 0 such that for all partitions with µ(P ) < δ

∣∣∣ n∑
r=1

f(ξr)δαr −
b∫

a

fα
′
dx
∣∣∣ < ε

⇒ lim
µ(P )→0

n∑
r=1

f(ξr)δαr exists and equals to

b∫
a

fα
′
dx

⇒ f ∈ R(α) on [a, b] and

b∫
a

f dα =

b∫
a

f(x)α
′
(x)dx.

Theorem 5.21. If f is continuous on [a, b] and α has a continuous derivatives

on [a, b], then f ∈ R(α) on [a, b] and
b∫
a

f dα =
b∫
a

f(x)α
′
(x)dx.

Example 5.4. Evaluate (i)
1∫
0

x d(e2x) and (ii)
2∫
0

[x] d(x2).

Proof. (i)
1∫
0

x d(e2x) =
1∫
0

x.2e2x dx = [x.e2x]10 −
1∫
0

1.e2x dx = 1+e2

2
.

(ii)
2∫
0

[x] d(x2) =
2∫
0

[x].2x dx =
1∫
0

[x].2x dx+
2∫
1

[x].2x dx = 3.
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Integration by Parts

Theorem 5.22. If f ∈ R(α) on [a, b], then α ∈ R(f) on [a, b] and we have

b∫
a

f(x) dα(x) = [f(b)α(b)− f(a)α(a)]−
b∫

a

α(x) df(x).

Second Mean Value Theorem

Theorem 5.23. If f is monotonic increasing and α is continuous on [a, b], then
there exists a point ξ ∈ [a, b] such that

b∫
a

f(x) dα(x) = f(a)

ξ∫
a

dα(x) + f(b)

b∫
ξ

dα(x).

Example 5.5. Evaluate
3∫
0

x2 d([x]− x).

Proof.

3∫
0

x2 d([x]− x) =
[
x2([x]− x)

]3

0
−

3∫
0

2x([x]− x) dx

= 0− 2

3∫
0

x[x] dx+ 2

3∫
0

x2 dx

= −2
[ 1∫

0

x[x] dx+

2∫
1

x[x] dx+

3∫
2

x[x] dx
]

+ 18

= . . . . . .

= 5.

Definition 5.2. A function α defined on [a, b] is called a step function if there
is a partition P = {a = x0, x1, . . . , xn = b} such that α is constant on each open
subinterval (xr−1, xr). The number α(xr+) − α(xr−) is called the jump at xr,
if 1 ≤ r ≤ n − 1. The jump at x0 is α(x0+) − α(x0) and the jump at xn is
α(xn)− α(xn−).

Theorem 5.24. If f is continuous on [a, b] and α is a step function such that α
is constant on each subinterval (xr−1, xr)(r = 0, 1, . . . , n) where a = x0 < x1 <
. . . < xn = b,

b∫
a

f dα =
n∑
r=0

f(xr)
[
α(xr+)− α(xr−)

]
,

provided α(x0−) = α(x0) = α(a) and α(xn+) = α(xn) = α(b).
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Example 5.6. Evaluate
5∫
0

(x2 + 1) d[x].

Proof. Hints. Here f(x) = x2 + 1 and α(x) = [x], for all x ∈ [0, 5].
Note that α(x) = 0, if 0 ≤ x < 1, = 1, if 1 ≤ x < 2, = 2, if 2 ≤ x < 3, = 3, if
3 ≤ x < 4, = 4, if 4 ≤ x < 5, = 5, if x = 5.

Clearly
5∫
0

f(x) dα(x) =
5∑
r=0

f(r)
[
α(r+) − α(r−)

]
, where α(0−) = α(0) = 0 and

α(5+) = α(5) = 5.
Ans.=60.

Summary
In this chapter we have learnt about the Riemann-Stieltjes Integral and its var-
ious properties; reduction into Riemann Integrals and have also done relevant
examples.
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Unit 6
Course Structure

1. Definition of a delta-fine tagged partition and its existence

2. Lebesgue’s criterion for Riemann integrability

3. Delta-fine free tagged partition and an equivalent definition of the Riemann
integral

6 Introduction

Let an interval [a, b] ⊂ R, −∞ < a < +∞ be given. A division of [a, b] is a
finite collection of non overlapping closed intervals whose union is [a, b]. A pair
(c, J) of point c ∈ R and an associated closed interval J ∈ R is called a tagged
point interval pair where the point c is called the tag of J . A finite collection
∆ = {(ci, Ji) : 1 ≤ i ≤ n} of tagged point interval pairs is called a tagged
system in [a, b] if ci ∈ Ji ⊂ [a, b] for each i = 1, 2, . . . , n and the intervals are
non overlapping. A tagged system ∆ = {(ci, ji) : 1 ≤ i ≤ n} is called a tagged
partition of [a, b] if ∪ni=1Ji = [a, b].

Given a positive function δ defined on [a, b] δ : [a, b] −→ (0,∞) is called a
Guage function on [a, b]. A tagged interval (c, J) with c ∈ [a, b] and J ⊂ [a, b] is
said to be δ-fine if c ∈ J ⊂ (c− δ(c), c+ δ(c)).

A tagged partition ∆ = {(ci, Ji) : 1 ≤ i ≤ n} is δ-fine if the point interval
pair (ci, Ji) is δ-fine, for each i = 1, 2, . . . , n and is denoted by {ci, [xi−1, xi] :
1 ≤ i ≤ n}, where a = x0 < x1 < . . . < xn−1 < xn = b and ci ∈ [xi−1, xi] ⊂
(ci − δ(ci), ci + δ(ci)) for each index i.

Guage determines the size of the interval associated with a given tag. In a
δ-fine tagged partion, the tags must be choosen first, then intervals of the rigiud
size are choosen for each tag.

If the infimum of the set {δ(x) : x ∈ [a, b]} is positive, then it is clear that
δ-fine tagged partition of [a, b] exists, but if the infimum is zero, then the proof
of the existence of δ-fine tagged partition is required.

Note: If δ
′

is a gauge finer than δ, i.e., 0 < δ
′
(x) ≤ δ(x) for all x, then every δ

′

fine tagged partition is also δ-fine. In fact if (x, [u, v]) is a point interval pair in
a δ

′
-fine partition, then

x ∈ [u, v] ⊂ (x− δ′ , x+ δ
′
) ⊂ (x− δ(x), x+ δ(x))

shows that (x, [u, v]) may also be a point interval pair in some δ-fine partition.

Example 6.1. Suppose δ is a positive function defined on [0, 1] by

δ(x) =

{
x
2
, if 0 < x ≤ 1

1, if x = 0.
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Then inf{δ(x) : 0 ≤ x ≤ 1} = 0.
We note that (x− δ(x), x+ δ(x)) does not contain zero unless x = 0. Conse-

quently, any δ-fine tagged partition of [0, 1] must have 0 as atag. Here infimum
of {δ : x ∈ [a, b]} is not a value assumed by δ(x).

Causin’s Lemma:
If δ is a positive function defined on [a, b], then there exists a δ-fine tagged

partition on [a, b].
Note: If δ is a Gauge finer than δ, i.e., 0 < δ

′
(x) ≤ δ(x) for all x, then every δ

′

fine tagged partition is also δ-fine. In fact if (x, [u, v]) is a point interval pair in
a δ

′
fine partition, then x ∈ [u, v] ⊂ [x − δ′(x), x + δ

′
(x)] ⊂ (x − δ(x), x + δ(x))

shows that (x, [u, v]) may also be a point interval pair in some δ-fine partition.

6.1 Application of Tagged Gauge partition:

We know that a funcytion f to be R-integrable (Reimann) on [a, b] iff for
each ε(> 0), there exists a partition {[xi−1, xi] : 1 ≤ i ≤ n} on [a, b] such that∑n

i=1 ω(f, [xi−1, xi])(xi−xi−1) < ε, where the oscillation ω(f, [c, d]) of the function
f on the interval [c, d] is defined by ω(f, [c, d]) = sup{|f(t)− f(s)| : t, s ∈ [c, d]}.
Theorem 6.1. If f is bounded and continuous function on [a, b], then f is R-
integrable on [a, b].

Proof. Let ε(> 0) be arbitrary. Since f is continuous on [a, b] for each x ∈ [a, b],
there exists δ(x) > 0 such that |f(t) − f(x)| < ε for all t ∈ [a, b] satisfying
|t− x| < δ(x).

This denotes a positive function δ on [a, b].
By Caucin’s lemma, let {(ξi, [xi−1, xi]) : 1 ≤ i ≤ n} be a δ-fine tagged parti-

tion on [a, b].
For s, t ∈ [xi−1, xi], i = 1, 2, . . . , n, we have

|f(t)− f(s)| ≤ |f(t)− f(ξi)|+ |f(ξi)− f(s)|
< 2ε,

for each index s, t ∈ [xi−1, xi], i = 1, 2, . . . , n.
It follows that

n∑
i=1

ω(f, [xi−1, xi])(x[i]− xi−1) ≤ 2ε
n∑
i=1

(xi − xi−1) = 2ε(b− a).

Hence, f is Riemann integrable.

We recall that a set E has measure zero if for each ε > 0, there exists a sequence

{Ik} of open intervals such that E =
∞⋃
k=1

Ik and
∞∑
k=1

|Ik| < ε, where |Ik| denotes

the length of the interval Ik. A property is said to hold almost everywhere if it
fails to hold only at points in a set of measure zero.
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6.2 Lebesgue criteria for Riemann integrability:

Theorem 6.2. If f is bounded and continuous everywhere on [a, b], then f is
R-integrable on [a, b].

Proof. Let M(> 0) be an upper bound for the function |f | on [a, b] and let D
be the set of all points x ∈ [a, b] such that f is not continuous at x. Let ε > 0
be arbitrary. Since D has measure zero, there exists a sequence {Ik} of open

intervals such that D ⊂
∞⋃
k=1

Ik and
∞∑
k=1

|Ik| < ε
2M

.

If x ∈ D, choose δ(x) > 0 so that (x − δ(x), x + δ(x)) ⊂ Ik some index
k. If x /∈ D, then by continuity of f at x, we can choose δ(x) > 0 so that
|f(t)− f(x)| < ε

2
for all t ∈ [a, b] that satisfy |t− x| < δ(x).

This defines a positive function δ on [a, b]. So, by Causin’s lemma let {(ξi, [xi−1, xi]) :
1 ≤ i ≤ n} be a δ-fine tagged partition of [a, b]. Define S0 = {i : ξi /∈ D} and
SD = {i : ξi ∈ D}.

Since the intervals are non-overlapping, we see that

n∑
i=1

ω(f, [xi−1, xi])(xi − xi−1) =
∑
i∈S0

ω(f, [xi−1, xi])(xi − xi−1)

+
∑
i∈SD

ω(f, [xi−1, xi])(xi − xi−1)

≤ ε
∑
i∈S0

(xi − xi−1) + 2M
∑
i∈SD

(xi − xi−1)

≤ ε(b− a) + 2M
∞∑
k=1

|Ik|

< ε(b− a+ 1).

Hence, the function f is R-integrable on [a, b].

Definition of HK integral:

Let f be a real valued function defined on a bounded closed interval [a, b],
where a < b. For any gauge δ, we define

(δ)

∫ b

a

= sup{
∑
i

f(xi)(bi − ai) : {xi, [ai, bi]} is a δ fine tagged partition of [a, b]},

(δ)

∫ b

a

= inf{
∑
i

f(xi)(bi − ai) : {xi, [ai, bi]} is a δ fine tagged partition of [a, b]}.

Considering all gauges δ, we define

(HK)

∫ b

a

f = infδ(δ)

∫ b

a

f
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and

(HK)

∫ b

a

f = supδ(δ)

∫ b

a

f.

We call (HK)
∫ b
a
f , the upper HK integral of f on [a, b] and (HK)

∫ b
a
f , the lower

HK integral of f on [a, b].

If (HK)
∫ b
a
f = (HK)

∫ b
a
f = α(say) 6= ±∞, then the function f is said to be

HK-integrable on [a, b] and the common finite value α is called the definite HK

integral of f on [a, b] written as (HK)
∫ b
a
f = α.

Definition 6.1. A function f : [a, b] −→ R is said to be Henstock integrable to
the real number I on [a, b] if for every ε(> 0), there exists a positive function
δ on [a, b], δ : [a, b] −→ (0,∞) such that for every δ-fine tagged partition P =

{(ξi, [xi−1, xi]) : 1 ≤ i ≤ n} of [a, b], the inequality

∣∣∣∣∣
n∑
i=1

f(ξi)(xi − xi−1)− I

∣∣∣∣∣ < ε

holds.

If the integral exists, we write f ∈ H[a, b] and the real number I is called

the Henstock integral of f on [a, b] and we write I = (H)
∫ b
a
f(x)dx or simply

I = (H)
∫ b
a
f .

For simplicity, we shall often write
n∑
i=1

f(ξi)(xi−xi−1) = S(P, f) corresponding

to the δ fine tagged partition P = {(ξi, [xi−1, xi]) : 1 ≤ i ≤ n} of [a, b] and the
integrals agree.

Theorem 6.3. If f is R-integrable on [a, b], then f is H-integrable on [a, b] and
the two integrals agree.

Proof. Let ε(> 0) be arbitrary. Then there exists a real number I and a posi-
tive constant δ1 such that for every Riemann partition P = {[yi−1, yi], ηi : i =
1, 2, . . . ,m} of [a, b] with ||P || < δ1, we have∣∣∣ n∑

i=1

f(ηi)(yi − yi−1)− I
∣∣∣ < ε.

Define a positive function δ on [a, b] δ : [a, b] −→ (0,∞) by δ(x) = δ1 for all
x ∈ [a, b]. Clearly, every δ-fine tagged partition of [a, b] is a Riemann δ1-tagged
partition of [a, b]. Consequently, every Henstock sum S(P, f) is a Riemann sum
corresponding to Riemanian δ = δ1 partition P1 and we have

|S(P1, f)− I| < ε.

This shows that f ∈ H[a, b] and

(H)

∫ b

a

f(x)dx = I = (R)

∫ b

a

f(x)dx.
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Example 6.2. Consider the function f defined on [0, 1] by

f(x) =

{
1, if x is rational

0, if, x is irrational.

Clearly, (H)
∫ 1

0
f(x)dx = 0 and (R)

∫ 1

0
f(x)dx = 1. Therefore, f does not belong

to R[0, 1].
Let ε(> 0) be given and let {ri : i = 1, 2, . . . , n, . . .} be an enumarable of rationals
in [0, 1].

Define δ(ri) = ε
2i+1 and δ(x) = 1, x 6= ri.

Let P = {(ξi, [ui, vi]) : i = 1, 2, . . . , n} be an arbitrary δ-fine partition of [0, 1].
Therefore,

0 ≤ S(P, f) =
∑

ξi∈Q∩[0,1]

f(ξi)(vi − ui) +
∑

ξi /∈Q∩[0,1]

f(ξi)(vi − ui)

=
∑

ξi∈Q∩[0,1]

f(ξi)(vi − ui) + 0

=
∑

ξi∈Q∩[0,1]

(vi − ui)

<
∑
i

2δ(ξi) =
∑
i

2
ε

2i+1

=
∑
i

ε

2i

= ε[
1

2
+

1

22
+ . . .]

=
ε

2

1

1− 1
2

= ε.

Therefore, f ∈ H[a, b]. The value of the integral is zero.
Though the function is Henstock integrable, but it is not Riemann integrable.

Summary
In this chapter, we have learnt about delta-fine tagged partition and its proper-
ties, its applications, Lebesgue’s criterion for Riemann integrability and various
related theorems and examples.
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Complex Analysis I
Block II



Unit 7
Course Structure

1. Point at infinity and the extended complex plane

2. Riemann’s sphere

1 Point at infinity

By means of the transformation w = 1
z , the point z = 0, that is, the origin is

mapped into w = ∞, called the point at infinity in the w-plane. Similarly we
denote by z =∞, the point at infinity in the z-plane.

To consider the behaviour of f(z) at z = ∞, it suffices to let z = 1
w and

examine the behaviour of f
(

1
w

)
at w = 0.

2 The Extended Complex Plane

By the extended complex number system, we shall mean the complex plane C
along with ∞, the point at infinity, which satisfies the following properties:

1. If z ∈ C, then we have,

z +∞ = z −∞ =∞

and
z

∞
= 0

2. If z ∈ C, and z 6= 0, then z.∞ =∞ and z
0 =∞.

3. ∞+∞ =∞ and ∞.∞ =∞.

4. ∞z =∞, (z 6=∞).

Then the set C ∪∞ is called the extended complex plane.

3 Stereographic Projection

Let C be the complex plane and consider a unit sphere S of radius 1 tangent
to C at z = 0. The diameter NS is perpendicular to C and we call the points
n and S, the north and south poles respectively. For any point A on C, we
can construct a line NA joining N and A, which intersects S at the point A′.
Thus, to each point A of the complex plane, there corresponds a unique point
A′ on the sphere S, and we can represent any complex number by a point on
the sphere. For completeness, we say that the point N itself corresponds to
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the point at infinity of the extended complex plane. The set of all points of
the complex plane including the point at infinity is called the entire complex
plane or the entire z-plane. This method of mapping the plane onto the sphere
is called stereographic projection. The sphere is sometimes called the Riemann
sphere.
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Unit 8
Course Structure

1. Functions of a complex variable

2. Limit and Continuity

3. Analytic functions

4. Cauchy-Riemann Equations

4 Functions, Limit and Continuity

Definition 1. Any collection of point in the complex plane is called a point set
and each point is called an element of the set.

Definition 2. A neighbourhood of a point z0 ∈ C is the set of all points z
such that |z − z0| < r(r > 0), that is, the set of all points lying in the disc
with centre z0 and radius r. Take deleted neighbourhood of a point z0 ∈ C is
a neighbourhood of z0 in which z0 is omitted. The set of all points z such that
|z| > k, where k is any positive real number, is called the neighbourhood of the
point at infinity.

Definition 3. A point z0 is called the limit point of a set S in the complex
plane if every deleted neighbourhood of z0 contains at least one point of S. A
limit point may or may not belong to the set.
We consider the set of points defined by |z| < r. Evidently, all points on the
circle |z| = r are the limit points of the set, but they do not belong to the set.
Again, all the points within the circle |z| = r are also limit points of the set
defined |z| < r and they belong to the set.

Definition 4. A point z0 ∈ S is called an interior point of the set S if there
exists a neighbourhood of z0 contained entirely within S.

Definition 5. A point z0 ∈ S is called an exterior point of the set S if there
exists a neighbourhood of z0 which contains no point of S.

Definition 6. A point z0 ∈ S is called the boundary point of the set S if
every neighbourhood of z0 contains atleast one point of S and at least one point
outside S. The collection of all boundary points of S is called the boundary of
S.

Definition 7. A set S in the complex plane is said to be open if it consists only
of its interior points. For example, the open disc |z − z0| < r is an open set.

Definition 8. A set is called closed if its complement is open. Equivalently, a
set S is said to be closed if every limit point of S belongs to S, or if S has no
limit point.
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There are sets which are neither open nor closed. For example, the set
{z ∈ C : |z| < 1} ∪ {1} is neither open nor closed.

Definition 9. A set of points S is said to be bounded if there exists a positive
number M such that |z| < M ∀z ∈ S. If there exists no such M , the set S is
said to be unbounded.

Definition 10. A set which is bounded and closed is called compact set.

Definition 11. The set of all limit points of a set S is called the derived set of
S and is denoted by S′.

The union of a set S and its derived set S′ is called the closure of S and is
denoted by S or cl(S).

Then, S = S ∪ S′.

Definition 12. (Connected Set) A set is said to be connected if any two of
its points can be joined by a polygon which completely lies inside the set.

4.1 Jordan Curve

Definition 13. (Open and Closed Regions) An open connected set is called
a domain or an open region. If however the boundary points are also included,
then it is called a closed region or a closed domain.

Definition 14. The equation z = z(t) = x(t) + iy(t) where x(t) and y(t) are
real continuous functions of a real variable t, defined in the interval a ≤ t ≤ b,
determines a set of points in the complex plane which we call a continuous arc.

The equation z = z(t) = x(t) + iy(t) determines a simple arc if t1 6= t2 implies
z(t1) 6= z(t2).
The equation z = z(t) = x(t)+iy(t) determines a simple closed curve if t1 < t2

and z(t1) = z(t2) implies t1 = a and t2 = b.

Simple arcs and simple closed arcs are often called Jordan arcs and Jordan
curves respectively. A simple example of a Jordan arc is the polygonal arc which
consists of a finite number of line segments.

Theorem 1. (Jordan Curve Theorem) A Jordan curve divides the complex
plane into two regions having the curve as a common boundary. The region
which is bounded is called the interior of the curve and the other region is
called the exterior of the curve.

Theorem 2. (Bolzano Weierstrass Theorem) If a set is bounded and contains
infinitely many points then it possesses at least one limit point.

Definition 15. (Variables and Functions)A symbol z which can stand for
any one of a set of complex numbers is called a complex variable.
If for each value of z there corresponds one or more values of a complex variable
w, we say that w is a function of z and we write w = f(z).

The variable z is called an independent variable, while w is called a dependent
variable.
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Definition 16. (Single and Multi− valued Functions) If any one value of
w corresponds to each value of z, we say that w is a single-valued function of z
or that f(z) is single-valued.

If more than one value of w corresponds to each value of z, we say that w is
a multi-valued function or many valued function of z.

A multiple valued function can be considered as a collection of single valued
functions, each member of which is called a branch of the function.

Examples 1. 1. If w = z2, then to each value of z there is only one value
of w. Hence w == f(z) = z2 is a single valued fucntion of z.

2. If w =
√
z, then to each value of z, there are two values of w. Hence,

w = f(z) =
√
z, is a multiple valued function of z.

3. If w = z1/p, where p is any natural number, then to each value of z, there
are p values of w. Hence, w = f(z) = z1/p, is a multiple valued function
of z.

Definition 17. (Rational Function) Rational functions are defined by

w =
P (z)

Q(z)

where P (z) and Q(z) are polynomials in z and Q(z) 6= 0.

Definition 18. (Limit of a function) Let w = f(z) be defined in a domain
D except perhaps of the point z0 of D. A complex number l is said to be a limit
of f as z → z0, or symbolically,

l = lim
z→z0

f(z)

if for given ε > 0, there exists a δ > 0 such that

|f(z)− l| < ε whenever 0 < |z − z0| < δ

If no such l exists we say that limz→z0 f(z) does not exist. Note that, z is
allowed to approach z0 in an arbitrary manner, not just from some particular
direction. The limit is clearly independent of the path by which z approaches
z0.

Geometrically, if z0 is a point in the complex plane, limz→z0 f(z) = l if the
difference in absolute value between f(z) and l can be made as small as we wish.
By choosing points z sufficiently close to z0(excluding z = z0 itself).

Theorem 3. A necessary and sufficient condition that the function f(z) = u+iv
may tend to l = α+ iβ as z = x+ iy tends to z0 = a+ ib is that

u(x, y)→ α and v(x, y)→ β as (x, y)→ (a, b)
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Proof. We first suppose that limz→z0 f(z) = l. Then, for given ε > 0, there
exists a δ > 0 such that

|f(z)− l| < ε whenever 0 < |z − z0| < δ

or, |u(x, y) + iv(x, y)− α− iβ| < ε whenever 0 < |x+ iy − a− ib| < δ

or, |(u(x, y)− α) + i(v(x, y)− β)| < ε whenever 0 < |(x− a) + i(y − b)| < δ

or, |u(x, y)− α| < ε and |v(x, y)− β| < ε whenever 0 <
√

(x− a)2 + (y − b)2 < δ

as |Re(z)| ≤ |z| and |Im(z)| ≤ |z|. This implies that

lim
(x,y)→(a,b)

u(x, y) = α and lim
(x,y)→(a,b)

v(x, y) = β

This proves the necessary part.

Conversely, let

lim
(x,y)→(a,b)

u(x, y) = α and lim
(x,y)→(a,b)

v(x, y) = β

Then, for ε > 0 we can find a δ > 0 such that

|u(x, y)−α| < ε/2 and |v(x, y)−β| < ε/2 whenever 0 <
√

(x− a)2 + (y − b)2 < δ.

So, for 0 <
√

(x− a)2 + (y − b)2 < δ, that is for 0 < |z − z0| < δ, we get,

|f(z)− l| = |(u(x, y)− α) + i(v(x, y)− β)|
= |u(x, y)− α|+ |v(x, y)− β|
= < ε/2 + ε/2

= ε (1)

This implies that limz→z0 f(z) = l. Hence proved.

Theorem 4. Suppose that limz→z0 f(z) = l and limz→z0 g(z) = m. Then,

1. limz→z0 [f(z)± g(z)] = l ±m.

2. limz→z0 cf(z) = cl for som complex number c.

3. limz→z0 f(z)g(z) = lm.

4. limz→z0
f(z)
g(z) = l

m , provided g(z) 6= 0 and m 6= 0.

Proof. Proof of this theorem is left as an exercise.

Definition 19. 1. Let f(z) be defined in a domain D except perhaps at the
point z0. The function f is said to tend to infinity as z → z0 if for any real
number k(> 0), however large, there exists a δ(> 0) such that |f(z)| > k
whenever 0 < |z − z0| < δ. Symbolically, we write,

lim
z→z0

f(z) =∞
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2. Let f be defined for |z| > k > 0. Then the function is said to tend to a
finite limit l as z →∞, if for any ε > 0 there exists a number k0 > 0 such
that |f(z)− l| < ε whenever |z| > k0.

3. we say that limz→z0 f(z) = ∞ if for each number k > 0, there exists a
number k0 > 0 such that |f(z)| > k whenever |z| > k0.

Exercise 1. Using definition of limit, show that limz→z0(az2 + bz+ c) = az2
0 +

bz0 + c, where a, b, c are complex constants.

Exercise 2. If limz→z0 f(z) = l, then show that the limit is unique.

4.2 Continuity

Let f(z) be a complex function defined in some neighbourhood of z0(including
the point). The function is said to be continuous at z0 if for any ε > 0 there
corresponds a δ > 0 such that

|f(z)− f(z0)| < ε whenever |z − z0| < δ

Symbolically we write
lim
z→z0

f(z) = f(z0)

This means that for continuity at a point, the limiting value and the functional
value at the point have the same value.

A function f(z) is continuous on a set S if it is continuous at every point of S.

If a function is not continuous at z0, then we say that the function is dis-
continuous at z0 or z0 is a point of discontinuity.

Note 1. To examine the continuity of a function f(z) at z = ∞, replace z by
1
ζ and examine the continuity of g(ζ) = f

(
1
ζ

)
at ζ = 0.

Remark 1. Suppose that f and g are continuous functions at z0. Then the
following functions are continuous at z0:

1. the sum f(z) + g(z),

2. the difference f(z)− g(z),

3. their product f(z)g(z),

4. quotient f(z)/g(z), provided g(z) 6= 0

Remark 2. If the function f(z) is continuous, so are the functions |f(z)|, f(z)
and f(z).
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Example 1. Test the continuity of the function

f(z) =
z3 + (1 + i)z2 + (2 + i)z + 2

z − i

at z = i.

Clearly the function is undefined at the point z = i. Now,

lim
z→i

f(z) = lim
z→i

z3 + (1 + i)z2 + (2 + i)z + 2

z − i

= lim
z→i

(z − i)(z2 + 2iz + z + 2i)

z − i
= −3 + 3i

Hence, if we define

f(z) =
z3 + (1 + i)z2 + (2 + i)z + 2

z − i
, z 6= i

= −3 + 3i, z = i

Then the function f(z) is continuous at z = i.

Exercise 3. Is the function

f(z) =
z2 + (2− i)z − 2i

z − i

continuous at z = i? If not, can it be made continuous by redefining at z = i?

Theorem 5. The composition of two continuous functions is continuous.

Proof. Let f(z) be continuous at some point z0. Then f(z) is defined in some
neighbourhood of z0. Suppose that g(w) is a function which is defined on the
image of this neighbourhood. Given that g(w) is continuous at w0 = f(z0).
Then, for given ε > 0, there exists an r > 0 such that

|g(w)− g(w0)| < ε whenever |w − w0| < r

or, |g(f(z))− g(f(z0))| < ε whenever |f(z)− f(z0)| < r (2)

Now, f(z) is continuous at z. Hence, for this r(> 0), there exists a δ > 0 such
that

|f(z)− f(z0)| < r whenever |z − z0| < δ (3)

Combining (2) and (3), we have

|gf(z)− gf(z0)| < ε whenever |z − z0| < δ

Hence the composition function gf is continuous at z0.

Theorem 6. If f(z) is continuous in a region, then its real and imaginary parts
are also continuous in that region.
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Theorem 7. If f(z) is continuous in a closed region, then it is bounded in that
region.

Theorem 8. If a function f(z) is continuous on a bounded and closed set
S ⊂ C, then the minimum and maximum of |f(z)| exist on S.

Proof. Given that f(z) = u(x, y) + iv(x, y) is continuous on S. This implies
that the component functions u(x, y) and v(x, y) are continuous on S. Hence,

|f(z)| =
√
u2(x, y) + v2(x, y)

is a real valued continuous function on the closed and bounded set S. Hence by
real calculus, |f(z)| attains its maximum and minimum on S. This completes
the proof.

4.3 Uniform Continuity

A function f(z) is said to be uniformly continuous on a set S if for given ε > 0,
there exists a δ > 0 such that

|f(z1)− f(z2)| < ε whenever |z1 − z2| < δ ∀z1, z2 ∈ S

Here, the choice of δ is independent of z1 and z2 in S.

Theorem 9. Let f(z) be a continuous function on a closed and bounded set S
in the complex plane. Then it is uniformly continuous on S.

Proof. Let F be a compact set and z ∈ F . Then F can be covered by a finite
number of neighbourhoods N(z), that is, F ⊂ N(z1) ∪N(z2) ∪N(z3) ∪N(zk).
We now consider several points ζ1, ζ2, . . . , ζn in S. Then using continuity of f
at this point, we get

|f(z)− f(ζk)| < ε whenever |z − ζk| < δ(ε, ζk), k = 1, 2, . . . , n

We consider the neighbourhoods of ζk, k = 1, 2, . . . , n as

N(ζk) = {z : |z − ζk| <
1

δ
(ε, ζk)}

Since S is compact, by Heine-Borel theorem, there exists a finite number of
points ζ1, ζ2, . . . , ζn such that, S ⊂ N(ζ1) ∪ N(ζ2) ∪ . . . ∪ N(ζn). Let d =
min{δ(ε, ζk) : k = 1, 2, . . . , n} and z1, z2 be any two points in S such that
|z1 − z2| < d

2 and z1 ∈ N(ζi)(say). Then,

|z1 − z2| <
1

2
δ(ε, ζi) < δ(ε, ζi)

Now,

|z2 − ζi| ≤ |z1 − ζi|+ |z1 − z2|

<
1

2
δ +

d

2

<
1

2
δ(ε, ζi) +

1

2
δ(ε, ζi)

= δ(ε, ζi)

82



Applying continuity of f(z) in |z − ζi| < δ, we find

|f(z1)− f(z2)| ≤ |f(z1)− f(ζi)|+ |f(z2)− f(ζi)| < 2ε

Hence, f is continuous on S.

Example 2. Show that f(z) = z2 is uniformly continuous in the region |z| < 1,
but the function g(z) = 1

z is not uniformly continuous in the region.

We take any two points z1 and z2 in |z| < 1 such that |z1 − z2| < δ. Then,

|f(z1)− f(z2)| = |z2
1 − z2

2 | ≤ |z1 − z2|(|z1|+ |z2|) < 2δ

Thus if we choose δ = ε
2 , we obtain |f(z1) − f(z2)| < ε. This shows that f is

uniformly continuous in the region |z| < 1.

For the second case, if possible let us assume that g(z) = 1
z is uniformly

continuous in the region |z| < 1. Then for given ε > 0, we can find a δ > 0, say,
between 0 and 1 such that,

|g(z1)− g(z2)| < ε whenever |z1 − z2| < δ

for all z1, z2 in the region.
Fix z1 = δ and z2 = δ

1+ε . Clearly, z1 and z2 are in |z| < 1 and

|z1 − z2| =
∣∣∣∣δ − δ

1 + ε

∣∣∣∣ =
εδ

1 + ε
< δ

Hence,

|g(z1)− g(z2)| =

∣∣∣∣ 1

z1
− 1

z2

∣∣∣∣
=

∣∣∣∣1δ − 1 + ε

δ

∣∣∣∣
=

ε

δ
> ε(0 < δ < 1)

Thus, we reach at a contradiction and therefore the function g(z) = 1
z can not

be uniformly continuous in the given region.

Example 3. Prove that the function f(z) = 1
z2 is not uniformly continuous in

the region |z| ≤ 1 but it is uniformly continuous in the region 1
2 ≤ |z| ≤ 1.

For |z| ≤ 1,

|f(z1)− f(z2)| = | 1

z2
1

− 1

z2
2

|

=
|z1 − z2||z1 + z2|

z2
1 .z

2
2

≤ 2δ

z2
1 .z

2
2

→∞ as z1, z2 → 0 and |z1 − z2| < δ
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Hence f is not uniformly continuous in |z| ≤ 1. But when 1
2 ≤ |z| ≤ 1, we have

|f(z1)− f(z2)| = | 1

z2
1

− 1

z2
2

|

=
|z1 − z2||z1 + z2|

z2
1 .z

2
2

≤ 2δ

z2
1 .z

2
2

≤ 2δ

16
< ε when |z1 − z2| < δ

If we take δ = 7ε then we will have,

|f(z1)− f(z2)| < ε whenever |z1 − z2| < δ

Hence f is uniformly continuous in the region 1
2 ≤ |z| ≤ 1.

4.4 Differentiation

Definition 20. Let f(z) be a single-valued function defined in a domain D of
the complex plane C. If z0 ∈ D and if

lim
z→z0

f(z)− f(z0)

z − z0
(4)

exists, we denote this limit by f ′(z0) and call it the derivative of f(z) at the
point z0.

If f ′(z0) exists, then f is said to be differentiable at the point z0. Equiva-
lently, we can write

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)

h

= lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z

If f(z) is differentiable at each point of D, then we say that f is differentiable
in D. We state once again that the limit 4 exists means that the value of the
limit is same along any path in which z approaches z0.

Theorem 10. If f(z) is differentiable at z0 then it is continuous there.

Proof. Since f is differentiable at z0, we have

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
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Now,

lim
z→z0
{f(z)− f(z0)} = lim

z→z0

f(z)− f(z0)

z − z0
(z − z0)

= f ′(z0).0

= 0

lim
z→z0

f(z) = f(z0)

This proves that f(z) is continuous at z0.

The following example shows that the converse of the above theorem is not
necessarily true.

Example 4. Show that the function f(z) = z is continuous at z0 is continuous
at the point z = z0, but the derivative does not exist.

f ′(z0) = lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z

= lim
∆z→0

z0 + ∆z − z0

∆z

= lim
∆z→0

∆z

∆z
= 1, along real axis

= −1, along imaginary axis

Therefore the derivative does not exist since the value of the limit depends on
the path along which ∆z approaches 0.

The function f(z) = z is clearly continuous at z = z0(Go by definition).

4.5 Geometrical Interpretation of Complex Derivative

Let P (z0) be a point in the z plane and P ′(w0) be its image in the w plane
under the transformation w = f(z). If we give z0 an increment ∆z we obtain
the point, say Q(z0 + ∆z). This point has image Q′ in the w plane. Thus we
see that P ′Q′ represents the complex number

∆w = f(z0 + ∆z)− f(z0)

It follows that the derivative at z0, if it exists, is given by

f ′(z0) = lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z

= lim
∆z→0

∆w

∆z

= lim
Q→P

P ′Q′

PQ
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that is, the limit of the ratio Q′P ′ to QP at the point Q approaches the point
P .

4.6 Analytic Functions

A function f(z) defined in a domain D is said to be an analytic function in D,
if f(z) has a derivative at each point of D. The terms regular and holomorphic
are also used instead of analytic.

The function f(z) is said to be analytic at a point z0 of D if it is analytic
in a neighbourhood of z0, that is, if there exists a neighbourhood of z0 at all
points of which f ′(z) exists.

If f(z) is not analytic at a point z0, then z0 is called a singular point or a
singularity of f(z).

Example 5. Show that the function f(z) = zz is differentiable only at origin.

We have
f(z) = zz = |z|2

So, we have

f ′(z0) = lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z

= lim
∆z→0

(z0 + ∆z)(z0 + ∆z)− z0z0

∆z

= lim
∆z→0

(
z0

∆z

∆z
+ z0 + ∆z

)
Since

lim
∆z→0

∆z

∆z
= 1, along real axis

= −1, along imaginary axis. (5)

Hence,

lim
∆z→0

∆z

∆z

does not exist. Thus the given function is differentiable only at the origin.

Example 6. If

f(z) =
x2y(y − ix)

x4 + y2
, z 6= 0

= 0, z = 0

Prove that
f(z)− f(0)

z
→ 0

along radius vector but f ′(0) does not exist.
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Suppose z → 0 along any radius vector y = mx. Then,

lim
z→0

f(z)− f(0)

z − 0
= lim

(x,y)→(0,0)

x2y(y − ix)

(x4 + y2)(x+ iy)

= lim
(x,y)→(0,0)

−iyx2

x4 + y2

= lim
x→0

−imx3

x4 +m2x2

= 0

But for y = x2,

lim
z→0

f(z)− f(0)

z − 0
= lim

(x,y)→(0,0)

−iyx2

x4 + y2

= lim
x→0

−ix4

x4 + x4

= − i
2

This shows that f ′(0) does not exist since the two limits are different.

Try the next example for yourself.

Example 7. If

f(z) =
xy2(x+ iy)

x2 + y4
, z 6= 0

= 0, z = 0

Prove that
f(z)− f(0)

z
→ 0 as z → 0

along any straight line but f ′(0) does not exist.

4.7 Cauchy-Riemann Equations

Theorem 11. A necessary condition for w = f(z) = u(x, y) + iv(x, y) to be
differentiable at a point z0 = x0 + iy0 is that

ux(x0, y0) = vy(x0, y0)

uy(x0, y0) = −vx(x0, y0)
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Proof. Suppose that f ′(z0) exists. Then

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

= lim
(x,y)→(x0,y0)

(u(x, y) + iv(x, y))− (u(x0, y0) + iv(x0, y0))

(x+ iy)− (x0 + iy0)

= lim
(x,y)→(x0,y0)

(u(x, y)− u(x0, y0)) + i(v(x, y)− v(x0, y0))

(x− x0) + i(y − y0)
(6)

Since f ′(z0) exists, (6) must exist for all modes of approach of (x, y) to (x0, y0)
and all the limiting values must be same.

Let z → z0 along a line parallel to the real axis. Then y = y0 and x → x0.
So from (6), we obtain

f ′(z0) = lim
x→x0

u(x, y)− u(x0, y0)

x− x0
+ i lim

x→x0

v(x, y)− v(x0, y0)

x− x0

= ux(x0, y0) + ivx(x0, y0) (7)

Now letting z → z0 along a line parallel to the imaginary axis, we have x = x0

and y → y0. So from (6), we have,

f ′(z0) = lim
y→y0

u(x, y)− u(x0, y0)

i(y − y0)
+ lim
y→y0

v(x, y)− v(x0, y0)

y − y0

= −iuy(x0, y0) + vy(x0, y0) (8)

Comparing (7) and (8) and equating the real and imaginary parts we get

ux(x0, y0) = vy(x0, y0) and uy(x0, y0) = −vx(x0, y0)

This proves the theorem.

Note 2. The differential equations

ux = vy and uy = −vx

are known as Cauchy-Riemann (CR) equations.

Example 8. Find the nature of CR equations for the function f(z) = |z|2.

We have,
f(z) = |z|2 = x2 + y2

Hence,
u(x, y) = x2 + y2, v(x, y) = 0

Therefore,
ux = 2x, uy = 2y, vx = 0, vy = 0

Thus the CR equations for the given function are not satisfied unless x = y = 0,
that is, at the origin and hence f ′(z) does not exist at any point z 6= 0.
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Example 9. Let f(z) = |z|4. Show that f(z) is differentiable but not analytic
at the origin.

Try for yourself.

Example 10. Let

f(z) =
x3 − y3

x2 + y2
+ i

x3 + y3

x2 + y2
, z 6= 0

= 0, z = 0

Show that though CR equations are satisfied at (0, 0), f ′(0) does not exist.

Here,

u(x, y) =
x3 − y3

x2 + y2
, z 6= 0

= 0, z = 0

and

u(x, y) =
x3 + y3

x2 + y2
, z 6= 0

= 0, z = 0

Now,

ux(0, 0) = lim
x→0

u(x, 0)− u(0, 0)

x− 0
= 1

uy(0, 0) = lim
y→0

u(0, y)− u(0, 0)

y − 0
= −1

vx(0, 0) = lim
x→0

v(x, 0)− v(0, 0)

x− 0
= 1

vy(0, 0) = lim
y→0

v(0, y)− v(0, 0)

y − 0
= 1

Since ux = vy and uy = −vx at (0, 0), CR equations are satisfied at the origin.
Now,

f ′(0) = lim
z→

f(z)− f(0)

z − 0

= lim
(x,y)→(0,0)

(x3 − y3) + i(x3 + y3)

(x2 + y2)(x+ iy)

We put y = mx. Then

f ′(0) = lim
x→0

(1−m3) + i(1 +m3)

(1 +m2)(1 + im)

=
(1−m3) + i(1 +m3)

(1 +m2)(1 + im)

Since the value of the limit depends on m, f ′(0) does not exist.
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Example 11. Let

f(z) = e−z
−4

, z 6= 0

= 0, z = 0

Show that though CR equations are satisfied at (0, 0), f ′(0) does not exist.

Try for yourself.

The above example shows that the validity of CR equations is not sufficient
to ensure the analyticity.

Theorem 12. A single-valued continuous function w = f(z) = u(x, y)+iv(x, y)
is differentiable in a domain D if the partial derivatives ux, uy, vx, vy exist
and are continuous and they satisfy CR equations.

Proof. We are to show that

f ′(z) = lim
∆z→0

∆w

∆z

exist at each point of D. Let z = x + iy be any arbitrary point of D. Since
ux, uy, vx, vy exist and are continuous at (x, y), u(x, y) and v(x, y) are differ-
entiable at the point (x, y). Therefore,

∆u = u(x+ ∆x, y + ∆y)− u(x, y)

= ux∆x+ uy∆y + ε1∆x+ ε2∆y

= vy∆x− vx∆y + ε1∆x+ ε2∆y

where ε1, ε2 → 0 as (∆x,∆y)→ (0, 0). Also,

∆v = v(x+ ∆x, y + ∆y)− v(x, y)

= vx∆x+ vy∆y + η1∆x+ η2∆y

= vy∆x+ ux∆y + η1∆x+ η2∆y

where η1, η2 → 0 as (∆x,∆y)→ (0, 0). Now,

∆w = ∆u+ i∆v

= ux(∆x+ i∆y) + vx(i∆x−∆y) + (ε1 + iη1)∆x+ (ε2 + iη2)∆y

= (ux + ivx)(∆x+ i∆y) + (ε1 + iη1)∆x+ (ε2 + iη2)∆y

or,
∆w

∆z
= ux + ivx + (ε1 + iη1)

∆x

∆z
+ (ε2 + iη2)∆y∆z (9)

Now,∣∣∣∣(ε1 + iη1)
∆x

∆z

∣∣∣∣ = |ε1 + iη1|
∣∣∣∣∆x∆z

∣∣∣∣ ≤ (|ε1|+ |η1|)→ 0 as (∆x,∆y)→ (0, 0)
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Similarly,
|(ε2 + iη2)∆y∆z| → 0 as (∆x,∆y)→ (0, 0)

Hence taking limit as ∆z → 0, we get from (9)

lim
∆z→0

∆w

∆z
= ux + ivx

that is, f ′(z) exists and is equal to ux + ivx. Since z is any point of D, we thus
conclude that f is differentiable in D. This proves the theorem.

Example 12. Let f(z) = u+ iv be analytic in a domain D and |f(z)| is equal
to a constant in D. Then show that f(z) is constant in D.

We have,
|f(z)| = constant = c(say)or, u2 + v2 = c2

Differentiating with respect to x and y, we obtain

uux + vvx = 0 (10)

uuy + vvy = 0 (11)

Since ux = vy and uy = −vx (11) gives

−uvx + vux = 0 (12)

From (10) and (12) we get
(u2 + v2)ux = 0

If u2 + v2 = 0, then u = v = 0. Then f(z) = 0, a constant function. Hence
ux = 0. Similarly from (10) and (12), we obtain vx = 0. Hence ux = vx = uy =
vy = 0. Hence,

du = uxdx+ uydy

= 0

or, u ≡ constant

Similarly, v ≡ constant and so f is constant.

Note 3. In polar form the CR equations can be written as

∂u

∂r
=

1

r

∂v

∂θ
,
∂v

∂r
= −1

r

∂u

∂θ

Example 13. Show that the function f(z) = xy+ iy is everywhere continuous
but not analytic.

Example 14. Show that the function f(z) = z is non-analytic everywhere.

Example 15. Let f = u + iv be analytic in a domain D. Show that f is
constant in D if any one of the following conditions hold:
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1. f ′(z) ≡ 0 in D.

2. Re{f(z)} = constant in D.

3. Im{f(z)} = constant in D.

4. arg{f(z)} = constant in D.
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Unit 9 

Course Structure 

1. Complex Integration 

2. Cauchy’s Fundamental Theorem and its consequences 

3. Cauchy’s Integral formula 

4. Derivative of an analytic function. 

Introduction 

In this unit, we shall learn about curves, contours, Jordan curves, Complex Integration and a 

few examples to grasp it completely. Then we have Cauchy’s Fundamental Theorem and its 

applications; Cauchy’s Integral formula and derivatives of an analytic function. 

Definition :- A curve  Г in the Complex plane is a continuous Complex valued function 

Г:- ƶ (t) =x (t)+ iy(t) defined on a real interval a≤ t ≤b. The point Ƶ(a) is called the initial point of 

Г and the point Ƶ (b) is called the terminal point of Г. If Ƶ(b) = Ƶ(a) 

i.e., the terminal and initial point coincide, the curve Г is called a 

closed curve.  

 In calling Ƶ (a) the initial point and Ƶ (b) the terminal point of 

the curve Г we describe an orientation of Г. This means that a  

ϸoint  Ƶ1 = Ƶ (t1) ϵ Г is regarded as preceding a point Ƶ2 = Ƶ(t2) ϵ Г if 

Ƶ1 ≠ Ƶ2 and t1< t2. 

 [Fig - `1’]. From this it follows that the Curve Г may be  

thought of having two orientations according as t varies from a to b or from  b to a. The Curve 

differing from Г only by the direction is denoted by  (-Г If for more than one value of t, we get 

the same point  Ƶ = Ƶ(t),then Ƶ is called a multiple point of the curve (Fig - `2’). If a curve has no 

multiple point, then it is called a `simple curve’.  

 

 

 

 

 

Z(a) 

Z(b) 

Z1 

Z2 

Fig -1 

Z(b) 

Z(a) 

t=t1 

1 

t=t2 

Fig -2 

Z(b) Z(a) 

t=t1 

1 

t=t2 

Fig -3 
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Rectifiable curve:- Let Г : Ƶ= Ƶ(t), a ≤ t ≤ b, be a continuous curve. By a partition of [a,b], we 

mean a set of points P={a=to, t1, t2 …, tn -1, tn=b} satisfying a=to < t1<t2< … < tn =b. We denote by 

P [a,b] the collection of all possible partitions of [a,b]. We put  Ƶk = Ƶ (tk) for k=0,1,2, …, n. Then 

corresponding to the partition P we get a set of points Ƶo, Ƶ1, Ƶ2,…, Ƶn or Г dividing it into 

smaller arcs.  

 

 

 

 

 

We now construct the sum,  

Lp = |Ƶ1 –Ƶ0| + |Ƶ2 – Ƶ1| + … + |Ƶk – Ƶk -1| + …+ |Ƶn –Ƶn-1| 

Clearly, Lp denotes the length of the polygon inscribed, which is obtained by drawing straight 

lines from Ƶ0 to Ƶ1 from Ƶ1 to Ƶ2 and so on. 

We now consider the aggregate {Lp: PϵP [a, b]}. If the aggregate {Lp :PϵP [a,b]} is bounded 

above,  then the curve Г is said to be a rectifiable curve.  

Definition : - A simple curve Г:Ƶ =Ƶ(t)= ϰ(t) +iy(t) a≤+≤b is called regular curve if the 

derivatives of ϰ(t) and y (t) exists and are continuous and they do not vanish simultaneously 

over the whole interval [a,b].  

For example, the unit circle,  

Ƶ = ℮it = cost + i sint , 0≤ t ≤ 2π is a regular curve.  

Theorem: - Every regular curve is rectifiable.  

Complex Integration  

Let Г:Ƶ =Ƶ(t), a ≤ t ≤ b be a rectifiable curve. Let. F be a complex function defined on Г. Suppose 

that P= { a=t0, t1, t2, …, tk-1, tk, …, tn=b} be a partition of [a,b]. We put Ƶk = Ƶ (tk)k=0, 1,2, …, n. 

Then we get a set of point. Ƶ0, Ƶ1, Ƶ2, …, Ƶk-1, Ƶk, …, Ƶn which divide the curve Г, into smaller arcs 

zk−1zk̂ , where k= 1,2, …,n. 

We choose ᶓk−1 ϵ zk−1zk̂  for k= 1,2,3,…,n and form the sum   

ZO 

Z1 

Z2 

Zn 

Zx-1 

Zx 
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𝑆𝑝 = ∑ f(ᶓ
k−1

)(Ƶk − Ƶk−1)

𝑛

𝑘−1

 

 

If lim
||𝑃||→0

𝑆𝜌 exists and is equal I, which is  

Independent of the partition P and the points ᶓ
k−1

, we say that f is integrable on Г, and we 

write,  

𝐼 = ∫ 𝑓(Ƶ)𝑑Ƶ,

Г

 

where ||P|| denotes the norm of the partition P 

equivalently, we can write 

 

𝐼 = ∫ 𝑓(Ƶ)𝑑Ƶ
Г

= lim Sp 

Max|Ƶk-Ƶk-1|→0 

1≤k≤ n  

 

As the case of real definite integral, it can be prove that if f is continuous on Г, then f is 

integrable on Г. 

Some Elementary properties:- 

If f and g are integrable on a rectifiable curve Г, then  

(i) ∫ (𝑓(Ƶ𝑙 ± 𝑔(Ƶ))𝑑Ƶ =
Г

∫ 𝑓(Ƶ)𝑑Ƶ ±
Г

∫ 𝑔(Ƶ)𝑑Ƶ
Г

 

(ii) ∫ 𝑘. 𝑓(Ƶ)𝑑Ƶ = 𝑘
Г

∫ 𝑓(Ƶ)𝑑Ƶ,
Г

 where k is a constant.   

(iii) ∫ 𝑓(Ƶ)𝑑Ƶ = −
−Г

∫ 𝑓(Ƶ)𝑑Ƶ,
Г

 

(iv)        ∫ 𝑓(Ƶ)𝑑Ƶ =
Г

∑ ∫ 𝑓(Ƶ)𝑑Ƶ
Г𝑗

𝑛

𝑖=0
,  where  

 

T1 

T2 T3 

T4 
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Г=Г1+Г2+--- +Гn 

An inequality for complex Integral (ML-formula) 

Theorem: If f is integrable on a rectifiable Curve Г of length L and if there exists a positive 

number M such that  

|f(Ƶ) |≤ M V  Ƶϵ Г, then  

|∫ 𝑓(Ƶ)𝑑Ƶ|  ≤ 𝑀𝐿.
Г

 

Proof :- We divide the curve Г into smaller arcs by the point Ƶ0, Ƶ1, ---, Ƶn-1, Ƶn, --  where Ƶ0 is 

initial point and Ƶn is the terminal point of Г. We choose  

φk ϵ Ƶk-1 Ƶk for k=1, 2, ---, n and form the sum 

𝑆 = ∑ 𝑓(𝜑𝑘)(Ƶ𝑘 −  Ƶ𝑘−1).

𝑛

𝑘=1

 

By the given condition, We have,  

|S|= |∑ 𝑓(𝜑𝑘)(Ƶk −  Ƶk−1).𝑛
𝑘=1  

≤ ∑ |𝑓(𝜑𝑘)||Ƶk −  Ƶk−1|.𝑛
𝑘=1  

≤ M ∑ |Ƶk −  Ƶk−1|  ≤ 𝑀𝐿.𝑛
𝑘=1  

Since, f is integrable on Г, we get,  

| ∫ 𝑓(Ƶ)𝑑Ƶ | = | lim
max|Ƶk− Ƶk−1|→0

1≤𝑘≤𝑛

𝑆
Г

| = lim
max |Ƶk− Ƶk−1|→0

1≤𝑘≤𝑛

|𝑆| ≤ 𝑀𝐿. 

This proves the theorem.  

 

Cauchy’s Fundamental Theorem 

Theorem: - If f is analytic with in a simple closed rectifiable curve Г and continuous on Г, then 

∫ 𝑓(Ƶ)𝑑Ƶ = 0
Г

 

For a closed curve Г, we use the notation ∳  to denote the integration along Г in the counter- 

clockwise sense and ∲  denotes the same integration in the clock wise sense clearly.  
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∮ =  − ∮
ГГ

 

Definition :-  A region D is called simply connected if every closed curve drawn in the region 

encloses only the points of the region.  

 A region which is not simply connected is called multiply connected region. 

 

Consequences of Cauchy’s fundamental theorem :- 

(i) Let f be analytic in a simply connected domain D and let ∝ and β   be any two points 

in D. Then   

∫ 𝑓(Ƶ)𝑑Ƶ
𝛽

∝
  is independent of the curve in D joining ∝ and β.  

0 = ∫ 𝑓(Ƶ)𝑑Ƶ = ∫ 𝑓(Ƶ)𝑑Ƶ + ∫ 𝑓(Ƶ)𝑑Ƶ + ∫ 𝑓(Ƶ)𝑑Ƶ + ∫ 𝑓(Ƶ)𝑑Ƶ 
𝐸𝐹𝐴𝐷𝐸𝐵𝐶𝐷𝐴𝐵𝐴𝐵𝐶𝐷𝐸𝐹𝐴

     - - - - - -  (i) 

0 = ∫ 𝑓(Ƶ)𝑑Ƶ = ∫ 𝑓(Ƶ)𝑑Ƶ + ∫ 𝑓(Ƶ)𝑑Ƶ + ∫ 𝑓(Ƶ)𝑑Ƶ + ∫ 𝑓(Ƶ)𝑑Ƶ 
𝐸𝐷𝐴𝐺𝐸𝐵𝐴𝐷𝐻𝐵𝐷𝐻𝐵𝐴𝐺𝐸𝐷

     - - - - - - (ii) 

 

 

 

 

Adding (i) and (ii) we get,  

0 = ∮ 𝑓(Ƶ)𝑑Ƶ − ∮ 𝑓(Ƶ)𝑑Ƶ
𝐶2𝐶1

 

 

= » ∮ 𝑓(Ƶ)𝑑Ƶ − ∮ 𝑓(Ƶ)𝑑Ƶ
𝐶2𝐶1

 

 

II. Let, C1 and C2 be two simple closed rectifiable curves, C2 lying wholly with in C1. If f is 

analytic in the closed annulus determined by C1 and C2, then 

C2 

 
C1 

 

C 

 
E 

 β 

A 

 

B 

 α 

B 

C 

C1 

1 

C2 

F 

A 

H 

G 
E 
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∮ 𝑓(Ƶ)𝑑Ƶ = ∮ 𝑓(Ƶ)𝑑Ƶ
𝐶2𝐶1

 

 

III.  0 = ∫ 𝑓(Ƶ)𝑑Ƶ = ∫ 𝑓(Ƶ)𝑑Ƶ + ∫ 𝑓(Ƶ)𝑑Ƶ
𝐵𝐶𝐷𝐴𝐵𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻𝐼𝐴

 

      + ∫ 𝑓(Ƶ)𝑑Ƶ + ∫ 𝑓(Ƶ)𝑑Ƶ + ∫ 𝑓(Ƶ)𝑑Ƶ +
Г

𝐺𝐻𝐸𝐹𝐺𝐷𝐸

∫ 𝑓(Ƶ)𝑑Ƶ
𝐿

𝐻𝐼𝐴
  - - (i) 

 

0 = ∫ 𝑓(Ƶ)𝑑Ƶ = ∫ 𝑓(Ƶ)𝑑Ƶ + ∫ 𝑓(Ƶ)𝑑Ƶ
𝐵𝐴

+ ∫ 𝑓(Ƶ)𝑑Ƶ
𝐴𝐽𝐻𝐷𝐿𝐵𝐷𝐿𝐵𝐴𝐽𝐻𝐺𝐾𝐸𝐷

 

     + ∫ 𝑓(Ƶ)𝑑Ƶ
𝐻𝐺

+ ∫ 𝑓(Ƶ)𝑑Ƶ + ∫ 𝑓(Ƶ)𝑑Ƶ  
𝐸𝐷𝐺𝐾𝐸

    -- - -  (ii) 

Now we add (i) and (ii)  

0 = ∳
Г
 𝑓 (Ƶ) 𝑑Ƶ +  ∲

Г1
𝑓 (Ƶ) 𝑑Ƶ +  ∲

Г2
𝑓 (Ƶ) 𝑑Ƶ 

    =  ∳
Г
 𝑓 (Ƶ) 𝑑Ƶ −   ∲

Г1
𝑓 (Ƶ) 𝑑Ƶ  −   ∲

Г2
𝑓 (Ƶ) 𝑑Ƶ 

 

 

Therefore,  

∳
Г
 f (Ƶ) dƵ = ∲

Г1
f (Ƶ) dƵ  -  ∲

Г2
f (Ƶ) dƵ 

 

(III) If Г1, Г2, ---, Гn are simple closed rectifiable curves, no two of which have common point, 

and if Г is a simple closed rectifiable curve, which contains Г1, Г2, -  - - , Гn in its interior, then . 

∳
Г
 f (Ƶ) dƵ  = ∑ ∳

Г𝑖

𝑛
𝑖=0 f (Ƶ) dƵ   

Provided f is analytic in the closed region bounded by this curve.  

Example :- Evaluate  

∮
𝑑Ƶ

Ƶ+2𝑙Ƶ𝑙=1
  and deduce that ∫

1+2𝐶𝑂𝑠𝛳

5+4 𝑐𝑜𝑠𝛳
𝑑𝜃 = 0

Л

0
. 

B 

C 

C1 

1 

C2 

F 

A 

H 

G 
E 
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Solution:- Since 
1

Ƶ+2
  is analytic with in and on lƵl =1, by Cauchy’s fundamental theorem, weget 

∮
𝑑Ƶ

Ƶ+2
  = 0

𝑙Ƶ𝑙=1
 

Putting, Ƶ= 𝑒𝑖𝛳, 0≤ϴ≤2Л  we get,  dƵ = 𝑖. 𝑒𝑖𝛳dϴ 

 

0 = ∳
𝑙Ƶ𝑙=1

𝑑Ƶ

Ƶ+2
 =∫

𝑒𝑖𝛳dϴ

(𝑒𝑖𝛳+2)

2Л

0
  =𝑖 ∫

𝑒𝑖𝛳(𝑒−𝑖𝛳+2)

(𝑒𝑖𝛳+2) (𝑒−𝑖𝛳+2)
dϴ

2Л

0
 

      =𝑖 ∫
 1+2 𝑒𝑖𝛳

5+2(𝑒−𝑖𝛳+2)
dϴ

2Л

0
 

       =𝑖 ∫
 1+2 𝐶𝑜𝑠𝛳+2𝑖𝑠𝑖𝑛𝛳

5+2 Cosϴ
dϴ

2Л

0
 

Equating the imaginary parts of both sides, we get,  

𝑖 ∫
 1+2 𝐶𝑜𝑠𝛳

5+4 Cosϴ

2Л

0
𝑑ϴ=0 

𝑖. 𝑒, 2∫
 1+2 𝐶𝑜𝑠𝛳

5+4 Cosϴ

Л

0
𝑑ϴ=0 

= 𝑖𝑒 ∫
 1+2 𝐶𝑜𝑠𝛳

5+4 Cosϴ

Л

0
𝑑ϴ=0 

[∴ ∫
2𝑎

0
𝑓(𝑥)𝑑𝑥 = 2∫

𝑎

0
𝑓(𝑥)𝑑𝑥 

𝑖𝑓 ∫ 𝑓(2𝑎 − 𝑥) = 𝑓(𝑥)] 

2) Evaluate , ∳
𝑑Ƶ

Ƶ−∝
where C denotes a simple closed rectifiable curve and ∝ is an interior point. 

Solution:- Let Г be a circle lying with in C with ∞ as centre and radius ɤ. since, 
1

Ƶ−∝
 is analytic in 

the closed region bounded by C and Г, putting  

Ƶ−∝= ɤ. 𝑒𝑖𝛳 , 0 ≤ ϴ∝ 2Л , 

We get ∳
𝑐

𝑑Ƶ

Ƶ−∞
  = ∳

𝑟

𝑑Ƶ

Ƶ−∞
= ∫

i.ɤ 𝑒𝑖𝛳dϴ

ɤ𝑒 iϴ

2Л

0
 

 

= 𝑖 ∫
2Л

0

𝑑ϴ = 2Л𝑖. 
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Cauchy’s Integral Formula :- 

 

Theorem: Let f be analytic within and on a simple closed rectifiable curve C and let, ∝ be an 

interior point of C. then  

f(∝) = 
 1

2𝜋𝑖
∳

𝑐

f(Ƶ)

Ƶ−∝
𝑑Ƶ   - - - -  (1) 

Theorem: - let, f be analytic within and on a simple closed rectifiable curve C. If ∞ is a point 

interior to C, then 

ƒ(∝) = 
 1

2𝜋𝑖
∳

𝑐

f(Ƶ)

(Ƶ−∝)2 𝑑Ƶ   - - - -  (1) 

 

Proof:- Let d be the lower bound of the distances of the point ∝ from the points on C.  

If  h denotes a complex number such that |h| <d,    |(∝+h)- ∝| = |h|<d 

Then the point (∝+h) also lies with in C.  

Therefore, we use Cauchy’ integral formula.  

f(∝)  =  
 1

2𝜋𝑖
∳

𝑐

ɖ(Ƶ)

Ƶ−∝
𝑑Ƶ 

f(∝ +h)  =  
 1

2𝜋𝑖
∳

𝑐

f(Ƶ)

(Ƶ−∝ −ℎ)
𝑑Ƶ 

f(∝ +h) − f(∝)  =  
 1

2𝜋𝑖
∳

𝑐
(Ƶ){

f(Ƶ)

(Ƶ−∝ −ℎ)
−

1

Ƶ−∝
}𝑑Ƶ 

=  
 1

2𝜋𝑖
∳

𝑐
(Ƶ)

h

(Ƶ−∝ −ℎ)(Ƶ−∝)
 . 𝑑Ƶ 

i. e,
 f (∝ +h) −  f (∝)

ℎ
=

 1

2𝜋𝑖
∳

𝑐

f(Ƶ)dƵ

(Ƶ−∝ −ℎ)(Ƶ−∝)
− − − −(2) 

from (2) we get 

|
 f (∝+h)−f(∝)

ℎ
−

 1

2𝜋𝑖
∳

𝑐

f(Ƶ)

(Ƶ−∝)2
dƵ | =|

 1

2𝜋𝑖
∮ 𝑓(Ƶ){

1

(Ƶ−∞)(Ƶ−∞−ℎ)
−

1

(Ƶ−∞)2
}

𝑐
𝑑Ƶ| 

=
 1

2𝜋𝑖
| ∮ 𝑓(Ƶ){

(Ƶ−∝) − (Ƶ−∝ −h)

(Ƶ−∝)2(Ƶ−∝ −ℎ)𝑐

𝑑Ƶ| 
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=
 |h|

2𝜋
| ∮

f(Ƶ)

(Ƶ−∝)2(Ƶ−∝ −ℎ)𝑐

𝑑Ƶ| − − − (3) 

Since f is analytic on C, it is continuous there, so, there exists a positive number M such that 

|f(Ƶ) |≤ M ƵϵC 

Also for ƵϵC, we have,  

|Ƶ-⋉|≥d and |Ƶ-∝-h|≥|Ƶ-∝l-|h|≥d-|h|. 

Therefore, for all ƵϵC, we have, 

|
𝑓(Ƶ)

(Ƶ−𝑑)2(Ƶ−𝑑−ℎ)
|≤ 

𝑀

d 2(𝑑−𝑙ℎ𝑙)
 . 

So, by M-L formula, we get from (3)  

|
 f (∝+h)−f(∝)

ℎ
 - 

 l

2𝜋𝑖
∮

f(Ƶ)

(Ƶ−∝)2𝑐
𝑑Ƶ | ≤

|h|

2𝜋
 .

𝑀𝐿

d 2(𝑑−𝑙ℎ𝑙)
 → 0 as h→0 

 

i.e.  

lim
ℎ−0

(
𝑓(∝+ℎ)−𝑓(∝)

ℎ
) = 

 l

2𝜋𝑖
∮

f(Ƶ)

(Ƶ−∝)2𝑐
𝑑Ƶ 

i.e. f (∝) =  
 l

2𝜋𝑖
∮

f(Ƶ)

(Ƶ−∝)2𝑐
𝑑Ƶ 

This proof’s the theorem  

 

Theorem : Let f be analytic within and on a simple closed rectifiable curve C. Then 

for any point ∝ interior to C.  

 

f (n)(∝) =  
 n!

2𝜋𝑖
∮

f(Ƶ)

(Ƶ−∝)n+1
𝑐

𝑑Ƶ 

 

for n=0, 1, 2, --- 

 

Proof: We prove the theorem by Mathematical Induction. First we note that, the 

formula (1) is valid for n=0,1.  

We suppose that, (1) is true for n=m and prove that it true for n=m+1.  

We choose a positive number R sufficiently large, such that the curve C is Contained 

in |Ƶ| < R, d be the lower bound of the distances of ∝ from the points on C.  

 If a complex number h is such that |h| < d, then, the point ∝+h lies with in C.  
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Therefore, from (1), we get for n=m,   

f (m)(∝) =  
 m!

2𝜋𝑖
∮

f(Ƶ)

(Ƶ−∝)m+1
𝑐

𝑑Ƶ 

f (m)(∝ +h) =  
 m!

2𝜋𝑖
∮

f(Ƶ)

(Ƶ−∝)m+1
𝑐

𝑑Ƶ 

 

Then  

f (m)(∝ +h) −  f (m)(∝) =  
 m!

2𝜋𝑖
∳

𝑐
 𝑓(Ƶ){

l

(Ƶ−∝ −ℎ)m+1
−  

l

(Ƶ−∝)m+1
} 𝑑Ƶ 

=
 m!

2𝜋𝑖
∳

𝑐
𝑓(Ƶ)

(Ƶ−∝)m+1−(Ƶ−∝−ℎ)m+1

(Ƶ−∝)m+1(Ƶ−∝−ℎ)m+1 𝑑Ƶ ---- (2)   

 

Let us denote Ƶ -∝by t,  

 

Then, (Ƶ−∝)m+1- (Ƶ−∝ −ℎ)m+1 

= t m+1 − (𝑡 − ℎ)m+1 

=n { t m + t m−1(t − h) +  − − − + (𝑡 − ℎ)m} 

So, from (2)  

 

 

f (m)(∝+h)−f (m)(∝)

ℎ
 =

  m!

2𝜋𝑖
∳

𝑐
 𝑓(Ƶ)

t m+t m−1(t−h)+ −−− + (𝑡−ℎ)m

t m+1(𝑡−𝑛)m+1 . 𝑑Ƶ 

Now 

f (m)(∝ +h) −  f (m)(∝) =  
(m + l)!

2Л𝑖
∳

𝑐

l

(Ƶ−∝)m+2
𝑑Ƶ 

 

=
(m+l)!

2𝜋𝑖
∳

𝑐

f(Ƶ){
t m+t m−1(t−h)+ −−− + (𝑡−ℎ)m

t m+1(𝑡−𝑛)m+1 − 
 m+l

t m+2  dƵ
 

=
 m!

2𝜋𝑖
∳

𝑐
 f(Ƶ){

t m+t m−1(t−h)+ −−− + (𝑡−ℎ)m−(m+l)(𝑡−ℎ)m+1

t m+1(𝑡−𝑛)m+1  dƵ    - - - - - - (3)  

 Also ,  

t m+1 + t m(t − h) +  − − −  + t (𝑡 − ℎ)m − (m + l)(𝑡 − ℎ)m+1 

= {t m+l + (t − h) m−1} + (t − h){t m − (𝑡 − ℎ)m} +  − − −  + (t − h) m{t − (t + h)} 

= h[{t m + t m−!(t − h) +  − −  (𝑡 − ℎ)m}+} +  − − − + (t − h) m{t m−1 + t m−2

+ (t − 2) +  − − −  +  (t − h)m−1}} +  −  −  − + (t − h) m] 

 So, from (3) we get,  

 
f (m)(∝+h)−f (m)(∝)

ℎ
 -  

(m−1)!

2𝜋𝑖
.  ∳

𝑐

f(Ƶ)

(Ƶ−∝)m+2 𝑑Ƶ 

=
 hm!

2𝜋𝑖
∳

𝑐
𝑓(Ƶ)

t m+t m−1(t+n)+ −−− + (𝑡−𝑛)m+t m−1(t+n)+ −−− + (t+h) m

t (m+2)(𝑡−ℎ)m−1 . 𝑑Ƶ– --- (4) 
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For ƵϵC, we get,  

 

l+l=|Ƶ-∝|≥d and |t – h| =|Ƶ- ∝-h|≥|Ƶ-∝|-|h|≥d-|h| 

 

And  

|t|=|Ƶ - ∞|≤2R and |t-h| =|Ƶ- (∞+h)|≤2R 

so, for Ƶ∞C, we have.  

|
t m+t m−1(t−h)+ −−− + (𝑡−𝑛)m

t (m+2)(𝑡−ℎ)m+1 | ≤
(2𝑅)mN

d m+2(𝑑−𝑙ℎ𝑙)m+1 , 

where N is the number of terms in the numerator. 

 

Since f is continuous on C, there exists a positive number M such that, lf(Ƶ)l ≤ M. for 

all ƵϵC suppose that L is the length of C, then by M-L formula, we get from (4).  

 

 

 

 |
f (m)(∝+h)−f (m)(∝)

ℎ
−

 ˂m+1

2𝜋𝑖
∳𝑐

f(Ƶ)

(Ƶ−∝)m+2
𝑑Ƶ | 

 

≤
 lhlm!

2𝜋

(2𝑅)mMLN

d m+2(𝑑−𝑙ℎ𝑙)m+1  → as h → 0 

 

So, 

 lim
𝑛→0

f (m)(∝+h)−f (m)(∝)

ℎ
=   

(m+1)!

2Л𝑖
∳𝑐

f(Ƶ)

(Ƶ−∝)m+2𝑑Ƶ.

 

 

i.e,  

f (m)(h) =  
(m + 1)!

2𝜋𝑖
∳

𝑐

f(Ƶ)

(Ƶ−∝)m+2
𝑑Ƶ 

 Therefore, By Mathematical induction, the theorem is proved.  

 

Some Problems on Cauchy’s integral formula:  

1) Dictation of the proof of the Cauchy’s Integral Formula.  

2) Cauchy’s Integral For multiple connected domain.  

3) Evaluate ∮
Ƶ𝑑Ƶ

(9−Ƶ2)(𝑧−𝑖)𝑙Ƶ𝑙=2
     

R   C 

|ℎ| < 𝑑 

α+h 

α 
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(*) Cauchy’s Integral Formula for derivatives : - 

(i) Cauchy’s Integral Formula for the first derivative. 

 

Cauchy’s integral formula:  

Let, f be analytic within and on a simple closed rectifiable curve C and ⋉  be any  

interior point of C then  

𝑓(∝)  =  
1

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ−∝)𝑐

𝑑Ƶ 

 Choose a circle C0, with centre ∝ and radius ɤ0 such that C0 lies in the interior of C 

Now, ∝ is the only point inside C at which the function 
 f(Ƶ)

 (Ƶ−∝)
  is not analytic and analytic 

in the region D consisting of all point inside and on C except the points interior to C0 

Hence ∮
𝑓(Ƶ)𝑑Ƶ

Ƶ−∝𝑐
 =  ∮

𝑓(Ƶ)

Ƶ−∝𝑐0
𝑑Ƶ 

= ∮
(𝑓(Ƶ) − 𝑓(∝) + 𝑓(∝))

Ƶ−∝𝑐0

𝑑Ƶ 

= ∮
𝑓(Ƶ) − 𝑓(∝)

Ƶ−∝𝑐0

𝑑Ƶ +  ∮
𝑓(∝)

Ƶ−∝𝑐0

𝑑Ƶ 

= ∮
𝑓(Ƶ) − 𝑓(∝)

Ƶ−∝𝑐0

. 𝑑Ƶ + 𝑓(∝) ∮
𝑑Ƶ

Ƶ−∝𝑐0

 

= ∮
𝑓(Ƶ) − 𝑓(∝)

Ƶ−∝𝑐0

. 𝑑Ƶ + 𝑓(∝) × 2𝜋𝑖 

Thus,  

∮ 𝑓(Ƶ)
𝑑Ƶ

Ƶ−∝𝑐0

 =  ∮ (
𝑓(Ƶ) − 𝑓(∝)

Ƶ−∝𝑐0

). 𝑑Ƶ +  2𝜋𝑖 . 𝑓(∝) 

 

We now claim that 
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 ∮
𝑓(Ƶ) − 𝑓(∝)

Ƶ−∝𝑐0

𝑑Ƶ = 0 

Sine, f(Ƶ) is analytic inside and on C it is continuous  at ∝.  

 Given Ɛ(>0) there exists δ(>0) such that,  

|Ƶ − ∝ |  <  𝛿 =>  |𝑓(Ƶ) –  𝑓(∝)|  <  Ɛ. 

We choose ɤ0< δ then |Ƶ - ∝| = ɤ0 => |f(Ƶ) – f (∝)| < Ɛ 

Hence,   

| ∮
𝑓(Ƶ) − 𝑓(∝)

Ƶ − ∞𝑐0

𝑑Ƶ | < (
 Ɛ

ɤ0
) . 2𝜋ɤ0[𝐵𝑦 𝑀 − 𝐿 𝑓𝑜𝑟𝑚𝑢𝑙𝑎] 

=  2𝜋Ɛ 

 

Thus,   

| ∮
𝑓(Ƶ) − 𝑓(∝)

Ƶ−∝𝑐0

𝑑Ƶ | <  2𝜋Ɛ . 

Since Ɛ is arbitrary, we have   

∮
f(Ƶ) − f(∝)

Ƶ−∝𝑐0

dƵ = 0. 

From (1) we have 

 ∮
𝑓(Ƶ)

Ƶ−∝𝑐

𝑑Ƶ =  2𝜋𝑖 𝑓(∝) 

and so  

𝑓(∝)  =  
 1

 2𝜋𝑖
∳

𝑐

𝑓(Ƶ)

Ƶ−∝
𝑑Ƶ 

 

(2) Solve:- ∮
ƵdƵ

(9−Ƶ2)(Ƶ+i)|Ƶ|=2
 

Let, f(Ƶ) = 
Ƶ

9−Ƶ2. Clearly f(Ƶ), is analytic C within and on C, where C is the Circle |Ƶ| =2 

105



By Cauchy’s integral formula, ∮
Ƶ

(9−Ƶ2)(Ƶ+i)𝑐
𝑑Ƶ =∮

f(Ƶ)

(Ƶ+i)𝑐
 dƵ 

= 2πi f(−i) 

=2πi x
−i

9−(i)2 

= - 
2πi2

10
 = 

2π

10
 = 

π

5
 

 

 

Theorem:- Let, f be analytic in a domain D then all derivatives of F exists and are analytic in D.  

 

Proof: - let, Ƶ0ϵD and C be circle with centre at Ƶ0 and contained in D. If ∝ is an interior point of 

C, then  

f (n)(∝) =  
 n!

2𝜋𝑖
∳

𝑐

f(Ƶ)

(Ƶ−∝)n+1
𝑑Ƶ 

 

for n=0,1,2, … 

Thus, f has derivatives of all orders in a neighborhood of Ƶ0. Since Ƶ0 is any point of D, the 

theorem is proved.  

 

Summary 
This unit dealt mainly with the preliminaries of complex integration and related properties of 

which the Cauchy’s Fundamental Theorem and the Cauchy’s Integral formula are very useful in 

solving relevant problems.  
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Unit 10 

 
Course Structure 

1. Morera’s Theorem 

2. Cauchy’s Inequality 

3. Liouville’s Theorem 

4. Fundamental Theorem of classical algebra. 

 
Introduction 
This unit deals in Morera’s Theorem, which can be viewed as a converse of Cauchy’s 

Fundamental Theorem; Cauchy’s inequality; Liouville’s theorem and hence, derive the 

Fundamental Theorem of classical algebra using these results. Let us first start with the 

Morera’s Theorem. 

 
Morera’s Theorem:-  

If f is continuous in a simply connected domain D and if ∳
𝑐
 f(Ƶ) dƵ= 0 for every closed 

rectifiable curve C in D, then f is analytic D.  

 

Proof:- Let  ∝  be a fixed and Ƶ be a variable point in D. let, C1  

and C2 be any two rectifiable curves in D joining ∝ and Ƶ. Then 

 the curve consisting of C1 and C2 is a closed rectifiable curve in  

D.  So, by the given condition, we have 

∫ 𝑓(Ƶ)𝑑Ƶ +  ∫ 𝑓(Ƶ)𝑑Ƶ = 0

𝑐2𝑐1

 

    => ∫ 𝑓(Ƶ)𝑑Ƶ −  ∫ 𝑓(Ƶ)𝑑Ƶ = 0
𝑐2𝑐1

 

             => ∫ 𝑓(Ƶ)𝑑Ƶ =  ∫ 𝑓(Ƶ)𝑑Ƶ = 0

𝑐2𝑐1

 

This shows that, the integral of f is independent of the path, so long as the path lies in D. we 

now define a function ϕ in D as  

z+h 

C1 

1 

C2 

D 

δ 

α 
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𝜙(Ƶ) = ∫ 𝑓(𝑡)𝑑𝑡 − − − −(1)

Ƶ

∝

 

The definition of ϕ is justified because integral (1) depends only on the upper limit Ƶ and not 

on the path joining ∝ and Ƶ, where ∝ is fixed.  

Then, ϕ (Ƶ+h) = ∫ 𝑓(𝑡)𝑑𝑡
Ƶ+ℎ

∝
 

 

And so,  

ϕ (Ƶ+h) - ϕ (Ƶ) =∫ 𝑓(𝑡)𝑑𝑡
Ƶ+ℎ

∞
 - ∫ 𝑓(𝑡)𝑑𝑡

Ƶ

∞
 = ∫ 𝑓(𝑡)𝑑𝑡

Ƶ+ℎ

∞
  - - -  (2) 

 

the integral (2) being independent of the path of integration, we may take the same along the 

line segment joining Ƶ and Ƶ+h. 

Now,  

𝜙(Ƶ + ℎ) −  𝜙 (Ƶ)

ℎ
−  𝑓(Ƶ)  =

 𝑙

ℎ
∫ 𝑓(𝑡)𝑑𝑡 − 𝑓 (Ƶ)

Ƶ+ℎ

Ƶ

 = =
 𝑙

ℎ
∫ {𝑓(𝑡) − 𝑓(Ƶ)}𝑑𝑡 − − − (3)

Ƶ+ℎ

Ƶ

 

 

Since, by the given condition, f is continuous at Ƶ, for given Ɛ (>0) there exists a Ɛ (>0) such that  

 |f(t) – f(Ƶ)|<Ɛ whenever |t-Ƶ| <δ 

We choose, Ƶ +h in D such that |h| <δ.  

Then, for every point t, on the straight line joining Ƶ to Ƶ+h, we have.  

|f (t) – f(Ƶ) | <Ɛ.  

Hence, from (3), we get by ML formula,  

|
ϕ(Ƶ + h) −  ϕ (Ƶ)

ℎ
−  f(Ƶ)| =

 l

|ℎ|
| ∫ {𝑓(𝑡) − 𝑓(Ƶ)}. 𝑑Ƶ |  ≤

 l

|ℎ|
 . Ɛ. |h| = Ɛ

Ƶ+ℎ

Ƶ

 

for 0<|h|<δ. 
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This gives, 

 𝑙𝑖𝑚
ℎ→0

𝜙(Ƶ + ℎ) −  𝜙 (Ƶ)

ℎ
= 𝑓 (Ƶ) 

i.e. ϕ’(Ƶ) = f(Ƶ). 

Thus, ϕ’ (Ƶ) exists at every point of D and so, ϕ is analytic in D. Since the derivative of an 

analytic function is analytic, we see that f(Ƶ) = ϕ’(Ƶ) is analytic in D. 

This proves the theorem.  

Cauchy’s Inequality :-  

Theorem :- If f is analytic within and on a circle C with centre ∝ and radius ɤ and if  

|f(Ƶ)|≤M VƵϵ C, where M is a positive number, then, 

|𝑓(𝑛)(∝)|  ≤   
 M<𝑛!

ɤ𝑛  for n=0,1,2,3,…. 

Proof :- By Cauchy’s integral formula for general order derivative, we have,  

𝑓(𝑛)(∝)  =
 n!

2𝜋𝑖
∳

𝑐

f(Ƶ)

(Ƶ − 𝑑)n+1
𝑑Ƶ − − − (1) 

for n=0,1,2, ---- 

 

For ƵϵC, we get, 

|
f(Ƶ)

(Ƶ−∝)n+1
|  ≤

 M

ɤ𝑛+1
 

therefore, from (1), we get, by M-L formula ,  

𝑓(𝑛)(∝) =
 𝑛!

2𝜋
 | ∳

𝑐

𝑓(Ƶ)

(Ƶ−∝)𝑛+1
𝑑Ƶ |  ≤

 𝑛!

 2𝜋
 .

𝑀

ɤ 𝑛+1
2𝜋ɤ =   

𝑀𝑛!

ɤ 𝑛
  𝑓𝑜𝑟, 𝑛 = 0,1,2, … 

 

This proves the theorem.  

Definition : - A function of a complex variable, which is analytic throughout the complex plane, 

is called an Entire or an integral function.  

α     r 

     r C 
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For example :- A polynomial, e Ƶ , sinƵ, CosƵ etc. are entire function.  

Theorem:- Liouville’s theorem  :-  Every bounded entire function is constant .  

Proof: - Let, ∝ be any point in the complex plane, and let C: |Ƶ -∝|=ɤ . 

Then there exists a constant M such that  |f(Ƶ)| ≤ M VƵϵC 

and so lf(Ƶ)l ≤ M V ƵϵC, no matter how large the radius ɤ is.  

The function f is analytic within and on the circle C and ∝ is a point interior to C.  

 So, by Cauchy’s integral formula for derivatives, we get 

𝑓′(∝) =
1

2𝜋𝑖
∳

𝑐

𝑓(Ƶ)

(Ƶ−∝)2
𝑑Ƶ. 

Also, on C, we get,   

 |
𝑓(Ƶ)

(Ƶ−∝)2
| ≤  

𝑀

ɤ 2
 

Therefore, By ML, formula, We get,  

|𝑓′(∝)| = |
1

2𝜋𝑖
∳

𝑐

𝑓(Ƶ)

(Ƶ−∝)2
𝑑Ƶ| ≤

 1

 2𝜋
 .

𝑀

ɤ 2 
 .2𝜋ɤ =  

𝑀

ɤ 
→ 0 𝑎𝑠 ɤ →∝ 

And So,  𝑓′(∝) = 0 

Since ∝ is an arbitrary point of the complex plane Ȼ, we have,  

𝑓′(∝) = 0 𝑉 Ƶ𝜖Ȼ 

We now choose any two points Ƶ1 and Ƶ2 of Ȼ 

Then, substituting w = f(Ƶ), we get 

0 = ∫ 𝑓′(Ƶ)𝑑Ƶ

Ƶ2

Ƶ1

=  ∫ 𝑑𝑤

𝑓(Ƶ2)

𝑓(Ƶ1)

 =  𝑓(Ƶ2) −  𝑓(Ƶ1) 

i.e. f(Ƶ1) = f(Ƶ2). 

Since, Ƶ1 and  Ƶ2 are any two points of Ȼ, it follows that, f is a constant function.  

This proves the theorem.  

rα 

     r 
C 
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Fundamental Theorem of Classical Algebra :-  

Theorem:- If f is a polynomial of degree n with real or complex coefficients, then the equation,  

ƒ(Ƶ) = 0 has at least one root.  

 

Proof :- Let, f(Ƶ) = a0 + a1Ƶ + - - - anƵn (an≠ 0) be a polynomial of degree n. If possible, suppose 

that no value of  Ƶ exists for which f(Ƶ) = 0.  

We shall show that this leads to a contradiction. Since, f is a polynomial, it is an entire function. 

Also since f(Ƶ) ≠ 0 for any Ƶ, it follows that, ϕ (Ƶ) = 
1

𝑓(Ƶ)
 is an entire function. 

Now, for Ƶ≠ 0 we have  

|f(Ƶ)| = |a0 + a1Ƶ + ---- + anƵn| 

= |Ƶ|n|an + 
 an−1

Ƶ
+  −  −  −  +

 a0

Ƶ𝑛
 | 

≥ |Ƶ|n { |an|- 
 |an−1|

 |Ƶ|
− − − − 

 |an|

|Ƶ|𝑛  

 

This shows that,   lim
Ƶ−∞

𝑙𝑓(Ƶ) = ∞ 

and so, lim
Ƶ−∞

𝜙(Ƶ) = 0 

Therefore, ϕ is a bounded entire function, and so by Liouville’s theorem is a constant, Hence, 

f(Ƶ) is also a constant which is impossible. So, f(Ƶ) =0 has at least one root in the complex plane 

Ȼ. 
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Unit 11 

Course Structure 

1. Uniformly convergent series of analytic functions 

2. Power series 

3. Taylor’s Theorem 

4. Laurent’s Theorem 

 

Introduction 

Just as series of real functions, we will be reading about the series of complex valued functions, 

their region of convergence,  radius of convergence and uniform convergence. As in real 

analysis, here we will see that any analytic function can be expressed as a Taylor series in its 

region of convergence. Furthermore, we will learn about Laurent’s series expansion of a 

complex valued function analytic in an annular region. 

Uniformly Convergent Series:-  

Let, ∑ ƒn(Ƶ)∝
𝑛=1   be an infinite series whose terms are functions of a complex variable defined on 

a set E in the Complex plane. Further let, Sn (Ƶ) = f1(Ƶ) + f2(Ƶ) + ---- + fn (Ƶ) be the nth partial 

sum of the series. 

The series  ∑ ƒn(Ƶ)∝
𝑛=1 is said to be uniformly convergent on E for E, for given Ɛ(>0) there exists 

a positive integer N=N(Ɛ), depending only on Ɛ such that  

|ƒ𝑛+𝑝(Ƶ)– ƒ𝑛(Ƶ)| < Ɛ  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑁, 

p=0,1,2, …. 

and all ƵϵE. 

It follows, from Cauchy’s general principle of convergence that every series which is uniformly 

convergent on a set E is also convergent on E. Hence, there exists a function f(Ƶ) on E, called the 

sum of the series, such that  
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𝐹(Ƶ)  =  ∑ ƒ𝑛(Ƶ)

∞

𝑛=1

𝑉 Ƶ𝜖𝐸 

Example:- The geometric series ∑ Ƶ𝑛∞
𝑛=1  converges in E={Ƶ: lƵl <1}, because  

𝑆𝑛(Ƶ)  +  Ƶ + Ƶ2 +  −  −  −  −   + Ƶ𝑛 

=   
Ƶ(𝑙 − Ƶ 𝑛)

 𝑙 − Ƶ
→  

 Ƶ

 𝑙 − Ƶ
 𝑓𝑜𝑟 Ƶ𝜖𝐸 

 

Now 

 Sn+p(Ƶ)– Sn(Ƶ) 

= (Ƶ+Ƶ2+ - - - + Ƶn +Ƶn-1 + - - - +Ƶ n+p) – ( Ƶ+Ƶ2+Ƶ3+ - - - +Ƶn) 

= Ƶn+l +  Ƶn+2 +  Ƶn+p 

=Ƶn+l (1+2+ - - - + Ƶp−l) 

=Ƶn+l 1−Ƶp

 l−Ƶ
 

So 

 |𝑆𝑛+𝑝(Ƶ) − 𝑆𝑛(Ƶ)|  =  |Ƶ|𝑛+𝑙|
1 − |Ƶ|𝑝

 𝑙 − Ƶ
| 

                                 ≥  |Ƶ|𝑛+𝑝
1 − |Ƶ|𝑝

| 𝑙 − Ƶ|
 

We chose, p=n and Ƶn = 1 - 
 1

𝑛
 ϵE 

Then  

|𝑆2𝑛(Ƶ𝑛) − 𝑆𝑛(Ƶ𝑛)| ≥  (1 −  
 𝑙

 𝑛
 )𝑛+1 (

1 − (1 −  
 𝑙

 𝑛
 )𝑛

 | 1 − 1 +  
 𝑙

 𝑛
|

 ) 

=  (1 −  
 𝑙

 𝑛
 )𝑛 (1 +  

 𝑙

 𝑛
 )𝑛 {1 − (1 −  

 𝑙

 𝑛
 )𝑛 }  → ∞ 𝑎𝑠 𝑛 → ∞ 

Thus, for sufficiently large n and suitable p and ᵶ in E, we can make the difference |Sn+p(Ƶ) −

Sn(Ƶ)| as large as we please. So, the series ∑ Ƶp∝
𝑛=1   is not uniformly convergent in E ={Ƶ : |Ƶ|< 1} 
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Theorem: A convergent series ∑ 𝑓𝑛(Ƶ) = 𝑓(Ƶ), (Ƶ𝜖𝐸)∞
𝑛=1 is uniformly convergent on E iff given 

Ɛ(>0) there exists a positive integer N=N(Ɛ) such that |𝑆𝑛(Ƶ) –f(Ƶ) <Ɛ for n>N and for all ƵϵE.  

Proof : - If the series ∑ 𝑓𝑛(Ƶ)∝
𝑛=1  is uniformly convergent on E, then for given Ɛ(>0) there exists a 

positive integer N=N(Ɛ) such that |𝑆𝑛+𝑝 (Ƶ) – 𝑆𝑛(Ƶ) | <
Ɛ

2
 whenever n>N, p=0,1,2, … and for all 

ƵϵE.  

Letting p→∞, we get  

|𝑆𝑛(Ƶ) –  𝑓(Ƶ) |  ≤  
Ɛ

2
< Ɛ 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝑛 > 𝑁 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 Ƶ𝜖𝐸. 

Conversely, 

If there exists a positive integer N=N(Ɛ) such that ,  

|𝑆𝑛(Ƶ) –  𝑓(Ƶ) |  <
Ɛ

2
 𝑓𝑜𝑟 𝑛 > 𝑁 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 Ƶ𝜖𝐸, 

then for n>N and for all ƵϵE we get for p=0,1,2, …   

|𝑆𝑛+𝑝(Ƶ) – 𝑆𝑛(Ƶ) |  ≤  | 𝑆𝑛+𝑝(Ƶ) – 𝑓(Ƶ) |  +  | 𝑆𝑛 (Ƶ) –  𝑓(Ƶ)| 

<
Ɛ

2
+

Ɛ

2
= Ɛ 

Therefore the series ∑ 𝑓𝑛(Ƶ)∞
𝑛=1  converges uniformly on E. 

This proves the theorem.  

Weierstrass M-Test :-  

Theorem:- Given a convergent series  ∑ 𝑀𝑛
∞
𝑛=1  of positive constants and a series ∑ 𝑓𝑛(Ƶ)∝

𝑛=1  of 

functions defined on a set E. If there exists a positive integer N1 such that |𝑓𝑛(Ƶ) | ≤ 𝑀𝑛  for n≥N, 

and forrall ƵϵE,  

then ∑ 𝑓𝑛(Ƶ)∝
𝑛=1  is uniformly and absolutely convergent on E.  

Proof:  Since, ∑ 𝑀𝑛
∝
𝑛=1  Converges, for given Ɛ(>0) there exists a positive integer N2 =N2(Ɛ) such 

that , 𝑀𝑛+1+𝑀𝑛+2+ - - - + 𝑀𝑛+𝑝<Ɛ for n>N2 and p=1,2, ---  

Let, N=Max { N1, N2} . Then, N depends only on Ɛ> Now for n>N and for all ƵϵE, p=1,2, --- we get.  

| 𝑆𝑛+𝑝(Ƶ) – 𝑆𝑛(Ƶ) |  =  | 𝑓𝑛+1(Ƶ)  +  𝑓𝑛+2 (Ƶ)  +  −  −  −  +  𝑓𝑛+𝑝(Ƶ) | 
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≤ |𝑓𝑛+1(Ƶ)  +  |  +  |𝑓𝑛+2(Ƶ)  +  −  −  − +  |𝑓𝑛+𝑝(Ƶ) | 

≤  𝑀𝑛+1  +  𝑀𝑛+2 +  −  −  −  + 𝑀𝑛+𝑝 

< Ɛ. 

So, ∑ 𝑓𝑛(Ƶ)∞
𝑛=1  is uniformly convergent on E. 

We further note that, ∑ 𝑓𝑛(Ƶ)∞
𝑛=1  is absolutely convergent. This follows from comparison test. 

This proves the theorem. 

Definition:- If every point of a set E is a limit point of E, then E is called dense in itself. 

Example:- A domain or a continuous curve is in itself.  

Theorem : Given a uniformly convergent series f(Ƶ) = ∑ 𝑓𝑛(Ƶ)∞
𝑛=1  defined on a dense in itself set 

E such that each term 𝑓𝑛(Ƶ) is continuous on E. Then the sum f(Ƶ) is also continuous on E.  

 If   Ƶ and Ƶ0 are any points of E. Then |f(Ƶ) –f(Ƶ0) | = |f(Ƶ) – 𝑆𝑛(Ƶ) + 𝑆𝑛(Ƶ) – 𝑆𝑛(Ƶ0) + 𝑆𝑛(Ƶ0) 

– f(Ƶ0) 

 |𝑆𝑛(Ƶ) – f(Ƶ)| + |𝑆𝑛(Ƶ) – 𝑆𝑛(Ƶ0) | + |𝑆𝑛(Ƶ0) – f(Ƶ0) | ------ (1) 

 Since, f(Ƶ) = ∑ 𝑓𝑛(Ƶ)∞
𝑛=1  converges uniformly in E, for given Ɛ>0 there exists a positive 

integer N=N(Ɛ), such that,  

 |𝑆𝑛(Ƶ) – f(Ƶ) | <
Ɛ

 3
 whenever n>N and forall  ƵϵE.  

Let, n0>N be a fixed positive integer. Then from (i), we get,  

|f(Ƶ) – f(Ƶ0)| ≤ |Sn0(Ƶ) – f(Ƶ) | + |Sn0(Ƶ) – Sn0(Ƶ0) + |Sn0(Ƶ0) – f(Ƶ0) | <
Ɛ

 3
  + 

Ɛ

 3
|Sn0(Ƶ) – Sn0(Ƶ0) | - - - - 

(2) 

Since Sn0(Ƶ) is continuous  at Ƶ0, Ǝ a δ >0 such that,  

|Sn0(Ƶ) – Sno(Ƶ0) | <
Ɛ

 3
  whenever | Ƶ- Ƶ0 |<δ.  

Hence, from (2), we get,  

|f(Ƶ) – f(Ƶ0) | <
 2Ɛ

 3
+  

Ɛ

 3
  =Ɛ whenever |Ƶ – Ƶ0| <δ . 

So, f is continuous at Ƶ0 and since Ƶ0 is arbitrary, it follows that f is continuous on E. This proves 

the theorem. 
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Theorem:- Given a rectifiable curve C, suppose that the series f(Ƶ) = , ∑ 𝑓𝑛(Ƶ)∝
𝑛=1  is uniformly 

convergent on C and every term 𝑓𝑛(Ƶ) is continuous on C. Then the series can be integrable 

term by term on C, i.e,  

∳
𝑐
 𝑓(Ƶ)𝑑Ƶ = ∑ ∳

𝑐
 𝑓(Ƶ)𝑑Ƶ

∞

𝑛=1

 

 

 

Proof : Since, each term of  ∑ 𝑓𝑛(Ƶ)∞
𝑛=1  is continuous  on C, f(Ƶ) is also continuous on C and so it 

is integral on C. Since f(Ƶ) = ∑ 𝑓𝑛(Ƶ)∞
𝑛=1  converges uniformly on C, for given Ɛ(>0) Ǝ converges 

uniformly on C, for given Ɛ(>0) Ǝa positive integer N=N(Ɛ) such that.  

|Sn(Ƶ) – f(Ƶ) | <
Ɛ

 l
    wherever n>N for all ƵϵC whereℓ is the length of C.  

Now by ML formula.  

|∑ ∫ 𝑓𝑗(Ƶ)𝑑Ƶ
𝑐

𝑛
𝑗=1  −  ∫ 𝑓(Ƶ)𝑑Ƶ

𝑐
|  

= |∑ ∫ 𝑓𝑗(Ƶ)𝑑(Ƶ) −
𝑐

𝑛
𝑗=1 ∫ 𝑓(Ƶ)𝑑Ƶ

𝑐
| 

=| ∫ 𝑆𝑛(Ƶ)𝑑Ƶ
𝑐

−  ∫ 𝑓(Ƶ)𝑑Ƶ
𝑐

| 

=|∫ {𝑆𝑛(Ƶ)
𝑐

−  𝑓(Ƶ)} 𝑑Ƶ| 

<
Ɛ

ℓ
. ℓ = Ɛ whenever n>N. 

Therefore lim
𝑛−∝

∑ ∫ 𝑓𝑗(Ƶ)𝑑Ƶ
𝑐

𝑛
𝑗=1 = ∫ 𝑓(Ƶ)𝑑Ƶ

𝑐
 

i.e. , ∑ ∫ 𝑓𝑛(Ƶ)𝑑Ƶ
𝑐

∝
𝑛=1 =  ∫ 𝑓(Ƶ)𝑑Ƶ

𝑐
 

Theorem:- A series f(Ƶ) = ∑ ∫ 𝑓𝑛(Ƶ),
𝑐

∞
𝑛=1  which is convergent on a domain G, is uniformly 

convergent on every compact subset of G if and only if every point Ƶ0ϵG has a nbd N(Ƶ0) ⊂G in 

which the series is uniformly convergent.  

The condition is necessary. We suppose that the given series converges uniformly on every 

compact subset of G.  

Let, Ƶ0 ϵ G be an arbitrary point. Further suppose that, �̅�(Ƶ0) = {Ƶ : |Ƶ- Ƶ0| < Ɛ} 
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and �̅�(Ƶ0) = {Ƶ : |Ƶ –Ƶ0| ≤Ɛ},  

where Ɛ(>0) is so small that �̅�(Ƶ0) ⊂ G.  

Then the series converges uniformly on �̅�(Ƶ0), because �̅�(Ƶ0) is a compact subset of G. Since, 

N(Ƶ0),⊂ �̅�(Ƶ0), it follows that the given series converges uniformly on N(Ƶ0). 

The condition is sufficient. We suppose that every point Ƶ of G has an open neighborhood N(Ƶ) 

on which the given series converges uniformly. Let A be a compact subset of G. Then {N(Ƶ) : 

ƵϵA} is an open cover of A. Since A is compact, there exists Ƶ1, Ƶ2, - -  -, ƵpϵA such that A⊂

⋃ �̅�(Ƶј).𝑃
𝐽=1  

Since the given series converges uniformly on   each N(Ƶj) (j=1,2, - - -, P), it converges uniformly 

on 𝑈𝑗=1
𝑝

𝑓(Ƶј)and so, converges uniformly on A, because A⊂ ⋃ N(Ƶј).𝑃
𝑛=1  Since A is any compact 

subset of G, it follows that the given series converges uniformly on every compact subset of G.  

This proves the theorem.  

 

Weierstrass Theorem on Uniformly Convergent series of Analytic function: -  

Theorem: - If the series f(Ƶ) = ∑ 𝑓𝑛(Ƶ)∞
𝑛=1  is uniformly convergent on every compact subset of a 

domain G and if every term 𝑓𝑛(Ƶ) is analytic on G, then the sum 𝑓(Ƶ) of the series is also analytic 

on G. Moreover, the series can be differentiated as𝑓𝑘(Ƶ) = ∑ 𝑓𝑛
(k)(Ƶ)∝

𝑛=1   (k=0,1,2, - -  -)  for all 

ƵϵG. 

Also, each differentiated series is uniformly convergent on every compact subset of G.  

Proof : - Let, Ƶ0 be an arbitrary point of G.  

We choose p>0 such that G contains the circle ⋎p: |Ƶ – Ƶ0| = p and its interior. Since 

by the hypothesis the series f(Ƶ) = ∑ 𝑓𝑛(Ƶ)∝
𝑛=1 , converges uniformly on ⋎p, each of the series.  

∟𝑘

2𝜋𝑖
∑

𝑓𝑛(Ƶ)

(Ƶ−∝)k+1
∝
𝑛=1    = 

∟𝑘

2𝜋𝑖

𝑓(Ƶ)

(Ƶ−∝)k+1 - - - - - - - (1)(k=0,1,2, - - - - )  

converges uniformly on ⋎p, where ∝ is an interior point of  ⋎p. 𝐹𝑜𝑟 

|
∟𝑘

2𝜋𝑖

1

(Ƶ−∝)k+1 | ≤ 
∟𝑘

2𝜋p0
k+1  for every Ƶϵ⋎p.  

where p0 is the minimum distance of  ∝ from ⋎p. Since, each 𝑓𝑛(Ƶ) is analytic and so, it is 

continuous in G and f(Ƶ) = ∑ 𝑓𝑛(Ƶ)∝
𝑛=1  converges uniformly on ⋎p we see that 𝑓(Ƶ)is continuous 

on ⋎p. Therefore, we can integrate (1) term-by-term to obtained,  
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∑
∟𝑘

2𝜋𝑖

∝
𝑛=1 ∮

𝑓𝑛(Ƶ)

(Ƶ−∝)k+1⋎p
=  

∟𝑘

2𝜋𝑖
∮

𝑓𝑛(Ƶ)

(Ƶ−∝)k+1⋎p
𝑑Ƶ .  - - - - -(2) 

for  k= 0,1,2, - - -   

For, k= 0, we get from (2)  

∑
1

2𝜋𝑖

∞

𝑛=1

∮
𝑓𝑛(Ƶ)

(Ƶ−∝)⋎p

𝑑Ƶ =  
1

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ−∝)⋎p

𝑑Ƶ 

i.e, 𝑓(∝)  =  
𝑙

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ−∝)⋎𝑝
𝑑Ƶ.   −  −  −  −  (3) 

Since f is continuous on ⋎p, it is bounded there. So, proceeding as the proof of Cauchy’s integral 

formula for the first derivative, we can deduce from (3), that , 

f’(Ƶ0) = 
𝑙

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ−Ƶo)2⋎p
𝑑Ƶ. 

Since, Ƶ0 is an arbitrary point of G, it follows that f is analytic on G.  

Again, from (2), we get for k=1,2, - - - and for ∝ =Ƶ0,nsing Cauchy’s integral formula, 

 for general order derivation, that,∑ f 
𝑘
𝑛

(Ƶo) ∞
𝑛=1 = f 

𝑘
(Ƶo). 

 

Let N(Ƶ0) = { Ƶ : |Ƶ – Ƶ0 |≤ 
𝑝

2
 } be a nbd of  

Ƶ0ϵ G. Since f(Ƶ) = ∑ 𝑓𝑛(Ƶ) ∞
𝑛=1  converges uniformly on ⋎p, for given Ɛ (>0) there 

 exists some (+positive) integer N(Ɛ) depending only on Ɛ such that 

|Sn(Ƶ) – f(Ƶ)| < Ɛ for n >N (Ɛ) and for all Ƶϵ⋎p 

Now, for all Ƶϵ N(Ƶ0) and n>N(Ɛ), we get by the ML formula ,  

|∑ f 
𝐾
𝑛

(Ƶ) − 𝑛
𝑗=1  f 

𝐾 (Ƶ)| = | ∑
∟𝑘

2𝜋𝑖
∮

𝑓𝑛(𝜉)

(𝜉−Ƶ)k+1 d𝜉 −  
∟𝑘

2𝜋𝑖
∮

𝑓(𝜉)

(𝜉−Ƶ)k+1 d𝜉|
⋎p⋎p

𝑛
𝑗=1  

=|
∟𝑘

2𝜋𝑖
∮

𝑆𝑛(𝜉)−𝑓(𝜉)

(𝜉−Ƶ)k+1 d𝜉
⋎p

 

≤ 
∟𝑘

2𝜋
 .

𝜉

(
𝑝

2
)k+1

 

Because, | 𝜉-Ƶ| ≥
𝑝

2
 for 𝜉ϵ⋎p. 
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This shows that the series  f 
𝑘 (Ƶ) = ∑ f 

𝑘
𝑛

(Ƶ)∝
𝑛=1  converges uniformly on N(Ƶ0). Since Ƶ0 is on 

arbitrary point of G, we see that every point of G has a nbd in which the differentiated  series 

converges uniformly. Therefore,  

f 
𝑘 (Ƶ) =  ∑ f 

𝑘
𝑛

(Ƶ)

∝

𝑛=1

 

converges uniformly on every compact subset of G.  

This proves the theorem.  

Definition:- A series of the form ∑ 𝑎𝑛(Ƶ − Ƶ0)n∝
𝑛=0  is called a power series where Ƶ0, a0, a1, a2, -- - 

are given complex numbers.  

Cauchy – Hadamard Theorem:- 

For a power series  ∑ 𝑎𝑛(Ƶ − Ƶ0)n∝
𝑛=0 , let, R= 

1

⋀
, where ⋀ = lim sup

𝑛→∝
√|𝑎𝑛|𝑛

 , and let ⋎ be the circle 

given by ⋎∶ |Ƶ − Ƶ0| = 𝑅, with interior I(⋎) and exterior E(⋎). Then, there are there 

Possibilities: 

(1) If R=0, then  ∑ 𝑎𝑛(Ƶ − Ƶ0)n∝
𝑛=0  converges only for Ƶ=Ƶ0 

(2) If, 0<R<∝, then  ∑ 𝑎𝑛(Ƶ − Ƶ0)n∝
𝑛=0  converges absolutely for ƵϵI (⋎) and does not converge 

for any Ƶϵ E(⋎) 

(3) If R=∞, then ∑ 𝑎𝑛(Ƶ − Ƶ0)n∝
𝑛=0  converges absolutely for all finite Ƶ. 

 

Proof:  
We examine each of the three possibilities one-by-one. We also note that the given power series 

converges absolutely for Ƶ=Ƶ0 

 

 
Case- I : Let R=0.Then ⋀ = ∝ and so 

 
𝑙

|Ƶ−Ƶ0|
<⋀ for any Ƶ≠Ƶ0 

𝐻𝑒𝑛𝑐𝑒 
𝑙

|Ƶ−Ƶ0|
< lim sup

𝑛→∝
√|𝑎𝑛|𝑛

 and so, 

 
𝑙

|Ƶ−Ƶ0|
< √𝑎𝑛𝑘

𝑛𝑘  | for k=1,2, - - -, where  {𝑎𝑛𝑘
} is a subsequence of {𝑎𝑛} 

𝑁𝑜𝑤, 𝑟𝑎𝑖𝑠𝑖𝑛𝑔 𝑝𝑜𝑤𝑒𝑟 𝑡𝑜 𝑛𝑘  and then, by cross multiplication, we get,  

|𝑎𝑛𝑘
(Ƶ −  Ƶ0)𝑎𝑛| > 1 for k=1,2, - - - 
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 This implies{ 𝑎𝑛(Ƶ − Ƶ)2} does not converge to zero for any Ƶ≠Ƶ0.  

Therefore the given power series does not converge for any  Ƶ≠Ƶ0, when R=0.  

 

Case 2 :-Let, 0<R<∞. So, 0 <⋀ <∞.Let, Ƶϵ I (⋎) and Ƶ≠Ƶ0, Then |Ƶ –Ƶ0| <R = 
𝑙

⋀
 and so, we can put, 

 |Ƶ –Ƶ0| = 
θ2

⋀
 where 0<θ<1.  

We note that  

⋀ <
⋀

θ
 =  

θ

|Ƶ− Ƶ0|
 

 

i.e,  √|𝑎𝑛|𝑛
<

θ

|Ƶ− Ƶ0|
 for all large values of n  

 

i.e, |𝑎𝑛(Ƶ − Ƶ0)2| <θn for all large values of n Since,  ∑ θn∞
𝑛=0  is a convergent geometric series, by 

comparison test, we see that the given power series converges absolutely for ƵϵI (⋎), because the 

series obviously converges absolutely for Ƶ≠Ƶ0. 

One the other hand, if Ƶϵ E (⋎), then  

|Ƶ – Ƶ0| > R = 
𝑙

⋀
 

i.e, ,
𝑙

|Ƶ−Ƶ0|
<⋀ 

 

Therefore, there exists a subsequence { √|𝑎𝑛𝑘
|

𝑛𝑘  } of { √|𝑎𝑛|𝑛
 } for which 

𝑙

|Ƶ−Ƶ0|
< √|𝑎𝑛𝑘

|
𝑛𝑘  for k=1,2, - 

- - 

 

Now, raising both  sides to the power nk and then by cross multiplication, we get,  

||𝑎𝑛𝑘
(Ƶ − Ƶ0)𝑛𝑘| > 1 for k=1,2,3, - -  

 

This shows that the general term of the given power series does not converge to zero. Therefore, the 

given power series does not converge for any Ƶϵ E (⋎) .  

 

Case – 3 : Let, R= ∞. Then ⋀ = 0 and so for any Ƶ≠Ƶ0 and any θ, 0< 0< 1, we have   

⋀ <
θ

|Ƶ− Ƶ0|
 So, for all large values of n.  

we get √|𝑎𝑛|𝑛
<

θ

|Ƶ− Ƶ0|
 

 

Now raising both sides to the power n and then by cross multiplication, we get,  
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|𝑎𝑛(Ƶ − Ƶ0)n|<θn  for all large values of n. Since the geometric series  ∑ θn∞
𝑛=0  is convergent, by the 

comparison test, the given power series, converges absolutely for any finite Ƶ (because the given 

power series automatically converges absolutely for Ƶ=Ƶ0). 

This proves the theorem.  

Note: The circle ⋎: |Ƶ −  Ƶ0| +R is called the circle of convergence and R is called the radius of 

convergence of the power series ∑ 𝑎𝑛 (Ƶ − Ƶ0)n∝
𝑛=0  

Theorem : let, ⋎: |Ƶ −  Ƶ0| +R be be the circle of convergence of the power series   ∑ 𝑎𝑛 (Ƶ −∝
𝑛=0

Ƶ0)n, then the series is uniformly convergent on every compact  subset of  I (⋎) 

Proof: First, we verify that the given power series 

 converges uniformly in the closed circular  

disc |Ƶ −  Ƶ0|≤ɤ, where 0<ɤ<R. We take a number p such that ɤ <p<R 

And ξ be a number such that p=|ξ – Ƶ0| 

Then clearly ξϵ I (⋎) and so by Cauchy Hadamard theorem the given power series Converges 

absolutely for Ƶ =ξ 

i,e. the series  

∑ |𝑎𝑛  (Ƶ − Ƶ0)n∞
𝑛=0 | =  ∑ |𝑎𝑛  |pn∞

𝑛=0  is convergent.  

Since, for |Ƶ −  Ƶ0| ≤ ɤ 𝑤𝑒 ℎ𝑎𝑣𝑒  

|𝑎𝑛  (Ƶ − Ƶ0)n| ≤ |𝑎𝑛 |ξ − Ƶ0|n= |𝑎𝑛 |pn 

By Weierstrass M- test we see that, the given power series converges uniformly in |Ƶ – Ƶ0| ≤ ɤ. 

 

Since, every point of I(⋎) has a sufficiently small neighborhood that is contained in  |Ƶ – Ƶ0| ≤ ɤ for ɤ 

sufficiently closed to R, from the above discussion we see that every point of  I(⋎) has a 

neighborhood in which the given power series converges uniformly.  

  Therefore the given power series converges uniformly on every compact subset of I(⋎). 

This proves the theorem.  

Note :- The power series ∑ |𝑎𝑛  (Ƶ − Ƶ0)n∞
𝑛=0  need not converge uniformly on I(⋎) itself. For the 

geometric series ∑ Ƶn∞
𝑛=0  does not converge uniformly in |Ƶ| <1, having 1 as its radius of 

convergence.  
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But by the above theorem, the series converges uniformly on every compact subset of  |Ƶ| <1. 

Taylor’s Theorem : 

Theorem:- Let f be analytic in the interior of ∝ circle C with centre ∝ and radius ɤ. Then at each 

point Ƶ interior to C,  

F(Ƶ) = ∑ 𝑎𝑛 (Ƶ−∝)n∝
𝑛=0 , where 𝑎𝑛 = 

f(n)(∝)

∟𝑛
 

 

Let, Ƶ0 be an arbitrary, but  

fixed point with in C and let, |Ƶ0 – ∝ | = 𝑅 | < ɤ We now choose a positive number p such that R <p< 

ɤ let C1 denote the circle |Ƶ – ∝ | = 𝑝 

 Then C1 lies entirely within C and Ƶ0 is an interior point of C1. Clearly f is analytic within and on C1. 

Hence by Cauchy’s integral formula,  

We get,  

f(Ƶ0) = 
1

2𝜋𝑖
∮

𝑓(Ƶ)

Ƶ−∝c1
𝑑Ƶ 

= 
1

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ−∝)(1−
Ƶ0−∝

Ƶ− ∝
)c1

𝑑Ƶ 

=
1

2𝜋𝑖
∮

𝑓(Ƶ)

Ƶ−∝c1

1−tn+ tn

1−𝑡
 dƵ, where t= 

Ƶ0−∝

Ƶ− ∝
 

= 
1

2𝜋𝑖
∮

𝑓(Ƶ)

Ƶ−∝c1
 . (1 + 𝑡 + tn +  −  −  −  +  tn−1 tn

1−𝑡
) 𝑑Ƶ 

= ∑
1

2𝜋𝑖

∝
𝑛=0 ∮

𝑓(Ƶ)

(Ƶ−∝)c1
tn. dƵ + 

1

2𝜋𝑖
∮

𝑓(Ƶ)

Ƶ−∝c1
 .

tn

1−𝑡
. 𝑑Ƶ 

= ∑
1

∟𝑘

𝑛−1
𝑘=0  { 

1

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ−∝)k+1c1
𝑑Ƶ} (Ƶ−∝)k + 

1

2𝜋𝑖
∮

𝑓(Ƶ)(Ƶ0−∝)n

(Ƶ−∝)n(Ƶ−Ƶ0)c1
𝑑Ƶ 

= ∑ 𝑎𝑘  (Ƶ−∝)k𝑛−1
𝑘=0 +  Rn  ----- (1) 

 

where, 𝑎𝑘 = 
fk(∝)

∟𝑘
 = 

1

∟𝑘
 .

∟𝑘

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ−∝)k+1c1
𝑑Ƶ 

And Rn = 
1

2𝜋𝑖
∮

𝑓(Ƶ)(Ƶ0−∝)n

(Ƶ−∝)n(Ƶ−Ƶ0)c1
𝑑Ƶ 
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Since f is analytic within and on C1, it is bounded on C1. So, there exists a positive number M such 

that If (Ƶ) | ≤ M ∀ Ƶϵ C1.  

Also, for all Ƶϵ C1 we have  

|
Ƶ0−∝

Ƶ−∝
 | = 

𝑅

𝑝
 | 

And |Ƶ –Ƶ0 | = | (Ƶ-∝)- (Ƶ0-∝) | ≥ |Ƶ-∝| - |Ƶ0-∝ | = p-R 

Therefore for all ƵϵC1, we obtained  

| 
𝑓(Ƶ)(Ƶ0−∝)n

(Ƶ−∝)n(Ƶ−Ƶ0)
 | ≤

𝑀

𝑝−𝑅
.(

𝑅

𝑝
)

𝑛

 

Now by ML formula we get  

 

|𝑅𝑛 | = | 
1

2𝜋𝑖
∮

𝑓(Ƶ)(Ƶ0−∝)n

(Ƶ−∝)n(Ƶ−Ƶ0)c1
𝑑Ƶ | ≤ 

𝑙

2𝜋

𝑀

𝑝−𝑅
(

𝑅

𝑝
)

𝑛

2𝜋𝑝 

[∵
𝑅

𝑝
< 1 ] =

𝑀𝑃

(𝑃−𝑅)
(

𝑅

𝑃
)

𝑛

→ 0 as n→0 

 

So, lim
𝑛→∞

𝑅𝑛 = 0.  

Considering limit as n→∞, we get from (1) 

f(Ƶ0) =  ∑ 𝑎𝑛 (Ƶ−∝)n∝
𝑛=0 where 𝑎𝑛= 

fn(∝)

∟𝑛
 

Since, Ƶ0 is an arbitrary point with in C1 for every Ƶ with in C we get,  

f(Ƶ) =  ∑ 𝑎𝑛 (Ƶ−∝)n∝
𝑛=0 where 𝑎𝑛 =

fk(∝)

∟𝑛
 . 

 

This proves the theorem.  

Note -1: - The power series representing f is called the Taylor series of f about the point  ∝. The 

Taylor’s theorem shows that if f is analytic in a nbd of ∝, then f can be represented in that nbd by a 

power series in (Ƶ-∝) with a positive redius of converegence.  
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Note-2 :- Let, f be analytic at ∝.  Then there exists a circle C with centre at ∝ such that f is analytic 

with in C. Then for each point Ƶ within C, we have f(Ƶ) = ∑ 𝑎𝑛(Ƶ−∝)n∝
𝑛=0 . The radius of the greatest 

circle with the power series ∑ 𝑎𝑛(Ƶ−∝)n∝
𝑛=0  converges to f(Ƶ) is the distance of the point ∝

𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑖𝑔𝑢𝑙𝑎𝑟 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑓 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑡𝑜 ∝. 

Note – 3:- If f is an entire function, then it has a Taylor expansion about the origin of the form f(Ƶ) = 

∑ 𝑎𝑛Ƶn∝
𝑛=0 , which is valid for all Ƶ. This series is called an entire series.  

Laurent’s Theorem :-  

Theorem :- Let, f be an analytic function in 𝑎𝑛 annular region D: ɤ2< |Ƶ - ∝ |<ɤ1. Then at  

each point ƵϵD, f can represented by a series of the form f(Ƶ) = ∑ 𝑎𝑛(Ƶ−∝)n∝
𝑛=0 +  ∑ 𝑏𝑛(Ƶ−∝)n,∝

𝑛=1  

where the coefficients 𝑎𝑛 and 𝑏𝑛 depend only on the function f and the point - ⋉. 

Proof :-  Let, Ƶ0 be an arbitrary point of D. and let |Ƶ0 - ∝ | = 𝑝 We new choose  

Two positive numbers p1 and p2 

Such that r2<p2<p<p1<r1.  

Let C1: |Ƶ -∝ | =  p1 and C2: |Ƶ - ∝ |  =p2.  Then f is analytic in the closed annular region 

bounded by C1 and C2.Also the point Ƶ0 lies inside the closed annular region p2 ≤ |Ƶ - ∝| ≤ pi. 

Hence, by Cauchy’s integral formula for annular region we get,  

f(Ƶ0) = 
1

2𝜋𝑖
∮

𝑓(Ƶ)

Ƶ−Ƶ0
c1

𝑑Ƶ - 
1

2𝜋𝑖
∮

𝑓(Ƶ)

Ƶ−Ƶ0
c2

𝑑Ƶ  -  - -  (1) 

Now 

1

2𝜋𝑖
∮

𝑓(Ƶ)

Ƶ−∝c1
𝑑Ƶ =  

1

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ−∝) (Ƶ0−∝)c1
𝑑Ƶ 

= 
1

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ−∝) (1−
Ƶ0−∝

Ƶ− ∝
)c1
𝑑Ƶ 

 

= 
1

2𝜋𝑖
∮

𝑓(Ƶ)( 1−tn+ tn)

(Ƶ−∝) (1−𝑡)c1
 dƵ, putting t= 

Ƶ0−∝

Ƶ− ∝
 

=
1

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ−∝)c1
 . (1 + t2 +  −  −  −  +  tn−1)𝑑Ƶ + 

1

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ−∝)𝑐1
 .

tn

1−𝑡
. 𝑑Ƶ 

= ∑
1

2𝜋𝑖
∮

𝑓(Ƶ)

Ƶ−∝c1
. tk𝑛−1

𝑘=0 𝑑Ƶ + 
1

2𝜋𝑖
∮

𝑓(Ƶ)

Ƶ−∝c1
.

tn

1−𝑡
. 𝑑Ƶ 

=∑ (
1

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ−∝)k+1c1
. (Ƶ0−∝)k𝑛−1

𝑘=0  + 
1

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ−∝)n(Ƶ−Ƶ0)c1
. 𝑑Ƶ 
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= ∑ 𝑎𝑘  (Ƶ0−∝)k𝑛−1
𝑘=0 +  𝑅𝑛  ----- (2) 

 

Where,  𝑎𝑘 = 
1

2𝜋𝑖
 =∮

𝑓(Ƶ)

(Ƶ−∝)k+1c1
𝑑Ƶ 

and  𝑅𝑛 = 
1

2𝜋𝑖
∮

𝑓(Ƶ).(Ƶ0−∝)n

(Ƶ−∝)n(Ƶ−Ƶ0)c1
𝑑Ƶ 

Since, f is analytic on C1, there exists a `+ve’ number M such that |f(Ƶ)| ≤ M ∀ Ƶϵ C1. 

Also∀ Ƶϵ C1 we get  

|Ƶ – Ƶ0| = |(Ƶ-∝)+(∝ −Ƶ0)| 

≥ |Ƶ-∝|- |Ƶ0−∝| 

= 𝑝1 – p. 

Hence, on C1 we have  

|f(Ƶ) 
(Ƶ0−∝)n

(Ƶ−∝)n(Ƶ−Ƶ0)
 | ≤

𝑀

𝑝1−𝑝
.(

𝑝

𝑝1
)

𝑛

 

 Therefore by ML formula, we get  

|𝑅𝑛 | ≤ 
1

2𝜋

𝑀

𝑝1−𝑃
(

𝑝

𝑝1
)

𝑛

𝑥2𝜋𝑝1→ 0 

as n→∝  [∴p<𝑝1] 

∴ lim
𝑛→∝

𝑅𝑛 = 0 

Therefore considering limit as n→∞, we get from (2)  

1

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ−Ƶ0)c1
𝑑Ƶ = ∑ 𝑎𝑛(Ƶ0−∝)n∝

𝑛=0 . 

Next  

- 
1

2𝜋𝑖
∮

𝑓(Ƶ)

Ƶ−Ƶ0c2
𝑑Ƶ =

1

2𝜋𝑖
∮

𝑓(Ƶ)

Ƶ0−Ƶc2
𝑑Ƶ 

=
1

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ0−∝)−(Ƶ−∝)c2
𝑑Ƶ 

=
1

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ0−∝)−(1−𝑠)c2
𝑑Ƶ where s= 

Ƶ−∝

(Ƶ0−∝)
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= 
1

2𝜋𝑖
∮

𝑓(Ƶ)

Ƶ0−∝c2
.

1−sn+sn

1−𝑠
𝑑Ƶ 

=
1

2𝜋𝑖
∮ (

𝑓(Ƶ)

Ƶ0−∝c2
∑ sk𝑛−1

𝑘=0 )𝑑Ƶ + 
1

2𝜋𝑖
∮

𝑓(Ƶ)

Ƶ0−∝
.

sn

1−𝑠
𝑑Ƶ 

=∑𝑛−1
𝑘=0 (

1

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ−∝)−k dƵ)
c2

(Ƶ−∝)−(k+1)+ 
1

2𝜋𝑖
∮

𝑓(Ƶ)(Ƶ−∝)n

(Ƶ−∝)n(Ƶ0−Ƶ)
dƵ

c2
 

=∑𝑛
𝑚=1 (

1

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ−∝)−m+1 dƵ)
c2

(Ƶ0−∝)−m+ 𝑅′𝑛 - - - (3), 

 where k+1 we put k+1 =m 

and 𝑅′𝑛 = 
𝑙

2𝜋𝑖
∮

𝑓(Ƶ)(Ƶ−∝)n

(Ƶ0−∝)n(Ƶ0−Ƶ)
dƵ

c2
 

Since f is analytic on C2, it is bounded there. So there exists a positive number N such that,  

|f(Ƶ) | ≤N ∀ Ƶϵ C2. 

Also, for, ƵϵC2 we have  

|Ƶ - ∝ | = 𝑝2 

Since |Ƶ - ∝ | = 𝑝 we get for all ƵϵC2 

|Ƶ0 – Ƶ| ≥ |Ƶ0 - ∝ |-|Ƶ - ∝ | = p - p2 

Therefore for all ƵϵC2 we have  

| 
𝑓(Ƶ)(Ƶ−∝)n

(Ƶ0−∝)n(Ƶ0−Ƶ)
 | ≤

𝑁

𝑝−𝑝2
.(

𝑝2

𝑝
)

𝑛

 

Hence by ML formula, we obtained  

|𝑅′𝑛| ≤
𝑙

2𝜋
 . 

𝑁

𝑝−𝑝2
. .(

𝑝2

𝑝
)

𝑛

. 2π𝑝2 

→0 as n→ ∝[∵ 𝑝2<p] 

i, e, lim
𝑛−∝

𝑅′𝑛 = 0 

Therefore, considering limit as n→ ∞, we get from (3) 

- 
𝑙

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ−Ƶ0)
dƵ

c2
 = ∑ 𝑏𝑛  (Ƶ0 − ∞)n∞

𝑛=1 , where 𝑏𝑛= 
1

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ0−∝)−n+1 dƵ
c2

 

Now from (1), we get  

f(Ƶ0) = ∑ 𝑎𝑛 (Ƶ0−∝)n∞
𝑛=0  + ∑ 𝑏𝑛 (Ƶ0−∝)−n∝

𝑛=1 . 
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Since, Ƶ0 is 𝑎𝑛 arbitrary point of D, we have  

f(Ƶ) = ∑ 𝑎𝑛 (Ƶ−∝)n∞
𝑛=0  + ∑ 𝑏𝑛  (Ƶ−∝)−n∝

𝑛=1  

 

 where, 𝑎𝑛 =  
𝑙

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ−∝)n+1 dƵ
c1

, 

𝑏𝑛 =  
1

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ−∝)−n+1 dƵ
c2

 

and C1: |Ƶ - ∝ |= p1, C2 : |Ƶ - ∝ |= p2, 

r2<p2< |Ƶ - ∝ |= p1<r1 . 

We note that, the functions 

𝑓(Ƶ)

(Ƶ−∝)n+1 and 
𝑓(Ƶ)

(Ƶ−∝)−n+1  are  

analytic in D. So, the values of 𝑎𝑛 and 𝑏𝑛 do not depend on the circles C1 and C2. Infact, if we 

consider a circle C lying in D with ∝ as its centre, then  

𝑎𝑛 =  
𝑙

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ−∝)n+1 dƵ
𝐶

, 

and  𝑏𝑛 =  
𝑙

2𝜋𝑖
∮

𝑓(Ƶ)

(Ƶ−∝)−n+1 dƵ
𝐶

 . 

So, 𝑏𝑛  = a-n for n=1,2, - - - 

and the above series can also be  written as  

f(Ƶ) = ∑ 𝑎𝑛 (Ƶ0−∝)n∞
𝑛=0  . 

This proves the theorem.  

Note :- The series f(Ƶ) = ∑ 𝑎𝑛  (Ƶ−∝)n∞
𝑛=0  + ∑ 𝑏𝑛 (Ƶ−∝)−n∝

𝑛=1  

is called the Laurent’s series for the function f(Ƶ). 

Example :- Expand f(Ƶ) = 
1

(Ƶ+1)(Ƶ+3)
 in a Laurent’s series. 

valid for (i) |Ƶ| <1, (ii) 1<|Ƶ| <3, (iii) |Ƶ| >3 (iv) 0<|Ƶ +1| <2 . 

Soln −  (i)  when |Ƶ| <1 we get 

 f(Ƶ) = 
1

(Ƶ+1)(Ƶ+3)
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= 
1

2
  (

1

Ƶ+1
−  

1

Ƶ+3
) 

= 
1

2
(1 + Ƶ)−1 - 

1

6
  (1+

Ƶ

3
  ) 

= 
1

2
(1 + Ƶ + Ƶ2 − … . ) - 

1

6
  (1-

Ƶ

3
 +

Ƶ2

9
  - - - -) 

=  
1

3
 -  

4

9
 Ƶ +  

13

27
Ƶ2 - - - -  -,  

which is the Laurent’s expansion of f in |Ƶ| <1. 

(ii) When 1<|Ƶ| < 3, we get  

f(Ƶ) =
1

(Ƶ+1)(Ƶ+3)
=

1

2
  (

1

Ƶ+1
−  

1

Ƶ+3
) 

=
1

2Ƶ
(1 +

1

Ƶ
)

−1

-  
1

6
(1 +

Ƶ

3
)

−1

 

=   
1

2Ƶ
 (1-  

1

Ƶ
+

1

Ƶ2 - - - ) - 
1

6
 (1-  

Ƶ

3
+

Ƶ2

9
 - - - ), 

 

which is Laurent’s expansion of f in 1<|Ƶ| < 3. 

(iii)  When  |Ƶ| > 3, we get , 

f(Ƶ) =
1

(Ƶ+1)(Ƶ+3)
=

1

2
  (

1

Ƶ+1
−  

1

Ƶ+3
) 

= 
1

2Ƶ
(1 +

1

Ƶ
)

−1

-  
1

2Ƶ
(1 +

3

Ƶ
)

−1

 

=
1

2Ƶ
 (1-  

1

Ƶ
+

1

Ƶ2 - - - ) - 
1

2Ƶ
 (1-  

3

Ƶ
+

9

Ƶ2 - - - ), 

which is Laurent’s expansion of f in the region  |Ƶ| > 3. 

 

(iv) When 0<|Ƶ +1| <2, we get,  

f(Ƶ) =
1

(Ƶ+1)(Ƶ+3)
=

1

2
  (

1

Ƶ+1
−  

1

Ƶ+3
) 

= 
1

2
  .

1

Ƶ+1
−  

1

2(Ƶ+1+2)
 

= 
1

2
  .

1

Ƶ+1
−  

1

4
(1 +

Ƶ+1

2
)

−1

 

=
1

2
  .

1

Ƶ+1
−  

1

4
(1 −

Ƶ+1

2
+

(Ƶ+1)2

4
−  −  − ) , 

which is Laurent’s expansion of f in the region 0<|Ƶ +1| <2. 

 

Example: Show that Cosh (Ƶ +
1

Ƶ
 ) = a0 + ∑ 𝑎𝑛 (Ƶn ∞

𝑛=1 +
1

Ƶn), where  

𝑎𝑛 =  
𝑙

2𝜋
∫ 𝑐𝑜𝑠𝑛𝜃

2𝜋

0
cosh (2 𝑐𝑜𝑠𝜃)𝑑𝜃 . 

128



Soln:→ The function f(Ƶ) = cosh (Ƶ +
1

Ƶ
 ) is analytic every where except at the origin. Theorefore we 

can expand f in a Laurent series around the arigin and  get.  

f(Ƶ) = cosh (Ƶ +
1

Ƶ
 ) = ∑ 𝑎𝑛 Ƶn ∝

𝑛=0 + ∑ 𝑏𝑛 .
1

Ƶn
∝
𝑛=1 , where  

𝑎𝑛 =  
1

2𝜋𝑖
∮

𝑓(Ƶ)

 Ƶn+1 dƵ
|Ƶ|=1

,  for n=0,1,2, ---- 

and 𝑏𝑛 = a-n for n= 1,2,3, - - - 

Now, 𝑎𝑛 =  
1

2𝜋𝑖
∫

𝐶𝑜𝑠ℎ(ei𝜃+e−i𝜃)

 e(n+1)i𝜃

2𝜋

0
i. ei𝜃 . 𝑑𝜃   [putting Ƶ = ei𝜃0≤𝜃≤ 2π ] 

=  
1

2𝜋
∫ cosh (2Cos

2𝜋

0
𝜃) (𝑐𝑜𝑠𝑛 𝜃 − 𝑖𝑠𝑖𝑛𝑛𝜃)𝑑𝜃 

= 
1

2𝜋
∫ cosh (2Cos

2𝜋

0
𝜃) 𝑐𝑜𝑠𝑛 𝜃. 𝑑𝜃 -  

𝑙

2𝜋
∫ cosh (2cos

2𝜋

0
𝜃) 𝑠𝑖𝑛 𝑛𝜃. 𝑑𝜃  - - - - (1)  

Putting  𝜃 =2π – 𝜙, we get,  

∫ cosh (2cos
2𝜋

0
𝜃) 𝑠𝑖𝑛 𝑛𝜃. 𝑑𝜃 = ∫ cosh (2cos

0

2𝜋
𝜙) 𝑠𝑖𝑛 𝑛𝜙. 𝑑𝜙 

    = - ∫ cosh (2cos
2𝜋

0
𝜃) 𝑠𝑖𝑛 𝑛𝜃. 𝑑𝜃 

and so,  ∫ cosh (2cos
2𝜋

0
𝜃) 𝑠𝑖𝑛 𝑛𝜃. 𝑑𝜃   = 0 

 

Therefore, from (1) we get,  

𝑎𝑛= 
1

2𝜋
∫ cosh (2cos

2𝜋

0
𝜃) 𝑐𝑜𝑠 𝑛 𝜃. 𝑑𝜃 

Also,  

𝑏𝑛= a-n 

= 
𝑙

2𝜋
∫ cosh (2cos

2𝜋

0
𝜃) 𝑐𝑜𝑠 (−𝑛) 𝜃. 𝑑𝜃 

= 
1

2𝜋
∫ cosh (2cos

2𝜋

0
𝜃) 𝑐𝑜𝑠 𝑛 𝜃. 𝑑𝜃 

Hence, cosh (Ƶ +
1

Ƶ
 ) = a0 + ∑ 𝑎𝑛 (Ƶn ∝

𝑛=1 +
1

Ƶn) in 0<|Ƶ| <∞ . 
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Block III
Functional Analysis I



Unit 12 

Course Structure 

1. Metric Spaces 

2. Continuity, Completeness, Compactness (in brief) 

3. Holder’s and Minkowski’s Inequalities 

 

1.1 Some basic concepts 

Definition 1.1.Let X be any non empty set and let d be any real valued function defined on X X 

such that for all x, y, z X, we have 

i) 0  d(x, y) < + and d(x, y) = 0 if and only if x = y 

ii) d(x, y) = d(y, x) (Symmetry)  

iii) d(x, y) d(x, z) + d(z, y)  (triangular inequality) 

 Then d is called a metric or distance function on X, and the set X together with the metric d, 

written (X, d), is called a metric space.  

Example 1.1.Given any set X, let us define    

  𝑑1(𝑥, 𝑦) = {
0 𝑖𝑓 𝑥 = 𝑦 where 𝑥, 𝑦 ∈ 𝑋
1 𝑖𝑓 𝑥 ≠ 𝑦

 

Then d1 is a metric on X and it is called the trivial metric or discrete metric. 

Example1.2.d(x, y) = |x – y|  x, y  = ℝ or ℂ  is called usual metric.  

Definition1.2.A metric d on a set X induces a unique metric d0 on a subset X0X defined by      

   d0(x, y) = d(x, y)  x, y X0. 

The metric space (X0, d0) is called the subspace of the metric space (X, d). 

Lemma1.1.In any metric space (x, d), d(x, y)  |d(x, z) – d(y, z)|. 

Proof. Since 

  d(x, z) d(x, y) + d(y, z), 

  sod(x, y) d(x, z) – d(y, z)  … (1) 

Also d(x, y) = d(y, x)  (by symmetry) 

 d(y, z) – d(x, z)   …(2) 

Combining (1) and (2), we get 
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 d(x, y)  |d(x, z) – d(y, z)|. 

Definition1.3. A sequence {𝑥𝑛} in a metric space (X, d) is said to be Cauchy or fundamental if 

𝑑(𝑥𝑚 , 𝑥𝑛) → 0as 𝑚, 𝑛 → ∞, i.e., for every > 0, there is a positive integer N such that 

𝑑(𝑥𝑚 , 𝑥𝑛) < 𝜖 for all m, n ≥ N. 

The metric space (X, d) is said to be complete or d-complete if and only if every Cauchy 

Sequence in X is convergent in X. 

Definition1.4.Let E be a subset of a metric space X. A family of open sets {G} in X is said to be 

an open cover of the set Eif 𝐸 ⊂ ⋃ 𝐺𝛼𝛼 . 

Definition1.5. The subset E is said to be compact if every open cover of E has a finite sub cover. 

i.e., whenever {G} is a family of open sets in X with 𝐸 ⊂ ⋃ 𝐺𝛼𝛼 , then there is a finite subfamily 

{𝐺𝛼1
, 𝐺𝛼2

, . . . , 𝐺𝛼𝑛
} ⊂ {𝐺𝛼} such that 𝐸 ⊂ 𝐺𝛼1

∪ 𝐺𝛼2
∪ . . .∪  𝐺𝛼𝑛

. 

Definition1.6. A subset E of a metric space X is said to be sequentially compact if every 

sequence in E has a convergent subsequence whose limit belongs to E. 

Definition1.7.A subset E of a metric space X is said to be countably compact if every infinite 

subset of E has a limit point in E. 

Definition1.8.Let (X, d) and (Y, ) be any two metric spaces. A function f : (X, d)  (Y,) is said 

to be continuous at a point c  X if for every > 0 there is a > 0 such that for all x X with d(c, 

x) <, we have (f(c), f(x)) <. 

 The function f is said to be continuous (or continuous on X) if it is continuous at every 

point of X. 

  

1.2 Cantor’s Intersection Theorem 

Let (X, d) be a complete metric space and let {Fn} be a decreasing sequence of non empty closed 

subsets of X such that d(Fn)  0. Then⋂ 𝐹𝑛
∞
𝑛=1  consists of exactly one point. 

Proof. For each n we select a point xn from the non empty set Fn.  

Since d(Fn)  0, given > 0, there is a positive integer N such that d(Fn) <.  

Now for all m, n   N, we have xm Fm FN and  xn Fn FN. So d(xm, xn) FN<. 

Thus {xn} is a Cauchy Sequence in X. 

Since X is complete, there is a point x  X such that xnx. 

We shall now show that ⋂ 𝐹𝑛
∞
𝑛=1 = {𝑥}. 
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For any positive integer n and for all k = 1, 2, …, we have xn+k Fn+k FN. So, {𝑥𝑛+𝑘}𝑘=1
∞ is a 

sequence in Fn, and we have lim
𝑘→∞

𝑥𝑛+𝑘 = lim
𝑝→∞

𝑥𝑝 = 𝑥. Since the set Fn is closed, it follows that x 

 Fn for n = 1, 2, … . Thus 𝑥 ∈ ⋂ 𝐹𝑛
∞
𝑛=1 . 

On the other hand if �́� ∈ ⋂ 𝐹𝑛
∞
𝑛=1 , then 0 d(x, �́�) d(FN) (since x, �́�Fn)  

         0 as n. 

So, d(x,�́�) = 0. Hence by definition of a metric, �́�= x. 

Hence ⋂ 𝐹𝑛
∞
𝑛=1 = {𝑥}.  

 

 

1.3. Some Standard Inequalities 

Let p > 1 and q > 1 be any two real numbers such that  
1

𝑝
+

1

𝑞
= 1, then p and q are called 

conjugate exponents. 

 

1.3.1 Holder’s Inequality: Let{𝑥1, 𝑥2, … , 𝑥𝑘} and {𝑦1, 𝑦2, … , 𝑦𝑘} be any two sets of k complex 

numbers. Then for any two conjugate exponents p and q, we have  

∑ |𝑥𝑗𝑦𝑗|𝑘
𝑗=1  ≤ (∑ |𝑥𝑗|𝑝𝑘

𝑗=1 )
1

𝑝(∑ |𝑦𝑗|𝑞𝑘
𝑗=1 )

1

𝑞. 

Note 1. Since 2, 2 are conjugate exponents, so in particular 

∑ |𝑥𝑗𝑦𝑗|𝑘
𝑗=1  ≤ (∑ |𝑥𝑗|2𝑘

𝑗=1 )
1

2(∑ |𝑦𝑗|2𝑘
𝑗=1 )

1

2 . This is Cauchy Schwarz’s Inequality.  

Note 2.The inequality extends to sequences of complex numbers{𝑥𝑛}𝑛=1
∞  and {𝑦𝑛}𝑛=1

∞  also. 

i.e., ∑ |𝑥𝑗𝑦𝑗|∞
𝑗=1  ≤ (∑ |𝑥𝑗|2∞

𝑗=1 )
1

2(∑ |𝑦𝑗|2∞
𝑗=1 )

1

2. 

 

1.3.2 Minkowski’s Inequality: For any two sets of complex numbers {𝑥1, 𝑥2, … , 𝑥𝑘} and 

{𝑦1, 𝑦2, … , 𝑦𝑘} and for any real number p ≥ 1, we have 

(∑ |𝑥𝑗 + 𝑦𝑗|
𝑝𝑘

𝑗=1 )
1

𝑝  ≤ (∑ |𝑥𝑗|𝑝𝑘
𝑗=1 )

1

𝑝 + (∑ |𝑦𝑗|𝑝𝑘
𝑗=1 )

1

𝑝. 

Note 3. As like Holder’s Inequality, Minkowski’s Inequality can also extends to two sequences  

{𝑥𝑛}𝑛=1
∞  and {𝑦𝑛}𝑛=1

∞ of complex numbers. i.e., 

(∑ |𝑥𝑗 + 𝑦𝑗|
𝑝∞

𝑗=1 )
𝑝

 ≤ (∑ |𝑥𝑗|𝑝∞
𝑗=1 )

1

𝑝 + (∑ |𝑦𝑗|𝑝∞
𝑗=1 )

1

𝑝. 
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Unit 13 

Course Structure 

1.  Baire’s Category Theorem 

2. Banach Fixed Point Theorem 

 

2.1 Definition. 

A subset E of a metric space X is said to be  

1) dense in a subset AX if 𝐴 ⊂ �̅�, i.e., if each point of A\E is a limit point of E. 

2) nowhere dense (or non dense) in X if E is not dense in any open ball in X. 

3) of the first category (or meager (very little)) in X if we can write 𝐸 = ⋃ 𝐸𝑛
∞
𝑛=1 , where each En 

is nowhere dense in X. 

4) of the second category in X if E is not of the first category in X. 

2.2 Lemma.  

Let B0 be an open ball in a metric space (X, d). Let E be a subset of X which is not dense in B0. 

Then for every > 0 there is an open ball B in X such that�̅� ⊂ 𝐵0, �̅� ∩ 𝐸 = ∅and 𝑑(�̅�) < 𝜖. 

Proof. Since E is not dense in B0, there is a point 𝑥0 ∈ 𝐵0\�̅�. So, x0 is not a limit point of E. 

Then there is an open ball B(x0; r1) such that B(x0; r1) E = ∅. 

Since x0B0 and B0 is open, there is an open ball B(x0; r2) B0.  

Let𝑟 = min {
𝜖

3
,

𝑟1

3
,

𝑟2

3
}. We take the open ball B = B(x0; r). Clearly, �̅� ⊂ 𝐵(𝑥0; 𝑟1) ∩ 𝐵(𝑥0; 𝑟2). 

Therefore,�̅� ⊂ 𝐵0, �̅� ∩ 𝐸 = ∅[since𝐵(𝑥0; 𝑟1) ∩ 𝐵(𝑥0; 𝑟2) ⊂ 𝐵(𝑥0; 𝑟2) ⊂ 𝐵0] 

andd(�̅�) ≤ d(B(𝑥0, r ]) ≤ 2r ≤
2

3
𝜀 < 𝜀. 

 

2.3 Baire’s Category Theorem. 

A non empty complete metric space is of second category in itself. 

Proof. Suppose for a contradiction that (X, d) is a complete metric space which is of first 

category in itself. Then X can be written as 𝑋 = ⋃ 𝐸𝑛
∞
𝑛=1 , where each En is nowhere dense in X.  

Now, since X ≠ ∅, so there is an open ball B0 in X.  

Since E1 is not dense in B0, so by the previous lemma, there is an open ball B1 such that 
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�̅�1 ⊂ 𝐵0, �̅�1⋂𝐸1 = ∅ and 𝑑(�̅�1) <
1

1
.  

Since E2 is not dense in B1, again there is an open ball B2 such that �̅�2 ⊂ 𝐵1, �̅�2⋂𝐸2 = ∅ and 

𝑑(�̅�2) <
1

2
. 

Proceeding thus, we obtain a sequence of open balls {𝐵𝑛}𝑛=1
∞  such that 

(i) �̅�1 ⊃ �̅�2 ⊃ �̅�3 ⊃ ⋯ 

(ii) �̅�𝑛 ∩ 𝐸𝑛 = ∅ for all n 

(iii) 𝑑(�̅�𝑛) <
1

𝑛
 for all n. 

Since the metric space (X, d) is complete, so the conditions (i) and (iii) imply by Cantor’s 

intersection theorem that there is a unique point 𝑥 ∈  ⋂ �̅�𝑛
∞
𝑛=1 .  

Now by (ii), we have then 𝑥 ∉ 𝐸𝑛  for all n. 

So, 𝑥 ∉ ⋃ 𝐸𝑛
∞
𝑛=1 = 𝑋. 

This is a contradiction. 

Thus X is not of first category. Hence X is of second category in itself. 

 

2.2 ℝ𝒌, ℂ𝒌 Spaces 

Let Φ= ℝ orΦ= ℂ. Then 𝛷𝑘denotes for each positive integer k the set of all ordered k-tuples 𝑥 =

 (𝑥1, 𝑥2, … , 𝑥𝑘) where 𝑥𝑗 ∈ 𝛷.  

For x, y ∈ 𝛷𝑘, we define 𝑑(𝑥, 𝑦) = (∑ |𝑥𝑗 − 𝑦𝑗|
2𝑘

𝑗=1 )

1

2
. 

Clearly, 0 ≤ 𝑑(𝑥, 𝑦) < +∞ and d(x, y) = 0 if and only if 𝑥𝑗 = 𝑦𝑗 for j = 1, 2, …, k.  

 i.e., if and only if x = y. 

It is also clear that d(x, y) = d(y, x). 

Finally, by Minkowski’s Inequality, for all x, y, z ∈ 𝛷𝑘, we have 

d(x, z) + d(z, y) = (∑ |𝑥𝑗 − 𝑧𝑗|
2𝑘

𝑗=1 )

1

2
+ (∑ |𝑧𝑗 − 𝑦𝑗|

2𝑘
𝑗=1 )

1

2
≥ (∑ |(𝑥𝑗 − 𝑧𝑗) + (𝑧𝑗 − 𝑦𝑗)|

2𝑘
𝑗=1 )

1

2
 

= 𝑑(𝑥, 𝑦) 

Thus d is a metric on 𝛷𝑘. This is called the Euclidean Metric on 𝛷𝑘.  

If Φ= ℝ, then (ℝ𝑘, 𝑑) is called the k – dimensional Euclidean Space or the Euclidean k – Space. 

If Φ = ℂ, then (ℂ𝑘 , 𝑑) is called the k – dimensional Complex Euclidean Space or the k – 

dimensional unitary space. 
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Sometimes another metric for 𝛷𝑘 becomes useful. This metric is given by    

  𝜌(𝑥, 𝑦) = 𝑚𝑎𝑥
1≤𝑗≤𝑘

|𝑥𝑗 − 𝑦𝑗|. 

This metric  is equivalent to the above metric d. 

 

2.3. The Function Space C[a, b] 

Let a, b ℝ, a < b. Then C[a, b] denotes the set of all real valued continuous functions on [a, b].  

For f, 𝑔 C[a, b], we define 

  d(f, 𝑔) = 𝑠𝑢𝑝
𝑎≤𝑡≤𝑏

|𝑓(𝑡) − 𝑔(𝑡)|. 

Since f – 𝑔is continuous in the closed interval [a, b], so it is bounded on [a, b]. 

Therefore, 0 ≤ 𝑑(𝑓, 𝑔) ≤ +∞. 

Also d(f, 𝑔) = 0 if and only if f(t) = 𝑔(t) for all t[a, b]. i.e., if and only if f =𝑔. 

It is also clear that d(𝑔, f) = d(f, 𝑔). 

Finally, for all f, 𝑔, h C[a, b], we have for all t [a, b] 

|𝑓(𝑡) −  𝑔(𝑡)| ≤ |𝑓(𝑡) − ℎ(𝑡)| + |ℎ(𝑡) − 𝑔(𝑡)| ≤ 𝑑(𝑓, ℎ) + 𝑑(ℎ, 𝑔). 

Thus |𝑓(𝑡) −  𝑔(𝑡)| ≤ 𝑑(𝑓, ℎ) + 𝑑(ℎ, 𝑔) for 𝑎 ≤ 𝑡 ≤ 𝑏. 

d(f, 𝑔) = 𝑠𝑢𝑝
𝑎≤𝑡≤𝑏

|𝑓(𝑡) −  𝑔(𝑡)| ≤ 𝑑(𝑓, ℎ) + 𝑑(ℎ, 𝑔). 

Hence d is a metric on C[a, b]. 

This metric is called sup metric or Tchebycheff’s Metric. 

 

2.4 Theorem 

The space C[a, b] with the sup metric is complete; and convergence in C[a, b] is equivalent to 

uniformly convergence of functions on [a, b]. 

 

Note. Because of this result, the sup metric on C[a, b] is also called the uniform metric. 

Proof. Let {𝑓𝑛} be a Cauchy Sequence in the metric space C[a, b]. Then given > 0 there is a 

positive integer N such that 

𝑑(𝑓𝑚 , 𝑓𝑛) = 𝑠𝑢𝑝
𝑎≤𝑡≤𝑏

|𝑓𝑚(𝑡) −  𝑓𝑛(𝑡)| ≤ 𝜀 for all m, n  N. 

Consequently, we have 

(1) |𝑓𝑚(𝑡) −  𝑓𝑛(𝑡)| ≤ 𝜀 for all m, n  N; 𝑎 ≤ 𝑡 ≤ 𝑏.  
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This is the Cauchy’s Criterion for uniform convergence of the sequence {𝑓𝑛}𝑛=1
∞  on [a, b]. 

Since each 𝑓𝑛 ∈ 𝐶[𝑎, 𝑏], so 𝑓𝑛 is continuous on [a, b].  

Therefore, the sequence {𝑓𝑛}𝑛=1
∞ converges uniformly to a continuous function, f, say, on [a , b]. 

Then fC[a, b].  

Thus 𝑙𝑖𝑚𝑛→∞ 𝑓𝑛(𝑡) = 𝑓(𝑡) for all t[a, b] where fC[a, b]. 

Now keeping n and t fixed in (1) and taking the limit𝑚 → ∞ we get 

(2) |𝑓(𝑡) −  𝑓𝑛(𝑡)| ≤ 𝜀 for n N and 𝑎 ≤ 𝑡 ≤ 𝑏.  

Consequently, we have 

(3) 𝑑(𝑓, 𝑓𝑛) = 𝑠𝑢𝑝
𝑎≤𝑡≤𝑏

|𝑓(𝑡) −  𝑓𝑛(𝑡)| ≤ 𝜀 for all nN and 𝑎 ≤ 𝑡 ≤ 𝑏.  

Hence 𝑑(𝑓, 𝑓𝑛) → 0. 

by definition of convergence in a metric space, we have 𝑓𝑛𝑓 in C[a, b], where fC[a, b]. 

Hence the space C[a, b] is complete. 

Let {𝑓𝑛} be any sequence in C[a, b] which converges to fC[a, b]. 

Then 𝑑(𝑓, 𝑓𝑛) → 0. 

Hence for every > 0 there is a positive integer N for which (3) is true. But (3) implies (2). Then 

(2) implies by definition that the sequence {𝑓𝑛} converges uniformly to the function f on [a, b].  

Conversely, let {𝑓𝑛} be any sequence of continuous functions on [a, b] that converges uniformly 

to the function f on [a, b]. Then f is continuous on [a, b]. Then {𝑓𝑛} is a sequence in C[a, b] and   

fC[a, b]. 

By uniform convergence, for every > 0 there is a positive integer N for which (2) is true. 

But (2) implies (3). Then by definition, (3) gives that 𝑑(𝑓, 𝑓𝑛) → 0. 

Hence {𝑓𝑛} converges to f in C[a, b].  

Therefore, we conclude that convergence in C[a, b] is equivalent to uniformly convergence of 

sequence of continuous functions on [a, b]. 

Note. It can be shown that the space C[a, b] is separable also. 

 

2.5 The Sequence Space 𝓵𝒑(1p ) 

Let Φ= ℝor Φ =ℂ. Let ℓ𝑝 denotes the set of all sequences 𝑥 = {𝑥(𝑘)}
𝑘=1

∞
 with all 𝑥(𝑘) ∈ 𝛷 such 

that  ∑ |𝑥(𝑘)|𝑝∞
𝑘=1 < +∞. 
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In ℓ𝑝 we define 𝑑(𝑥, 𝑦) = (∑ |𝑥(𝑘) − 𝑦(𝑘)|𝑝∞
𝑘=1 )

1

𝑝, x, yℓ𝑝. 

By Minkowski’s Inequality, we have 

(∑ |𝑥(𝑘) − 𝑦(𝑘)|
𝑝∞

𝑘=1 )
1

𝑝  ≤ (∑ |𝑥(𝑘)|
𝑝∞

𝑘=1 )
1

𝑝 + (∑ |𝑦(𝑘)|
𝑝∞

𝑘=1 )
1

𝑝 < +∞, since x, yℓ𝑝. 

0 ≤ 𝑑(𝑥, 𝑦) < +∞. 

Clearly, d(x, y) = 0 if and only if 𝑥(𝑘) = 𝑦(𝑘) for all k = 1, 2, ….  

i.e., if and only if x = y. 

It is also clear that d(y, x) = d(x, y). 

Finally, by Minkowski’s Inequality, again we have for all x, y, zℓ𝑝, 

d(x, z) + d(z, y) = (∑ |𝑥(𝑘) − 𝑧(𝑘)|
𝑝∞

𝑘=1 )
1

𝑝 + (∑ |𝑧(𝑘) − 𝑦(𝑘)|
𝑝∞

𝑘=1 )
1

𝑝  

  ≥ (∑ |𝑥(𝑘) − 𝑧(𝑘) + 𝑧(𝑘) − 𝑦(𝑘)|
𝑝∞

𝑘=1 )
1

𝑝  

  = (∑ |𝑥(𝑘) − 𝑦(𝑘)|
𝑝∞

𝑘=1 )
1

𝑝 = 𝑑(𝑥, 𝑦). 

Hence d is a metric on ℓ𝑝. 

By the metric space ℓ𝑝 we mean the space (ℓ𝑝, d). 

 

2.6 The Space 𝓵𝒑 is Complete 

Let {𝑥𝑛} be any Cauchy Sequence in ℓ𝑝, 𝑥𝑛 = {𝑥𝑛
(𝑘)

}
𝑘=1

∞

. Then for every > 0 there is a positive 

integer N such that 

(1) 𝑑(𝑥𝑚 , 𝑥𝑛) = (∑ |𝑥𝑚
(𝑘)

− 𝑥𝑛
(𝑘)|

𝑝
∞
𝑘=1 )

1

𝑝
< 𝜀 for all m, nN. 

Then for each k, we have 

(|𝑥𝑚
(𝑘)

− 𝑥𝑛
(𝑘)|

𝑝

)

1

𝑝
< 𝜀 for all m, nN. 

So the sequence {𝑥𝑛
(𝑘)

}
𝑛=1

∞

 is a Cauchy Sequence of numbers. Hence this sequence is convergent. 

We put 

(2) 𝑙𝑖𝑚
𝑛→∞

𝑥𝑛
(𝑘)

= 𝜉(𝑘), k = 1, 2, … 

Now by (1), for each positive integer j, we have 
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(∑ |𝑥𝑚
(𝑘)

− 𝑥𝑛
(𝑘)|

𝑝
𝑗
𝑘=1 )

1

𝑝
< 𝜀 for all m, nN. 

Letting 𝑚 → ∞ in this relation and using (2), we get  

(∑ |𝜉(𝑘) − 𝑥𝑛
(𝑘)|

𝑝
𝑗
𝑘=1 )

1

𝑝
< 𝜀 for all nN. 

Letting 𝑗 → ∞ in this relation, we have 

(3) (∑ |𝜉(𝑘) − 𝑥𝑛
(𝑘)

|
𝑝


𝑘=1 )

1

𝑝
< 𝜀 for all nN. 

In particular, for n = N, from (3) we get 

∑ |𝜉(𝑘) − 𝑥𝑁
(𝑘)|

𝑝

𝑘=1 ≤ 𝜀𝑝 . 

Hence by Minkowski’s Inequality, we have 

(∑ |𝜉(𝑘)|
𝑝

𝑘=1 )
1

𝑝 = (∑ |(𝜉(𝑘) − 𝑥𝑁
(𝑘)

) + 𝑥𝑁
(𝑘)|

𝑝

𝑘=1 )

1

𝑝
  

  ≤ (∑ |𝜉(𝑘) − 𝑥𝑁
(𝑘)|

𝑝

𝑘=1 )

1

𝑝
+ (∑ |𝑥𝑁

(𝑘)|
𝑝


𝑘=1 )

1

𝑝
<+∞. 

𝜉 = {𝜉(𝑘)}
𝑘=1

∞
∈ ℓ𝑝. 

Then (3) shows that 𝑑(𝜉, 𝑥𝑛) ≤ 𝜀 for all n N. 

Hence by definition 𝑥𝑛 → 𝜉 in ℓ𝑝. 

Hence the space ℓ𝑝 is complete. 

Note. It can be shown that the space ℓ𝑝 is separable. 

 

2.7 Definition 

A mapping T: X →X is called a self mapping and a point 𝑥0 ∈ 𝑋 is called a fixed point of T if  

𝑇𝑥0 = 𝑥0.  

A mapping T: (X, d) →(X, d) is said to satisfy Lipschitz Condition with Lipschitz Constant  if 

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛼 𝑑(𝑥, 𝑦) for all x, yX. 

If the constant be such that 0 < 1 and T satisfy Lipschitz Condition, then T is called a 

contraction on (X, d). 

 

2.8Theorem 
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Let (X, d) be a metric space and let T: X →X  be a contraction. Then T is uniformly continuous 

on X.  

Proof. Since T is a contraction on (X, d), there is a number , 0 < 1, such that  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛼 𝑑(𝑥, 𝑦) for all x, y  X. 

Now given > 0 let us take  𝛿 =
𝜀

1+𝛼
. 

Then for all x, yX with d(x, y) <, we have  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛼 𝑑(𝑥, 𝑦) < 𝛼 = 𝛼
𝜀

1+𝛼
< 𝜀. 

Hence T is uniformly continuous on X. 

 

2.9 Banach’s Fixed Point Theorem (or Contraction Principle) 

Let (X, d) be a complete metric space, where X  . Then every contraction mapping   

T: (X, d) →(X, d) has a unique fixed point. 

Proof. The proof is by iteration. 

Since T is a contraction on (X, d), there is a constant , 0 < 1, such that  

(1) 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛼 𝑑(𝑥, 𝑦) for all x, yX. 

Starting with an arbitrary point 𝑥0 ∈ 𝑋, by a recursion on n, we define the sequence {𝑥𝑛}𝑛=1
∞  in X 

as follows: 

(2) 𝑥1 = 𝑇𝑥0, 𝑥2 = 𝑇𝑥1 = 𝑇2𝑥0, 𝑥3 = 𝑇𝑥2 = 𝑇3𝑥0, … 

We show that {𝑥𝑛}𝑛=1
∞  is a Cauchy Sequence. 

By (1) and (2) for each n, we have 

𝑑(𝑥𝑛 , 𝑥𝑛+1) = 𝑑(𝑇𝑥𝑛−1, 𝑇𝑥𝑛)  

 ≤ 𝛼 𝑑(𝑥𝑛−1, 𝑥𝑛) = 𝛼 𝑑(𝑇𝑥𝑛−2, 𝑇𝑥𝑛−1)  

 ≤ 𝛼. 𝛼 𝑑(𝑥𝑛−2, 𝑥𝑛−1)   

 ⋮ 

 ≤ 𝛼𝑛−1 𝑑(𝑥1, 𝑥2) = 𝛼𝑛−1 𝑑(𝑇𝑥0, 𝑇𝑥1)  

 ≤ 𝛼𝑛 𝑑(𝑥0, 𝑥1) 

 for any two positive integers m, n (> m), we have 

𝑑(𝑥𝑚, 𝑥𝑛)  ≤  𝑑(𝑥𝑚 , 𝑥𝑚+1) +  𝑑(𝑥𝑚+1, 𝑥𝑛) 

 ≤  𝑑(𝑥𝑚 , 𝑥𝑚+1) +  𝑑(𝑥𝑚+1, 𝑥𝑚+2) + 𝑑(𝑥𝑚+2, 𝑥𝑛) 

 ⋮ 
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 ≤  𝑑(𝑥𝑚 , 𝑥𝑚+1) +  𝑑(𝑥𝑚+1, 𝑥𝑚+2) + ⋯ + 𝑑(𝑥𝑛−1, 𝑥𝑛) 

𝑑(𝑥𝑚 , 𝑥𝑛)  ≤ 𝛼𝑚  𝑑(𝑥0, 𝑥1) + 𝛼𝑚+1 𝑑(𝑥0, 𝑥1) + ⋯ + 𝛼𝑛−1 𝑑(𝑥0, 𝑥1)   

= (𝛼𝑚 + 𝛼𝑚+1 + ⋯ + 𝛼𝑛−1) 𝑑(𝑥0, 𝑥1) 

 <
𝛼𝑚

1−𝛼
 𝑑(𝑥0, 𝑥1). 

Since 0 < 1, so 𝛼𝑚 → 0. 

Hence it follows that 𝑑(𝑥𝑚 , 𝑥𝑛) → 0 as 𝑚, 𝑛 → ∞. 

So {𝑥𝑛}𝑛=1
∞  is a Cauchy Sequence in (X, d). 

Since (X, d) is complete, so there is a point xX such that 𝑥𝑛 → 𝑥 in (X, d). 

We now show that T has the unique fixed point x. 

We have  

𝑑(𝑥, 𝑇𝑥)  ≤  𝑑(𝑥, 𝑇𝑥𝑛) +  𝑑(𝑇𝑥𝑛 , 𝑇𝑥) 

 ≤  𝑑(𝑥, 𝑥𝑛+1) + 𝛼 𝑑(𝑥𝑛, 𝑥)   

 → 0 as 𝑛 → ∞. 

Hence d(x, Tx) = 0. 

Tx = x. 

Thus x is fixed point of T. 

Suppose �́� ∈ 𝑋 is another fixed point of T. 

T�́� =  𝑥.́  

So, 𝑑(𝑥, �́�) =  𝑑(𝑇𝑥, 𝑇�́�) ≤ 𝛼 𝑑(𝑥, �́�). 

Hence 0 ≤ (1 − 𝛼)𝑑(𝑥, �́�) ≤  0 ⟹ (1 − 𝛼)𝑑(𝑥, �́�) =  0. 

But  1 − 𝛼 ≠ 0. Therefore  𝑑(𝑥, �́�) =  0. Thus �́� = 𝑥. 

Hence T has the unique fixed point x. 
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Unit 14 

Course Structure 

1. Applications to solutions of certain  systems of linear algebraic equations 

2. Implicit Function theorem 

3. Kannan’s Fixed Point Theorem 

 

3.1 Theorem 

A system of n linear equations in n unknowns 

𝑥𝑖 = ∑ 𝑎𝑖𝑗𝑥𝑗 + 𝑏𝑖
𝑛
𝑗=1 i = 1,2, .., n 

where all 𝑎𝑖𝑗  , 𝑏𝑖 are given real numbers such that ∑ |𝑎𝑖𝑗|𝑛
𝑗=1 < 1, i = 1,2, .., n 

has a unique solution for (𝑥1, 𝑥2, … , 𝑥𝑛) . 

Proof. Clearly, the problem is to find a fixed point of the mapping 𝑇: ℝ𝑛 → ℝ𝑛 defined for 𝑥 =

(𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ𝑛 by T𝑥 =  𝑥,́ where �́� = (𝑥1́, 𝑥2́, … , 𝑥�́�) is given by  

𝑥𝑖́ = ∑ 𝑎𝑖𝑗𝑥𝑗 + 𝑏𝑖
𝑛
𝑗=1 i = 1,2, .., n. 

We know that ℝ𝑛 is a complete metric space with the metric  defined by  

 𝜌(𝑥, 𝑦) = 𝑚𝑎𝑥
1≤𝑖≤𝑛

|𝑥𝑗 − 𝑦𝑗|. 

Now for T𝑥 =  �́� and T𝑦 =  �́�, we have 

𝜌(𝑇𝑥, 𝑇𝑦) = 𝜌(�́�, �́�) = 𝑚𝑎𝑥
1≤𝑖≤𝑛

|�́�𝑖 − �́�𝑖|.   

 = 𝑚𝑎𝑥
1≤𝑖≤𝑛

| ∑ 𝑎𝑖𝑗𝑥𝑗 + 𝑏𝑖
𝑛
𝑗=1 − (∑ 𝑎𝑖𝑗𝑦𝑗 + 𝑏𝑖

𝑛
𝑗=1 ) | 

 = 𝑚𝑎𝑥
𝑖

| ∑ 𝑎𝑖𝑗(𝑥𝑗
𝑛
𝑗=1 − 𝑦𝑗) |   

 ≤ 𝑚𝑎𝑥
𝑖

∑ |𝑎𝑖𝑗||𝑛
𝑗=1 𝑥𝑗 − 𝑦𝑗|   

 ≤ (𝑚𝑎𝑥
𝑖

∑ |𝑎𝑖𝑗|𝑛
𝑗=1 )  𝜌(𝑥, 𝑦)   

 = α. 𝜌(𝑥, 𝑦), where α = 𝑚𝑎𝑥
𝑖

∑ |𝑎𝑖𝑗|𝑛
𝑗=1 < 1. 

Thus T is a contraction on the complete metric space ℝ𝑛. Hence by Banach’s Fixed Point 

Theorem, T has a unique fixed point 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) which is the required solution. 

 

3.2 Theorem 
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Let 𝑣: [𝑎, 𝑏] → ℝ and 𝑘: [𝑎, 𝑏] × [𝑎, 𝑏] → ℝ be two continuous functions and let  be a real 

number such that |𝜇| <
1

𝐾(𝑏−𝑎)
, 𝐾 > 0, where K is an upper bound of the functions |k|. Then the 

Fredholm Integral Equation of second kind with kernel k, 

𝑥(𝑡) =  𝜇 ∫ 𝑘(𝑡, 𝑠). 𝑥(𝑠) 𝑑𝑠
𝑏

𝑎

+ 𝑣(𝑡) 

Has a unique continuous solution x: [a, b] → ℝ. 

Proof. We know that the class of continuous functions C[a, b] is a complete metric space under 

the sup metric defined by  

𝑑(𝑥, 𝑦) =  𝑠𝑢𝑝
𝑎≤𝑡≤𝑏

|𝑥(𝑡) − 𝑦(𝑡)| , 𝑥, 𝑦 ∈ 𝐶[𝑎, 𝑏]. 

Clearly, then the problem is to find a fixed point of the mapping 𝑇: 𝐶[𝑎, 𝑏] → 𝐶[𝑎, 𝑏] defined by 

𝑇𝑥 = �̅�, where �̅�(𝑡) =  𝜇 ∫ 𝑘(𝑡, 𝑠). 𝑥(𝑠) 𝑑𝑠
𝑏

𝑎
+ 𝑣(𝑡); 𝑎 ≤ 𝑡 ≤ 𝑏. 

Since the functions v, k, x are continuous, so  𝑇𝑥 = �̅� ∈ 𝐶[𝑎, 𝑏]. 

Thus T is a well defined mapping. 

Now for all x, yC[a, b], we have 

d(Tx, Ty) = 𝑑(�̅�, �̅�) = 𝑠𝑢𝑝
𝑎≤𝑡≤𝑏

|�̅�(𝑡) − �̅�(𝑡)| 

 = 𝑠𝑢𝑝
𝑎≤𝑡≤𝑏

|𝜇 ∫ 𝑘(𝑡, 𝑠). (𝑥(𝑠) − 𝑦(𝑠))𝑑𝑠
𝑏

𝑎
| 

 ≤ |𝜇| 𝑠𝑢𝑝
𝑎≤𝑡≤𝑏

∫ |𝑘(𝑡, 𝑠)|. |𝑥(𝑠) − 𝑦(𝑠)|𝑑𝑠
𝑏

𝑎
 

 ≤ |𝜇| 𝑠𝑢𝑝
𝑎≤𝑡≤𝑏

∫ 𝐾. 𝑑(𝑥, 𝑦) 𝑑𝑠
𝑏

𝑎
 

 = |𝜇|. 𝐾. 𝑑(𝑥, 𝑦)(𝑏 − 𝑎) 

 = 𝛼. 𝑑(𝑥, 𝑦) 

where 𝛼 = |𝜇|. 𝐾(𝑏 − 𝑎) < 1. 

Therefore, T is a contraction on C[a, b]. 

Hence by Banach’s Fixed Point Theorem, T has a unique fixed point, which is the required 

solution. 

 

3.3 Theorem (Implicit Function Theorem)  
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Let 𝑓: [𝑎, 𝑏] × ℝ → ℝ be a continuous function such that 
𝜕𝑓

𝜕𝑦
 exists and satisfies the bounding 

condition 0 < 𝑚 ≤
𝜕𝑓

𝜕𝑦
(𝑥, 𝑦) ≤ 𝑀, for all (x, y) [𝑎, 𝑏] × ℝ, then there is a unique continuous 

function y = 𝜑x on [a, b] such that f(x, 𝜑(x)) = 0, for all x[𝑎, 𝑏].  

Proof. Clearly, the problem is to find a fixed point of the mapping 𝑇: 𝐶[𝑎, 𝑏] → 𝐶[𝑎, 𝑏] defined 

by 𝑇𝜑 = �̅�, where �̅�(𝑥) = 𝜑(𝑥) −
1

𝑀
𝑓(𝑥, 𝜑(𝑥)), 𝑎 ≤ 𝑥 ≤ 𝑏; 𝜑 ∈ 𝐶[𝑎, 𝑏].  

Since 𝜑 ∈ 𝐶[𝑎, 𝑏] is continuous on [a, b] and f is continuous on [a, b], so �̅� is well defined 

continuous function in C[a, b]. 

Thus the mapping T is well defined. 

Now for all  𝜑, 𝜓 ∈ 𝐶[𝑎, 𝑏], we have  

𝑑(𝑇𝜑, 𝑇𝜓) = 𝑑(�̅�, �̅�) =  𝑠𝑢𝑝
𝑎≤𝑥≤𝑏

|�̅�(𝑥) − �̅�(𝑥)| 

= 𝑠𝑢𝑝
𝑎≤𝑥≤𝑏

|𝜑(𝑥) − 𝜓(𝑥) −
1

𝑀
(𝑓(𝑥, 𝜑(𝑥) − 𝑓(𝑥, 𝜓(𝑥))| 

= 𝑠𝑢𝑝
𝑎≤𝑥≤𝑏

|𝜑(𝑥) − 𝜓(𝑥) −
1

𝑀
(𝜑(𝑥) − 𝜓(𝑥))

𝜕𝑓

𝜕𝑦
(𝑥, 𝜉(𝑥))| 

[by MVT, where 𝜉(𝑥) (𝜑(𝑥), 𝜓(𝑥))] 

= 𝑠𝑢𝑝
𝑎≤𝑥≤𝑏

|𝜑(𝑥) − 𝜓(𝑥)| . |
𝑀 −  

𝜕𝑓

𝜕𝑦
(𝑥, 𝜉(𝑥))

𝑀
| 

≤ 𝑑(𝜑, 𝜓).
𝑀−𝑚

𝑀
 (by hypothesis) 

= 𝛼. 𝑑(𝜑, 𝜓) 

where 𝛼 =
𝑀−𝑚

𝑀
= 1 −

𝑚

𝑀
< 1. 

T is a contraction. Hence by Banach’s Fixed Point Theorem, T has a unique fixed point, which 

is the required solution. 

 

3.4 Theorem (Kannan’s Fixed Point Theorem)  

Let T: (X, d) →(X, d) be a self mapping and X be a complete metric space where T satisfies the 

condition 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛽[𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)] with 0 < 𝛽 <
1

2
 and x, yX. Then T has a unique 

fixed point. 

Proof.Let 𝑥0 ∈ 𝑋 be an arbitrary point and we define  

𝑥1 = 𝑇𝑥0, 𝑥2 = 𝑇𝑥1, 𝑥3 = 𝑇𝑥2, … , 𝑥𝑛 = 𝑇𝑥𝑛−1, … 
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Then by the given condition,  

𝑑(𝑥1, 𝑥2) = 𝑑(𝑇𝑥0, 𝑇𝑥1) 

≤ 𝛽 [𝑑(𝑥0, 𝑇𝑥0) + 𝑑(𝑥1, 𝑇𝑥1)] 

= 𝛽 [𝑑(𝑥0, 𝑇𝑥0) + 𝑑(𝑥1, 𝑥2)] 

𝑑(𝑥1, 𝑥2) ≤
𝛽

1−𝛽
𝑑(𝑥0, 𝑇𝑥0). 

And so 𝑑(𝑥2, 𝑥3) ≤
𝛽

1−𝛽
𝑑(𝑥1, 𝑇𝑥1) 

=
𝛽

1 − 𝛽
𝑑(𝑥1, 𝑥2) 

≤ (
𝛽

1−𝛽
)

2

𝑑(𝑥0, 𝑇𝑥0) . 

Similarly, 𝑑(𝑥3, 𝑥4) ≤ (
𝛽

1−𝛽
)

3

𝑑(𝑥0, 𝑇𝑥0). 

In general, for any positive integer n, we have 

𝑑(𝑥𝑛, 𝑥𝑛+1) ≤ (
𝛽

1 − 𝛽
)

𝑛

𝑑(𝑥0, 𝑇𝑥0) 

Hence for any two positive integers m, n (> m), we have 

𝑑(𝑥𝑚, 𝑥𝑛)  ≤  𝑑(𝑥𝑚 , 𝑥𝑚+1) +  𝑑(𝑥𝑚+1, 𝑥𝑛) 

 ≤  𝑑(𝑥𝑚 , 𝑥𝑚+1) +  𝑑(𝑥𝑚+1, 𝑥𝑚+2) + 𝑑(𝑥𝑚+2, 𝑥𝑛) 

 ⋮ 

 ≤  𝑑(𝑥𝑚 , 𝑥𝑚+1) +  𝑑(𝑥𝑚+1, 𝑥𝑚+2) + ⋯ + 𝑑(𝑥𝑛−1, 𝑥𝑛) 

𝑑(𝑥𝑚 , 𝑥𝑛)  ≤ 𝛼𝑚  𝑑(𝑥0, 𝑇𝑥0) + 𝛼𝑚+1 𝑑(𝑥0, 𝑇𝑥0) + ⋯ + 𝛼𝑛−1 𝑑(𝑥0, 𝑇𝑥0)   

= (𝛼𝑚 + 𝛼𝑚+1 + ⋯ + 𝛼𝑛−1) 𝑑(𝑥0, 𝑇𝑥0) 

Where 𝛼 =
𝛽

1−𝛽
.  Since 0 < 𝛽 <

1

2
, 0 < 𝛼 < 1.  

Hence 𝑑(𝑥𝑚, 𝑥𝑛) <
𝛼𝑚

1−𝛼
 𝑑(𝑥0, 𝑇𝑥0). 

Letting 𝑚 → ∞, we get 𝑑(𝑥𝑚, 𝑥𝑛) → 0. 

So the sequence{𝑥𝑛}𝑛=1
∞  is a Cauchy Sequence in (X, d). 

Since (X, d) is complete, so there is a point x X such that 𝑥𝑛 → 𝑥 in (X, d). 

We now show that T has the unique fixed point x. 

We have  

𝑑(𝑥, 𝑇𝑥)  ≤  𝑑(𝑥, 𝑥𝑛) +  𝑑(𝑥𝑛, 𝑇𝑥) 
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 ≤  𝑑(𝑥, 𝑥𝑛) + 𝑑(𝑇𝑥𝑛−1, 𝑇𝑥) 

≤  𝑑(𝑥, 𝑥𝑛) + 𝛽[𝑑(𝑥𝑛−1, 𝑇𝑥𝑛−1) + 𝑑(𝑥, 𝑇𝑥)]  

𝑑(𝑥, 𝑇𝑥)  ≤
1

1−𝛽
𝑑(𝑥, 𝑥𝑛) +

𝛽

1−𝛽
𝑑(𝑥𝑛−1, 𝑥𝑛) → 0 as 𝑛 → ∞. 

Hence Tx = x, which implies that x is fixed point of T.  

Suppose �́� ∈ 𝑋 is another fixed point of T.  

T�́� =  𝑥.́  

So, (𝑥, �́�) =  𝑑(𝑇𝑥, 𝑇�́�) ≤ 𝛽[𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑇�́�, �́�)] =  0. 

⟹ �́� = 𝑥. 

Hence T has the unique fixed point x. 
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Unit 15 

Course Structure 

1. Linear Spaces 

2. Norm Induced Metric 

3. Banach Spaces  

4. Riesz’s Lemma 

 

4.1 Linear Space or Vector Space 

Recall that any additive abelian group is any abstract set X equipped with a binary operation 

called addition which assigns to each pair (𝑥, 𝑦) ∈ 𝑋 × 𝑋 a unique element (x + y) X and 

satisfies the following conditions for all x, y, zX: 

i) x + y = y + x 

ii) (x + y) + z = x + (y + z) 

iii) there is a unique element 0 X, called the zero or null element or origin of X such that  

x + 0 = 0 + x = x 

iv) for each x X there is a unique element, denoted by (–x) X, called the negative of x such 

that x + (–x) = (–x) + x = 0. 

Let now  denotes either the field of real numbers or the field of complex numbers. 

A linear space or a vector space over the scalar field  is any abstract abelian group X equipped 

with a scalar multiplication  × X → X, (𝛼, 𝑥) → 𝛼𝑥, which satisfies the following conditions for 

all scalars 𝛼, 𝛽, 1 ∈  and all vectors x, yX: 

i) 𝛼(𝑥 + 𝑦) = 𝛼𝑥 + 𝛼𝑦 

ii) (𝛼 + 𝛽)𝑥 = 𝛼𝑥 + 𝛽𝑥 

iii) (𝛼𝛽)𝑥 = 𝛼(𝛽𝑥) 

iv) 1𝑥 = 𝑥. 

The linear space X is called real or complex according as  is ℝ or ℂ. 

A mapping from a vector space X to its associated scalar field  is called a functional. 
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4.2 Theorem. Every linear space has the following properties: 

(i) 0x = 0 and 0 = 0 

(ii) –1x = –x 

(iii) (𝛼 − 𝛽)𝑥 = 𝛼𝑥 − 𝛽𝑥 

(iv) If 𝛼𝑥 = 𝛼𝑦 and  0, then x = y. 

(v) If 𝛼𝑥 = 𝛽𝑥 and x 0, then 𝛼 = 𝛽. 

Let x be any linear space. A finite set of vectors {𝑥1, 𝑥2, … , 𝑥𝑘}X is said to be linearly 

dependent if there exist scalar 𝛼1, 𝛼2, … , 𝛼𝑘, not all zero such that  

𝛼1𝑥1 + 𝛼2𝑥2 + ⋯ + 𝛼𝑘𝑥𝑘 = 0. 

Otherwise the set {𝑥1, 𝑥2, … , 𝑥𝑘} is called linearly independent. 

Thus the set {𝑥1, 𝑥2, … , 𝑥𝑘} is linearly independent if and only if the relation 


1
𝑥1 + 

2
𝑥2 + ⋯ + 

𝑘
𝑥𝑘 = 0 holds if and only if 

1
= 

2
= ⋯ = 

𝑘
= 0. 

An arbitrary subset MX is said to be linearly independent if every non empty finite subset of M 

is linearly independent. 

The linear space X is said to have finite dimension k ( a positive integer) if there is a linearly 

independent set of k vectors {𝑒1, 𝑒2, … , 𝑒𝑘}X such that xX can be expressed as a linear 

combination of the form 𝑥 = 𝛼1𝑒1 + 𝛼2𝑒2 + ⋯ + 𝛼𝑘𝑒𝑘 where 𝛼1, 𝛼2, … , 𝛼𝑘 are suitable scalars 

depending on the vector x.  

Such a set {𝑒1, 𝑒2, … , 𝑒𝑘} is then called a basis of the vector space X. 

If X = {0}, then X has no basis but it is said to have finite dimension zero. 

A subset YX is called a linear subspace or a linear manifold of X if Y itself is a linear space 

under the addition and scalar multiplication induced by those in X.  

Then a subset YX is a linear subspace of X if and only if 0 ∈ 𝑌 and 𝛼𝑥 + 𝛽𝑦 ∈ 𝑌 whenever x, 

yY and 𝛼, 𝛽 ∈ .  

A subspace YX is called proper subspace if YX. 

 

4.3 Theorem. If X is a linear space of finite dimension n and Y is a proper subspace of X then Y 

has some finite dimension m< n. 
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4.4 Example.ℝ𝑘  is a real linear space of dimension k. ℂk is a complex linear space of dimension 

k. 

Ex. What is the dimension of ℂ considering it as a real vector space? 

 

4.5 Definition. Let X be a linear space over the field  (ℝ or ℂ). A real valued function defined 

on X, || . ||, x ||x||, is called a norm on X, if for all x, yX and all scalars , the following 

conditions are satisfied: 

i) 0  ||x|| < + and ||x|| = 0 if and only if x = 0. 

ii) ||x|| = || ||x||  (absolute homogeneity)  

iii) ||x + y||  ||x|| + ||y||  (triangular inequality) 

The linear space X equipped with a norm || . ||, written (X, || . ||), is called a normed linear space. 

Let (X, || . ||) is a normed linear space. We define 

 d(x, y) = ||x – y|| for all x, yX. 

Then 0 d(x, y)< + and d(x, y) = 0 if and only if x – y = 0 i.e., if and only if x = y. 

Also d(y, x) = ||y – x|| = ||–1(x – y)|| = |–1| ||x – y|| = 1.d(x, y) = d(x, y). 

Finally, d(x, y) = ||x – y|| = ||x – z + z – y|| 

 ||x – z|| + ||z – y|| = d(x, z) + d(z, y). 

Hence d is a metric on X. This is called the metric induced by the norm on X. 

Whenever we shall consider a normed linear space (X, || . ||), we shall always suppose that X is a 

metric space under the metric d induced by the norm as defined above.  

Thus the notions of convergence, open set, closed set, etc. in X are always with respect to the 

induced metric. In particular, 𝑥𝑛 → 𝑥 in X is equivalent to d(x, xn) = ||x – xn||  0. 

 

4.6 Definition. A normed linear space (X, || . ||) which is complete with respect to the induced 

metric defined by d(x, y) = ||x – y|| is called a Banach Space. 

 

4.7 Theorem. Every normed linear space X has the following properties: 

i)  ||–x|| = ||x|| 

ii) ||𝑥 ± 𝑦||  | ||x|| – ||y|| | 

iii) Addition in X is continuous, i.e., 𝑥𝑛 → 𝑥 and 𝑦𝑛 → 𝑦 in X then 𝑥𝑛 + 𝑦𝑛 → 𝑥 + 𝑦. 
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iv) Scalar multiplication in X is continuous, i.e., if 𝑥𝑛 → 𝑥 in X and 𝑛 →  in , then     

𝑛𝑥𝑛 → 𝑥 in X. 

v) If {𝑥𝑛} and {𝑦𝑛} are Cauchy Sequences in X and {𝑛} is a Cauchy Sequences in , then 

both {𝑥𝑛+ 𝑦𝑛} and {𝑛𝑥𝑛} are Cauchy sequences in X. 

vi) The norm function in X is continuous, i.e., if 𝑥𝑛 → 𝑥 in X, then ||𝑥𝑛||→||x|| in ℝ. 

Proof. 

(i) We have ||– x|| = ||(–1)x|| = |–1| ||x|| = 1. ||x|| = ||x||. 

(ii) We have ||x|| = ||(𝑥 ± 𝑦) ∓ 𝑦|| 

  ||(𝑥 ± 𝑦)|| + ||∓𝑦||    

 = ||(𝑥 ± 𝑦)|| + ||𝑦|| 

  ||x|| – ||y||  ||(𝑥 ± 𝑦)||   …(1) 

Interchanging x and y, we get  

||y|| – ||x||  ||(𝑦 ± 𝑥)|| = ||±(𝑥 ± 𝑦)|| = ||(𝑥 ± 𝑦)||  …(2) 

Since | ||x|| – ||y|| | = ||x|| – ||y|| or – (||x|| – ||y||) = ||y|| – ||x||, it follows from (1) and (2) that  

||𝑥 ± 𝑦||  | ||x|| – ||y|| | 

(iii) We have 0  ||𝑥𝑛 + 𝑦𝑛 − (𝑥 + 𝑦)|| =  ||𝑥𝑛 − 𝑥 + 𝑦𝑛 − 𝑦||  

  ||𝑥𝑛 − 𝑥|| + ||𝑦𝑛 − 𝑦|| → 0. 

Hence ||𝑥𝑛 + 𝑦𝑛 − (𝑥 + 𝑦)|| → 0. 

So 𝑥𝑛 + 𝑦𝑛 → 𝑥 + 𝑦 

(iv) We have ||𝑛𝑥𝑛 − 𝑥|| 

 =  ||𝑛(𝑥𝑛 − 𝑥) + (𝑛 − )𝑥|| 

  |𝑛 | . ||𝑥𝑛 − 𝑥|| + |𝑛 −  | . ||x|| 

  ||.0 + 0.||x|| = 0 

Hence 𝑛𝑥𝑛 → 𝑥. 

(v) We have ||𝑥𝑚 + 𝑦𝑚 − (𝑥𝑛 + 𝑦𝑛)|| =  ||(𝑥𝑚 − 𝑥𝑛) + (𝑦𝑚 − 𝑦𝑛)|| 

   ||𝑥𝑚 − 𝑥𝑛|| + ||𝑦𝑚 − 𝑦𝑛|| 

  → 0 as m, n. 

Hence {𝑥𝑛+ 𝑦𝑛} is a Cauchy sequence. 

Again ||𝑚𝑥𝑚 − 𝑛𝑥𝑛|| 

 = ||𝑚(𝑥𝑚 − 𝑥𝑛) + (𝑚 − 𝑛)𝑥𝑛|| 
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  |𝑚 |. ||𝑥𝑚 − 𝑥𝑛|| + |𝑚 − 𝑛 | . ||𝑥𝑛|| 

→ 0 as m, n.  [since the Cauchy Sequences {𝑛} and {𝑥𝑛} are bounded] 

Hence {𝑛𝑥𝑛} is a Cauchy sequence. 

(vi) We have | ||𝑥𝑛|| – ||𝑥|| |   ||𝑥𝑛 − 𝑥|| → 0. 

Hence ||𝑥𝑛||→||x||. 

 

4.8. Theorem. Let  = ℝ or  = ℂ and let k be a positive integer. Then 𝛷𝑘 is a Banach Space of 

finite dimension k under the Euclidean Norm.  

Proof. The elements of 𝛷𝑘 are ordered k – tuples x = (𝑥1, 𝑥2, … , 𝑥𝑘), 𝑥𝑖. 

In 𝛷𝑘 we define addition and scalar multiplication by 

x + y = (𝑥1 + 𝑦1, 𝑥2 + 𝑦2, … , 𝑥𝑘 + 𝑦𝑘) and x = (𝑥1,𝑥2, … ,𝑥𝑘), . 

It is easy to verify that with these operations of addition and scalar multiplication, 𝛷𝑘 is a vector 

space of dimension k over the field . 

We define  

||x|| = (|𝑥1|2 + |𝑥2|2 +  … + |𝑥𝑘|2)
1

2. 

Then 0  ||x|| < +. Also ||x|| = 0 if and only if x1 = x2 = …xk = 0. 

i.e., if and only if x = (0, 0, …, 0) = 0 𝛷𝑘. 

Again for all  and x𝛷𝑘, 

||x|| = ||(𝑥1,𝑥2, … ,𝑥𝑘)|| 

 = (|𝑥1|2 + |𝑥2|2 + ⋯ + |𝑥𝑘|2)
1

2 

 = (||2|𝑥1|2 + ||2|𝑥2|2 + ⋯ + ||2|𝑥𝑘|2)
1

2 

 = ||(|𝑥1|2 + |𝑥2|2 + ⋯ + |𝑥𝑘|2)
1

2 

 = || ||x|| 

Finally,  

||x+y|| = ||(𝑥1 + 𝑦1, 𝑥2 + 𝑦2, … , 𝑥𝑘 + 𝑦𝑘)|| 

 = (∑ |𝑥𝑗 +𝑘
𝑗=1 𝑦𝑗|2)

1

2 

 (∑ |𝑥𝑗|2)
1

2 +𝑘
𝑗=1 (∑ |𝑦𝑗|2)

1

2𝑘
𝑗=1  (by Minkowski’s Inequality) 

 = ||x|| + ||y||. 
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Hence || . || is a norm on 𝛷𝑘. 

This norm is called the Euclidean norm on 𝛷𝑘. 

The metric induced by this norm is given by  

d(x, y) = ||x – y|| 

 = ||(𝑥1 − 𝑦1, 𝑥2 − 𝑦2, … , 𝑥𝑘 − 𝑦𝑘)|| 

 = (∑ |𝑥𝑗 −𝑘
𝑗=1 𝑦𝑗|2)

1

2 

This is Euclidean metric on 𝛷𝑘 and we know that 𝛷𝑘 is complete with respect to this metric 

induced by the norm. Hence with this definition, 𝛷𝑘 becomes a Banach Space. 

 

4.9. Theorem.The space C[a, b] is an infinite dimensional Banach Space under the sup norm. 

Proof. The elements of C[a, b] are the real valued continuous functions on [a, b]. For f, g  

C[a,b] and ℝ, wedefine f + g and 𝑓 by 

(f + g)(x) = f(x) + g(x), (f)(x) = f(x), x[a, b], then 𝑓 + 𝑔  𝐶[𝑎, 𝑏] and 𝑓  𝐶[𝑎, 𝑏]. 

It is easy to verify that C[a, b] is a real vector space under these operations, addition and scalar 

multiplication. Also C[a, b] has infinite dimension. 

 We define  

||𝑓|| = 𝑠𝑢𝑝
𝑎≤𝑥≤𝑏

|𝑓(𝑥)| , 𝑓 ∈ 𝐶[𝑎, 𝑏]. 

Since 𝑓 𝐶[𝑎, 𝑏] is continuous on the closed interval [𝑎, 𝑏], so f is bounded on [𝑎, 𝑏]. 

Hence 0||𝑓||+  . Also ||𝑓|| = 0 iff 𝑓(𝑥) = 0 for all 𝑥 ∈ [𝑎, 𝑏]. i.e., ifff is the constant 

function zero. 

For each  ∈ ℝ and 𝑓 𝐶[𝑎, 𝑏], we have 

| 𝑓(𝑥)| = ||  |𝑓(𝑥)| ≤ || ||𝑓||, 𝑥[𝑎, 𝑏] 

Hence 

𝑠𝑢𝑝
𝑎≤𝑥≤𝑏

| 𝑓(𝑥)| ≤ || ||𝑓||; i.e., ||𝑓|| ≤ || ||𝑓||. 

If  = 0, the equality holds. 

If  ≠ 0 then 

||𝑓|| = ||−1𝑓|| ≤ |−1| ||𝑓|| =
1

| |
||𝑓|| 

∴  || ||𝑓||  ≤ ||𝑓|| 

Combining both the inequalities we have ||𝑓|| = || ||𝑓||. 
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Finally, 

|(𝑓 + 𝑔)(𝑥)| = |𝑓(𝑥) + 𝑔(𝑥)| ≤ |𝑓(𝑥)| + |𝑔(𝑥)| ≤ ||𝑓|| + ||𝑔||, 𝑥[𝑎, 𝑏] 

∴ 𝑠𝑢𝑝
𝑎≤𝑥≤𝑏

|(𝑓 + 𝑔)(𝑥)| ≤ ||𝑓|| + ||𝑔|| 

i.e., ||𝑓 + 𝑔|| ≤ ||𝑓|| + ||𝑔||. 

Hence ||. || defines a norm in 𝐶[𝑎, 𝑏]. 

This is called the supnorm in 𝐶[𝑎, 𝑏]. 

The metric induced by this norm is given by 

𝑑(𝑓, 𝑔) = ||𝑓 − 𝑔|| = 𝑠𝑢𝑝
𝑎≤𝑥≤𝑏

|𝑓(𝑥) − 𝑔(𝑥)| 

This is the supmetric for 𝐶[𝑎, 𝑏] and we know that 𝐶[𝑎, 𝑏] is complete with respect to this 

metric. Hence 𝐶[𝑎, 𝑏] is an infinite dimensional Banach space under the supnorm. 

 

4.10. Theorem.The space ℓ𝑝is a Banach Space. 

Proof. The elements of ℓ𝑝 are the sequences 𝑥 = {𝑥𝑘}𝑘=1
∞ , 𝑥𝑘 ∈ Φ (ℝ orℂ) with  

∑ |𝑥𝑘|𝑝∞
𝑘=1 < +∞. 

For 𝑥, 𝑦 ∈ ℓ𝑝 and 𝛼 ∈ Φ, we define 𝑥 + 𝑦 = {𝑥𝑘 + 𝑦𝑘 } and 𝛼𝑥 = {𝛼𝑥𝑘}. 

It is clear that 𝛼𝑥 ∈ ℓ𝑝. Also by Minkowski’s inequality, we have 

(1) (∑ |𝑥(𝑘) + 𝑦(𝑘)|
𝑝∞

𝑘=1 )
1

𝑝  ≤ (∑ |𝑥(𝑘)|
𝑝∞

𝑘=1 )
1

𝑝 + (∑ |𝑦(𝑘)|
𝑝∞

𝑘=1 )
1

𝑝 < +∞ , so,  𝑥 + 𝑦ℓ𝑝. 

It is now easy to verify that under these operations of addition and scalar multiplication, ℓ𝑝 is a 

vector space of infinite dimension over Φ. 

We define 

||𝑥|| = (∑ |𝑥(𝑘)|
𝑝∞

𝑘=1 )
1

𝑝, 𝑥 ∈ ℓ𝑝. 

Then 0  ||x|| < + and ||x|| = 0 if and only if 𝑥𝑘  =  0 for all 𝑘. i.e., 𝑥 = {0, 0, … , 0} = 0 ∈ ℓ𝑝. 

For 𝑥 ∈ ℓ𝑝 and 𝛼 ∈ Φ, we have ||𝑥|| = (∑ |𝛼𝑥(𝑘)|
𝑝∞

𝑘=1 )

1

𝑝
= (∑ |𝛼|𝑝|𝑥(𝑘)|

𝑝∞
𝑘=1 )

1

𝑝
= |𝛼|||𝑥||. 

Finally, from (1) we have ||𝑥 + 𝑦||  ≤ ||𝑥|| + ||𝑦||. 

Hence ||. || defines a norm in ℓ𝑝. 

The metric induced by this norm is given by 𝑑(𝑥, 𝑦) = ||𝑥 − 𝑦|| = (∑ |𝑥(𝑘) − 𝑦(𝑘)|
𝑝∞

𝑘=1 )
1

𝑝 
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and we know that this is a metric in ℓ𝑝 with respect to which ℓ𝑝 is complete. Hence ℓ𝑝 is an 

infinite dimensional Banach space under the above norm. 

 

4.11Example. Not every normed linear space is a Banach space. 

We know that 𝐶[𝑎, 𝑏] is a Banach space under the supnorm. 

Let 𝑃[𝑎, 𝑏] = {𝑓 ∈ 𝐶[𝑎, 𝑏]𝑓 𝑖𝑠 𝑎 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙} 

Then 𝑃[𝑎, 𝑏] is a normed linear subspace of 𝐶[𝑎, 𝑏].Now, let us define 

𝑃𝑛(𝑡) = 1 +
𝑡

1!
+

𝑡2

2!
+ ⋯ +

𝑡𝑛

𝑛!
, 𝑛 = 1, 2, …   𝑎𝑛𝑑 𝑎 ≤ 𝑡 ≤ 𝑏 

Then {𝑃𝑛} is a sequence in 𝑃[𝑎, 𝑏]. So, {𝑃𝑛} is also a sequence in 𝐶[𝑎, 𝑏], and we know that this 

sequence converges uniformly to the function 𝑓(𝑡) = 𝑒𝑡. 

Since uniform convergence of continuous functions on [𝑎, 𝑏] is equivalent to convergence in the 

metric space 𝐶[𝑎, 𝑏], it follows that 𝑃𝑛 → 𝑓 in 𝐶[𝑎, 𝑏]. 

Therefore, {𝑃𝑛} is a sequence in 𝑃[𝑎, 𝑏] which convergence to 𝑓 ∈ 𝐶[𝑎, 𝑏], but 𝑓 ∉ 𝑃[𝑎, 𝑏]. 

Hence the normed linear space 𝑃[𝑎, 𝑏] is not complete. Thus 𝑃[𝑎, 𝑏] is a normed linear space but 

it is not a Banach space. 

 

4.12Example. Not every complete linear space is normable. 

Proof. Let us consider any linear space 𝑋 ≠ {0} with the discrete metric  

  𝑑 (𝑥, 𝑦) = {
0 𝑖𝑓 𝑥 = 𝑦 
1 𝑖𝑓 𝑥 ≠ 𝑦

 

Let {𝑥𝑛} be any Cauchy sequence in 𝑋. Then for 𝜖 =
1

2
 there is a positive integer 𝑁 such that 

𝑑(𝑥𝑚 , 𝑥𝑛) <
1

2
 for all 𝑚, 𝑛 ≥ 𝑁. 

By definition of 𝑑 we see that 𝑥𝑚 =  𝑥𝑛 for all 𝑚, 𝑛 ≥ 𝑁. 

In particular, 𝑥𝑛 =  𝑥𝑁 for all 𝑛 ≥ 𝑁. 

So, 𝑑(𝑥𝑛 , 𝑥𝑁) = 0 for all 𝑛 ≥ 𝑁. 

Thus 𝑑(𝑥𝑛 , 𝑥𝑁) → 0 as 𝑛 → ∞. i.e., 𝑥𝑛 →  𝑥𝑁 in 𝑋. 

Hence the metric space (𝑥, 𝑑) is complete. 

We shall show however that the space (𝑥, 𝑑) is not normable. i.e., the metric 𝑑 does not come 

from any norm defined on 𝑋. 

Suppose for a contradiction that ||. || is a norm on𝑋 which induces the metric 𝑑. Then 
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𝑑(𝑥, 𝑦) = ||𝑥 − 𝑦|| = {
0 𝑖𝑓 𝑥 = 𝑦 
1 𝑖𝑓 𝑥 ≠ 𝑦

 

Now since 𝑋 ≠ {0}, 𝑥0 ∈ X such that 𝑥0 ≠ 0. 

Then 𝑑(𝑥0, 0) = 1, i.e., ||𝑥0 − 0|| = 1, i.e., ||𝑥0|| = 1. 

Also, ||2𝑥0|| = 2||𝑥0|| = 2.1 = 2 

i.e., ||2𝑥0 − 0|| = 2, i.e., 𝑑(2𝑥0, 0) = 2, i.e., 1 = 2. 

This contradiction proves our assertion. 

4.13Theorem. If 𝑌is a linear subspace of a normed linear space 𝑋, then �̅� is also a linear 

subspace of 𝑋. 

Proof. Since 𝑌 is a linear subspace of a linear space 𝑋, so 0 ∈ 𝑌, then 0 ∈ �̅�. 

Let now 𝑥, 𝑦 ∈ �̅� and 𝛼, 𝛽 be scalars. Then there are sequences {𝑥𝑛} and {𝑦𝑛} in 𝑌 such that𝑥𝑛 →

𝑥 and 𝑦𝑛 → 𝑦. 

Consequently, {𝛼𝑥𝑛 + 𝛽𝑦𝑛} is a sequence in 𝑌 and 𝛼𝑥𝑛 + 𝛽𝑦𝑛 → 𝛼𝑥 + 𝛽𝑦 in 𝑌. 

Hence 𝛼𝑥𝑛 + 𝛽𝑦𝑛 ∈ �̅�. 

 �̅� is a linear subspace of 𝑋. 

 

4.14Theorem.A normed linear space 𝑋 ≠ {0} is a Banach space iff the unit sphere  

𝑆(0; 1] = {𝑥 ∈ 𝑋: ||𝑥|| = 1} 

(called the surface of the closed unit ball) is complete. 

Proof. First suppose that the normed linear space 𝑋 is a Banach space, i.e., it is complete under 

the metric induced by the norm. 

Now, 𝑆(0; 1] = 𝐵(0; 1]\𝐵(0; 1), where the closed ball 𝐵(0;  1] is a closed set and the open ball 

𝐵(0; 1) is an open set. Therefore, 𝑆(0; 1] is a closed set. Since, 𝑋 is complete so its closed subset 

𝑆(0; 1] is alsocomplete. 

Conversely, assume that 𝑆(0; 1] is complete. Let {𝑥𝑛} be any Cauchy sequence in 𝑋. Then 

|||𝑥𝑚|| − ||𝑥𝑛||| ≤ ||𝑥𝑚 − 𝑥𝑛|| → 0 as 𝑚, 𝑛 → ∞. 

{𝑥𝑛} is a Cauchy sequence of non-negative real numbers. Hence, there is a number 𝛼 ≥ 0 such 

that ||𝑥𝑛|| → 𝛼. 

If 𝛼 = 0 then ||𝑥𝑛 − 0|| = ||𝑥𝑛||  → 𝛼 = 0. 

Hence in this case 𝑥𝑛 → 0 in 𝑋. 
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Let now 𝛼 > 0. Then taking 𝜖 =
1

2
𝛼 > 0, there is a positive integer 𝑁 such that  

0 < 𝛼 − 𝜖 =
1

2
𝛼 < ||𝑥𝑛|| for all 𝑛 ≥ 𝑁. 

[  |||𝑥𝑛|| − 𝛼| < 𝜀 ⇒ 𝛼 − 𝜖 < ||𝑥𝑛|| < 𝛼 + 𝜖  ] 

Then for all 𝑚, 𝑛 ≥ 𝑁 we have 

||
1

||𝑥𝑚||
. 𝑥𝑚 −

1

||𝑥𝑛||
. 𝑥𝑛|| = ||

1

||𝑥𝑚||
(𝑥𝑚 − 𝑥𝑛) + (

1

||𝑥𝑚||
−

1

||𝑥𝑛||
) . 𝑥𝑛|| 

≤  
1

||𝑥𝑚||
||𝑥𝑚 − 𝑥𝑛|| +

|||𝑥𝑛|| − ||𝑥𝑚|||

||𝑥𝑚||. ||𝑥𝑛||
||𝑥𝑛||  ≤  

2

||𝑥𝑚||
||𝑥𝑚 − 𝑥𝑛|| 

≤  
4

𝛼
||𝑥𝑚 − 𝑥𝑛||  → 0 as 𝑚, 𝑛 →  ∞. 

Hence {
1

||𝑥𝑛||
. 𝑥𝑛} is a Cauchy sequence in 𝑆(0; 1], since ||

1

||𝑥𝑛||
𝑥𝑛|| =  

||𝑥𝑛||

||𝑥𝑛||
= 1. 

Since 𝑆(0; 1] is assumed to be complete, i.e., there is 𝑥 ∈ 𝑆(0; 1], i.e., ||𝑥|| = 1 such that 

1

||𝑥𝑛||
. 𝑥𝑛 → 𝑥. i.e., 𝑥𝑛 = ||𝑥𝑛|| (

𝑥𝑛

||𝑥𝑛||
)  → 𝛼𝑥 ∈ 𝑋. 

Hence the normed linear space 𝑋 is complete, i.e., it is a Banach space. 

 

4.15Lemma. For every linearly independent set of vectors {𝑒1, 𝑒2, … , 𝑒𝑘}in a normed linear space 

𝑋, there exist two constants 𝜆 > 0 and 𝜇 > 0 such that for all sets of scalars {𝛼1, 𝛼2, … , 𝛼𝑘} we 

have 𝜆(|𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘|) ≤ ||𝛼1𝑒1 + 𝛼2𝑒2 + ⋯ + 𝛼𝑘𝑒𝑘|| ≤ 𝜇(|𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘|). 

Proof.Let Φ (ℝ 𝑜𝑟 ℂ) denote the scalar field of 𝑋. Then the set 

𝐸 = {(𝛽1, 𝛽2, … , 𝛽𝑘) ∈ Φ𝑘: |𝛽1|+|𝛽2| + ⋯ + |𝛽𝑘| = 1} 

is compact since it is closed and bounded. 

We consider the function 𝑓: 𝐸 → ℝ defined by 

𝑓(𝛽1, 𝛽2, … , 𝛽𝑘) = ||𝛽1𝑒1 + 𝛽2𝑒2 + ⋯ + 𝛽𝑘𝑒𝑘||, (𝛽1, 𝛽2, … , 𝛽𝑘) ∈ 𝐸. 

Since |𝛽1|+|𝛽2| + ⋯ + |𝛽𝑘| = 1, so 𝛽1, 𝛽2, … , 𝛽𝑘  cannot be all zero. 

Again, since the set of vectors {𝑒1, 𝑒2, … , 𝑒𝑘}is linearly independent, it follows that 

𝛽1𝑒1 + 𝛽2𝑒2 + ⋯ + 𝛽𝑘𝑒𝑘  ≠ 0. Therefore, ||𝛽1𝑒1 + 𝛽2𝑒2 + ⋯ + 𝛽𝑘𝑒𝑘|| > 0. 

i.e., 𝑓(𝛽1, 𝛽2, … , 𝛽𝑘) > 0 for all (𝛽1, 𝛽2, … , 𝛽𝑘) ∈ 𝐸. 
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Since, scalar multiplication, addition of vectors and the norm function are continuous, we have 𝑓 

is also continuous. 

Therefore, the continuous image 𝑓(𝐸) of the compact set 𝐸 is compact in ℝ. So, 𝑓(𝐸) is closed 

and bounded. 

Since 𝑓 > 0 on 𝐸, it follows that  

0 < 𝜆 = inf 𝑓(𝐸) ≤ sup 𝑓(𝐸) = 𝜇 < +∞ 

Consider now any set of scalars {𝛼1, 𝛼2, … , 𝛼𝑘} ⊂ Φ. 

First, let |𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘| = 𝑡 ≠ 0. Then 

|
𝛼1

𝑡
| + |

𝛼2

𝑡
| + ⋯ + |

𝛼𝑘

𝑡
| =

|𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘|

𝑡
=

𝑡

𝑡
= 1. 

So, (
𝛼1

𝑡
,

𝛼2

𝑡
, … ,

𝛼𝑘

𝑡
) ∈ 𝐸 

Therefore, by definition of 𝜆 and 𝜇, we have 

𝜆 ≤ 𝑓 (
𝛼1

𝑡
,

𝛼2

𝑡
, … ,

𝛼𝑘

𝑡
) ≤ 𝜇  , i.e., 𝜆 ≤ ||

𝛼1

𝑡
𝑒1 +

𝛼2

𝑡
𝑒2 + ⋯ +

𝛼𝑘

𝑡
𝑒𝑘|| ≤ 𝜇 

i.e., 𝜆 ≤
1

𝑡
||𝛼1𝑒1 + 𝛼2𝑒2 + ⋯ + 𝛼𝑘𝑒𝑘|| ≤ 𝜇 

i.e., 𝜆(|𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘|) ≤ ||𝛼1𝑒1 + 𝛼2𝑒2 + ⋯ + 𝛼𝑘𝑒𝑘|| ≤ 𝜇(|𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘|). 

Since this is trivially true even when 𝑡 = |𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘| = 0, the proof is complete. 

 

4.16Theorem. Every finite dimensional subspace 𝑌 of a normed linear space 𝑋 is complete and 𝑌 

is closed in 𝑋. In particular, every finite dimensional normed linear space is a Banach space. 

Proof. If dim 𝑌 = 0, then 𝑌 = {0}, which is obviously complete and closed. 

Let now dim 𝑌 = 𝑘 ≥ 1. Then 𝑌 has a basis of 𝑘vectors {𝑒1, 𝑒2, … , 𝑒𝑘}, say. Since {𝑒1, 𝑒2, … , 𝑒𝑘} 

is linearly independent, then by the previous Lemma there are two constants 𝜆 > 0 and 𝜇 > 0 

such that  

(1) …  𝜆(|𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘|) ≤ ||𝛼1𝑒1 + 𝛼2𝑒2 + ⋯ + 𝛼𝑘𝑒𝑘|| ≤ 𝜇(|𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘|) 

for all (𝛼1, 𝛼2, … , 𝛼𝑘) ∈ Φ𝑘, where Φ (= ℝ or ℂ)is the associated scalar field of 𝑋.  

Now let {𝑦𝑛} be any Cauchy sequence in 𝑌. Then each 𝑦𝑛 has a unique representation 

𝑦𝑛 = 𝛼1
(𝑛)

𝑒1 + 𝛼2
(𝑛)

𝑒2 + ⋯ + 𝛼𝑘
(𝑛)

𝑒𝑘 where  (𝛼1
(𝑛)

, 𝛼2
(𝑛)

, … , 𝛼𝑘
(𝑛)

) ∈ Φ𝑘 . 

For any two positive integers 𝑚 and 𝑛 by (1) we have 
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√|𝛼1
(𝑚)

− 𝛼1
(𝑛)

|2 + |𝛼2
(𝑚)

− 𝛼2
(𝑛)

|2 + ⋯ + |𝛼𝑘
(𝑚)

− 𝛼𝑘

(𝑛)
|2 

≤ |𝛼1
(𝑚)

− 𝛼1
(𝑛)

| + |𝛼2
(𝑚)

− 𝛼2
(𝑛)

| + ⋯ + |𝛼𝑘
(𝑚)

− 𝛼𝑘
(𝑛)

|  

≤
1

𝜆
||(𝛼1

(𝑚)
− 𝛼1

(𝑛)
)𝑒1 + (𝛼2

(𝑚)
− 𝛼2

(𝑛)
)𝑒2 + ⋯ + (𝛼𝑘

(𝑚)
− 𝛼𝑘

(𝑛)
)𝑒𝑘|| 

=
1

𝜆
||𝑦𝑚 − 𝑦𝑛|| → 0 as 𝑚, 𝑛 → ∞ 

Hence {(𝛼1
(𝑛)

, 𝛼2
(𝑛)

, … , 𝛼𝑘
(𝑛)

)}
𝑛=1

∞

 is a Cauchy sequence in Φ𝑘 . Since, Φ𝑘  is complete, so there is 

a point (𝛼1, 𝛼2, … , 𝛼𝑘) ∈ Φ𝑘 such that (𝛼1
(𝑛)

, 𝛼2
(𝑛)

, … , 𝛼𝑘
(𝑛)

) → (𝛼1, 𝛼2, … , 𝛼𝑘)as  𝑛 → ∞. 

We now put 𝑦 = 𝛼1𝑒1 + 𝛼2𝑒2 + ⋯ + 𝛼𝑘𝑒𝑘, then 𝑦 ∈ 𝑌, and we have 

||𝑦 − 𝑦𝑛|| = | |𝛼1𝑒1 + 𝛼2𝑒2 + ⋯ + 𝛼𝑘𝑒𝑘 − (𝛼1
(𝑛)

𝑒1 + 𝛼2
(𝑛)

𝑒2 + ⋯ + 𝛼𝑘
(𝑛)

𝑒𝑘)| | 

= | |(𝛼1 − 𝛼1
(𝑛)

)𝑒1 + (𝛼2 − 𝛼2
(𝑛)

)𝑒2 + ⋯ + (𝛼𝑘 − 𝛼𝑘
(𝑛)

)𝑒𝑘| | 

≤ 𝜇 (|𝛼1 − 𝛼1
(𝑛)| + |𝛼2 − 𝛼2

(𝑛)| + ⋯ + |𝛼𝑘 − 𝛼𝑘
(𝑛)|),  by (1) 

→ 0 as 𝑛 → ∞ 

Thus ||𝑦 − 𝑦𝑛|| → 0. Hence 𝑦𝑛 → 𝑦in 𝑌. 

Hence the subspace 𝑌 is complete, and so further 𝑌 is closed in 𝑋. (complete subspace of a 

metric space is closed) 

Finally, if 𝑋 itself is a finite dimensional normed linear space, then 𝑋 ⊂ 𝑋 is a finite dimensional 

subspace of 𝑋. Hence by the above 𝑋 is complete. i.e., 𝑋 is a Banachspace. 

 

4.17Theorem. Every closed and bounded subset of a normed linear space 𝑋 of finite dimension 

is compact. The result may fail if 𝑋 is not of finite dimension. 

Proof. Let 𝑌 be a closed and bounded subset of a normed linear space with dim 𝑋 finite. 

If dim 𝑋 = 0, then 𝑋 = {0}, so that the result is obvious. 

Let now dim 𝑋 = 𝑘 ≥ 1.  Then 𝑋 has a basis of 𝑘 vectors {𝑒1, 𝑒2, … , 𝑒𝑘}, say. 

Since {𝑒1, 𝑒2, … , 𝑒𝑘} is linearly independent, then by the previous Lemma there are two constants 

𝜆 > 0 and 𝜇 > 0 such that  

(1) …  𝜆(|𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘|) ≤ ||𝛼1𝑒1 + 𝛼2𝑒2 + ⋯ + 𝛼𝑘𝑒𝑘|| ≤ 𝜇(|𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘|) 

for all (𝛼1, 𝛼2, … , 𝛼𝑘) ∈ Φ𝑘, where Φ (= ℝ or ℂ) is the associated scalar field of 𝑋.  
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Since 𝑌 is bounded, there is a constant 𝑀 > 0 such that 

(2) … ||𝑦|| < 𝑀for all 𝑦 ∈ 𝑌. 

Let us define a function 𝑓: Φ𝑘 → 𝑋 by 𝑓(𝛼1, 𝛼2, … , 𝛼𝑘) = 𝛼1𝑒1 + 𝛼2𝑒2 + ⋯ + 𝛼𝑘𝑒𝑘for 

(𝛼1, 𝛼2, … , 𝛼𝑘) ∈ Φ𝑘. 

Since scalar multiplication and vector addition are both continuous, clearly, the function 𝑓 is 

continuous. 

Therefore, since 𝑌 is closed in 𝑋, so 𝑓−1(𝑌) is closed in Φ𝑘 . 

Also, if (𝛼1, 𝛼2, … , 𝛼𝑘) ∈ 𝑓−1(𝑌), then 𝑓(𝛼1, 𝛼2, … , 𝛼𝑘) = 𝛼1𝑒1 + 𝛼2𝑒2 + ⋯ + 𝛼𝑘𝑒𝑘 ∈ 𝑌, so 

that by (2) we have||𝛼1𝑒1 + 𝛼2𝑒2 + ⋯ + 𝛼𝑘𝑒𝑘|| < 𝑀. 

Then by (1) we have 

√|𝛼1|2 + |𝛼2|2 + ⋯ +  |𝛼𝑘|2 ≤ |𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘| ≤
1

𝜆
||𝛼1𝑒1 + 𝛼2𝑒2 + ⋯ + 𝛼𝑘𝑒𝑘|| <

𝑀

𝜆
. 

Thus 𝑓−1(𝑌) is bounded besides being closed in Φ𝑘 . Hence 𝑓−1(𝑌) is compact in Φ𝑘 . 

Now, for each 𝑦 ∈ 𝑌, there are scalars 𝛼1, 𝛼2, … , 𝛼𝑘  such that 

𝑦 = 𝛼1𝑒1 + 𝛼2𝑒2 + ⋯ + 𝛼𝑘𝑒𝑘 = 𝑓(𝛼1, 𝛼2, … , 𝛼𝑘) 

So 𝑓 is onto 𝑌. Hence 𝑓(𝑓−1(𝑌)) = 𝑌. 

Since 𝑓−1(𝑌) is compact in Φ𝑘 , so its continuous image 𝑓(𝑓−1(𝑌)) is continuous on 𝑋. i.e., 𝑌 is 

compact. 

To show that the result may fail if dim 𝑋 is not finite, we can consider the Banachspace 𝑙2. 

Let 𝑒1 = (1, 0, 0, … ), 𝑒2 = (0, 1, 0, … ), 𝑒3 = (0 0, 1, … ), … 

Then {𝑒𝑛}𝑛=1
∞  is a sequence in 𝑙2. 

We have||𝑒𝑛|| = √|1|2 = 1  ∀𝑛. 

So the subset 𝑌 = {𝑒1, 𝑒2, … } ⊂ 𝑙2  is bounded. 

Clearly, the set of vectors 𝑌 is linearly independent. 

For 𝑚 ≠ 𝑛, ||𝑒𝑚 − 𝑒𝑛|| = (∑ |𝑒𝑚
(𝑘) − 𝑒𝑛

(𝑘)|
2∞

𝑘=1 )

1

2
= √12 + (−1)2 = √2 > 0. 

Hence 𝑌 has no limit point in 𝑙2, and so 𝑌 isclosed. 

Thus 𝑌 is bounded and closed in 𝑙2 which is of infinite dimension. 

But 𝑌 is a countable subset of 𝑙2 having no limit point. So, 𝑌 is not countably compact. Hence 

the metric space 𝑌 is not compact. 
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4.18Riesz’s Lemma. Let 𝑌 be proper, closed subspace of a normed linear space 𝑋. Then for each 

real number 𝛼 with 0 < 𝛼 < 1, there is a vector 𝑥𝛼 ∈ 𝑋\𝑌 such that ||𝑥𝛼|| = 1 and ||𝑥𝛼 − 𝑦|| >

𝛼 for all 𝑦 ∈ 𝑌. 

Proof.  Since 𝑌 is a proper subset of 𝑋, there is a vector 𝑥0 ∈ 𝑋\𝑌. 

Since 𝑌 is closed in 𝑋 and 𝑥0 ∉ 𝑌, so 𝛿 = 𝑑𝑖𝑠𝑡 (𝑥0, 𝑌) = inf
𝑦∈𝑌

||𝑥0 − 𝑦|| > 0. 

Now, since  0 < 𝛼 < 1, so 𝛿 <
𝛿

𝛼
. 

Hence there is 𝑦0 ∈ 𝑌 such that 𝛿 < ||𝑥0 − 𝑦0|| <
𝛿

𝛼
. We take 

𝑥𝛼 =
1

||𝑥0 − 𝑦0||
(𝑥0 − 𝑦0) 

Clearly, 𝑥𝛼 ∈ 𝑋\𝑌 and  ||𝑥𝛼|| = 1. 

Also, since 𝑌 is a subspace of 𝑋, so for all 𝑦 ∈ 𝑌, we have 𝑦0 + ||𝑥0 − 𝑦0||𝑦 ∈ 𝑌, and hence 

𝛿 ≤ ||𝑥0 − (𝑦0 + ||𝑥0 − 𝑦0||𝑦)|| = ||(𝑥0 − 𝑦0) − ||𝑥0 − 𝑦0||𝑦||

= ||||𝑥0 − 𝑦0||𝑥𝛼 − ||𝑥0 − 𝑦0||𝑦  || = ||𝑥0 − 𝑦0||||𝑥𝛼 − 𝑦|| 

Hence  ||𝑥𝛼 − 𝑦||  ≥
𝛿

||𝑥0−𝑦0||
> 𝛼. 

Thus ||𝑥𝛼 − 𝑦|| > 𝛼 for all 𝑦 ∈ 𝑌. 

This completes the proof. 
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Unit 16 

Course Structure 

1. Finite dimensional normed linear spaces 

2. Equivalent norms. 

 

4.19Theorem. If the unit sphere 𝑆(0; 1] = {𝑥 ∈ 𝑋: ||𝑥|| = 1} in a normed linear space 𝑋 is 

compact, then 𝑋 is finite dimensional. 

Proof. If 𝑆 = ∅  then  𝑋 = {0}, which is of finite dimension zero. 

Suppose, 𝑆 ≠ ∅.Then the family of open balls {𝐵 (𝑥;
1

2
)} in 𝑋 with centers on 𝑆 is an open cover 

of the compact set  𝑆. So there is a finite number of open balls  

𝐵 (𝑥1;
1

2
) , 𝐵 (𝑥2;

1

2
) , … , 𝐵 (𝑥𝑛;

1

2
) 

which together covers 𝑆. i.e., 𝑆 ⊂ ⋃ 𝐵 (𝑥𝑖;
1

2
)𝑛

𝑖=1 . 

Now, let 𝑌 be the linear subspace of 𝑋 generated by the set of vectors {𝑥1, 𝑥2, … , 𝑥𝑛}. 

Then 𝑌 has some finite dimension  𝑘 ≤ 𝑛. 

Hence by a known result 𝑌 is closed in 𝑋. 

We assert that  𝑌 = 𝑋. If not, then by Riesz’z lemma, there exists vector𝑥1

2

∈ 𝑋\𝑌such that 

||𝑥1

2

|| = 1 and ||𝑥1

2

− 𝑦|| >
1

2
 for all 𝑦 ∈ 𝑌. 

Now since, ||𝑥1

2

|| = 1, so 𝑥1

2

∈ 𝑆. 

Therefore, we have 𝑥1

2

∈ 𝐵 (𝑥𝑖;
1

2
) for some 𝑖 = 1, 2, … , 𝑛. 

Hence, ||𝑥1

2

− 𝑥𝑖|| <
1

2
. 

But since 𝑥𝑖 ∈ 𝑌, so by our choice of 𝑥1

2

, ||𝑥1

2

− 𝑥𝑖|| >
1

2
. 

Thus we arrive at a contradiction. 

Hence we must have 𝑌 = 𝑋 and so 𝑋 is of finite dimension 𝑘. 
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4.20Theorem. Every finite dimensional linear space 𝑋 can be made to a Banach space. 

Proof. If dim 𝑋 = 0, then 𝑋 = {0}, and clearly, , ||0|| = 0 defines a norm on 𝑋 and so (𝑋, ||. ||) 

is a Banach space. 

Let now dim 𝑋 = 𝑘 ≥ 1.  We select a basis {𝑒1, 𝑒2, … , 𝑒𝑘}of 𝑋. 

Then each 𝑥 ∈ 𝑋 has a unique representation 𝑥 = 𝛼1𝑒1 + 𝛼2𝑒2 + ⋯ + 𝛼𝑘𝑒𝑘 

We define ||𝑥|| = |𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘|. 

Then 0  ||x|| < +. Also ||x|| = 0 if and only if 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑘 . i.e., if and only if x = 0. 

Again for any scalar , we have  

𝑥 = (𝛼1𝑒1 + 𝛼2𝑒2 + ⋯ + 𝛼𝑘𝑒𝑘) = (𝛼1)𝑒1 + (𝛼2)𝑒2 + ⋯ + (𝛼𝑘)𝑒𝑘 

and  ||𝑥|| = |𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘| = ||(|𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘|) = || ||x||. 

Finally, if   𝑦 = 𝛽1𝑒1 + 𝛽2𝑒2 + ⋯ + 𝛽𝑘𝑒𝑘 ∈ 𝑋 then 

||x + y||  =  ||(𝛼1 + 𝛽1)𝑒1 + (𝛼2 + 𝛽2)𝑒1 + ⋯ + (𝛼𝑘 + 𝛽𝑘)𝑒𝑘|| 

 = |𝛼1 + 𝛽1| + |𝛼2 + 𝛽2| + ⋯ + |𝛼𝑘 + 𝛽𝑘| 

≤ |𝛼1| + |𝛽1| + |𝛼2| + |𝛽2| + ⋯ + |𝛼𝑘| + |𝛽𝑘| =  ||x||  +  ||y|| 

Hence ||. ||  is in fact a norm on 𝑋. 

Since, every finite dimensional normed linear space is a Banachspace, it follows that (𝑋, ||. ||) is 

a Banach space. 

 

4.21Theorem. If a sequence {𝑥𝑛} in a Banach space 𝑋 is such that ∑ ||𝑥𝑛||∞
𝑛=1 < +∞, then 

∑ 𝑥𝑛
∞
𝑛=1  converges in 𝑋. 

Proof. Let 𝑠𝑛 = 𝑥1 +  𝑥2 +  … +  𝑥𝑛 ∈ 𝑋 

Then ||𝑠𝑛+𝑝 − 𝑠𝑛|| = ||𝑥𝑛+1 + 𝑥𝑛+2 + ⋯ + 𝑥𝑛+𝑝|| ≤ ||𝑥𝑛+1|| + ||𝑥𝑛+2|| + ⋯ + + ||𝑥𝑛+𝑝||. 

Since ∑ ||𝑥𝑛||∞
𝑛=1 < +∞, so ||𝑥𝑛+1|| + ||𝑥𝑛+2|| + ⋯ + + ||𝑥𝑛+𝑝|| → 0 as 𝑛, 𝑝 → ∞ (by 

Cauchy’s criterion of convergence) 

Therefore, ||𝑠𝑛+𝑝 − 𝑠𝑛|| → 0as 𝑛, 𝑝 → ∞. 

Hence {𝑠𝑛} is a Cauchy sequence in the Banach space 𝑋. Therefore, the sequence converges in 

𝑋. i.e., the series ∑ 𝑥𝑛
∞
𝑛=1  converges in 𝑋. 
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4.22Equivalent Norms 

Two norms ||. ||1and ||. ||2 on a linear space 𝑋 are said to be equivalent if there exists two 

constants 𝑎 > 0 and 𝑏 > 0 such that 𝑎||𝑥||1  ≤ ||𝑥||2 ≤ 𝑏||𝑥||1 for all 𝑥 ∈ 𝑋. 

 

4.23Theorem.Any two norms on a finite dimensional linear space 𝑋are equivalent. 

Proof. If the linear space𝑋 = {0} then there is only one norm on 𝑋 given by ,||0|| = 0. So the 

result is trivially true in this case. 

Let now dim 𝑋 = 𝑘 ≥ 1.  

Let ||. ||1and ||. ||2 be two norms on 𝑋. We choose a basis {𝑒1, 𝑒2, … , 𝑒𝑘}of 𝑋. Then we know that 

there are constants 𝜆1, 𝜇1, 𝜆2, 𝜇2 > 0 such that  

𝜆1(|𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘|) ≤ ||𝛼1𝑒1 + 𝛼2𝑒2 + ⋯ + 𝛼𝑘𝑒𝑘||
1

≤ 𝜇1(|𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘|)and 

𝜆2(|𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘|) ≤ ||𝛼1𝑒1 + 𝛼2𝑒2 + ⋯ + 𝛼𝑘𝑒𝑘||
2

≤ 𝜇2(|𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘|) 

Now each 𝑥 ∈ 𝑋 has a unique representation   𝑥 = 𝛼1𝑒1 + 𝛼2𝑒2 + ⋯ + 𝛼𝑘𝑒𝑘, where the scalars 

𝛼1, 𝛼2, … , 𝛼𝑘depends on 𝑥. 

Then by the above 

𝜆1(|𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘|) ≤ ||𝑥||
1

≤ 𝜇1(|𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘|)and 

𝜆2(|𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘|) ≤ ||𝑥||
2

≤ 𝜇2(|𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘|) 


𝜆2

𝜇1
||𝑥||

1
≤ 𝜆2(|𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘|) ≤ ||𝑥||

2
≤ 𝜇2(|𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘|) 

=
𝜇2

𝜆1
𝜆1(|𝛼1| + |𝛼2| + ⋯ + |𝛼𝑘|) ≤

𝜇2

𝜆1

||𝑥||
1
 

𝑎||𝑥||1  ≤ ||𝑥||2 ≤ 𝑏||𝑥||1 , where 𝑎 =
𝜆2

𝜇1
> 0and 𝑏 =

𝜇2

𝜆1
> 0. 

Hence ||. ||1and ||. ||2 are equivalent. 

 

4.24Definition. A subset 𝐸of a linear space 𝑋 is said to be convex if for all 𝑥, 𝑦 ∈ 𝐸 we have 

𝑡𝑥 + (1 − 𝑡)𝑦 ∈ 𝐸 for all 𝑡 ∈ [0, 1]. 

 

4.25Theorem. The intersection of an arbitrary family of convex sets {𝐸𝑖}in a linear space 𝑋 is 

convex. 

Proof. Let 𝑥, 𝑦 ∈ ⋂ 𝐸𝑖𝑖  and let 𝑡 ∈ [0, 1]. 
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For each 𝑖, 𝐸𝑖is convex and 𝑥, 𝑦 ∈ 𝐸𝑖. 

So 𝑡𝑥 + (1 − 𝑡)𝑦 ∈ 𝐸𝑖for each 𝑖. 

Hence ⋂ 𝐸𝑖𝑖  is convex. 

 

4.26Theorem. In any normed linear space 𝑋, we have 

i) The closure �̅� of a convex set 𝐸 ⊂ 𝑋 is convex. 

ii) All balls in 𝑋 are convex. 

Proof. 

i) Let 𝑥, 𝑦 ∈ �̿�and let 𝑡 ∈ [0, 1].Then there are sequences {𝑥𝑛} and {𝑦𝑛} in 𝐸 such that 𝑥𝑛 →

𝑥and 𝑦𝑛 → 𝑦. 

Since 𝐸 is convex, so 𝑡𝑥𝑛 + (1 − 𝑡)𝑦𝑛 ∈ 𝐸 for all 𝑛; and we have  

𝑡𝑥𝑛 + (1 − 𝑡)𝑦𝑛 →  𝑡𝑥 + (1 − 𝑡)𝑦 

Hence 𝑡𝑥 + (1 − 𝑡)𝑦 ∈ �̿�. 

Thus the set �̿� is convex. 

ii) Consider any open ball 𝐵(𝑥0; 𝑟)in 𝑋. 

Let 𝑥, 𝑦 ∈ 𝐵(𝑥0; 𝑟) and let 0 ≤ 𝑡 ≤ 1. 

Then ||𝑥 − 𝑥0|| < 𝑟and ||𝑦 − 𝑥0|| < 𝑟. 

So, 

||𝑡𝑥 + (1 − 𝑡)𝑦 − 𝑥0|| = ||𝑡(𝑥 − 𝑥0) + (1 − 𝑡)(𝑦 − 𝑥0)|| ≤ |𝑡|||𝑥 − 𝑥0|| + |1 − 𝑡|||𝑦 − 𝑥0|| 

< 𝑡. 𝑟 + (1 − 𝑡)𝑟 = 𝑟 

Hence 𝑡𝑥 + (1 − 𝑡)𝑦 ∈ 𝐵(𝑥0; 𝑟). 

Hence the open ball 𝐵(𝑥0; 𝑟) is convex. 

Similarly, we can show that the closed balls 𝐵(𝑥0; 𝑟] is also convex. 

Hence the theorem. 
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6 Sturm’s separation and comparison theorems for second 

order linear equations. Regular Sturm-Liouville problems for 

second order linear equations. 
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7 Eigen values and eigen functions, expansion in eigen 

functions. 
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8 Solution of linear ordinary differential equations of second 

order in complex domain. 
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9 Existence of solutions near an ordinary point and a regular 

singular point. 
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10 Solutions of Hyper geometric equation and Hermite 

equation, Introduction to special functions. 

54 Mins 
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of Partial Differential Equations. 
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12 First order Partial Differential Equations, Classifications of 

First Order Partial Differential Equations. Charpit’s Method 

for the solution of First Order non-linear Partial Differential 

Equation. 
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13 Linear Partial Differential Equations of second and higher 

order, Linear Partial Differential Equation with constant 

coefficient, Solution of homogeneous irreducible Partial 

Differential Equations 
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14 Method of separation of variables, Particular integral for 
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15 Linear partial Differential equation with variable coefficients, 

Cannonical forms, Classificatin of second order partial 

differential equations, Canonical transformation of linear 

second order partial differential equations 
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equation under Dirichlet’s Condition ,  
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condition 

54 Mins 

18 Hyperbolic equation, occurrence of wave equations, in 

Mathematical Physics, Initial and boundary conditions, Initial 
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54 Mins 

19 D’ Alembert’s solutions, vibration of a sting of finite length, 

Initial value problem for a non-homogeneous wave equation 
54 Mins 

20 Elliptic equations, Gauss Divergence Theorem, Green’s 

identities, Harmonic functions, Laplace equation in 

cylindrical and spherical polar coordinates, Dirichlet’s 
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Block I

Ordinary Differential Equations



1 
 

Unit 1 

 

General Theory of Linear Differential Equation 

 
Introduction:  

In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the 

unknown function and its derivatives. In this unit, we gave the definitions of linear ordinary differential equations of 

n-th order and some associated theorems.  

Definition: An ordinary differential equation is an equation which involves only ordinary differential coefficients of 

a single independent variable. 

Linear equations with variable coefficient: 

A linear differential equation of order n with variable coefficients is an equation of the form 

P0(x)
𝑑𝑛  𝑦

𝑑𝑥 𝑛  + P1(x) 
𝑑𝑛−1 𝑦

𝑑𝑥 𝑛−1  + . . . + Pn(x)y = R(x) 

or more simply 

P0(x)y
(n)

 + P1(x) y
(n-1) 

+ . . . + Pn(x)y = R(x) 

where P0(x), P1(x), . . . , Pn(x), R(X) are complex valued functions on some real interval I = [a,b]. Points where P0(x) 

= 0 are called singular points and often the equation requires special consideration at such points. We assume that 

P0(x) ≠ 0 on I. Dividing by P0(x) we can obtain an equation of the same form, but with P0 replaced by the constant 1. 

Thus we consider the equation 

y
(n)

 + P1(x)y
(n-1)

 +  . . . + Pn(x)y = R(x) -----------(1) 

We designate the left side of (1) by L(y) . Thus 

 L(y) = y
(n)

 + P1(x) y
(n-1) 

+  . . . + Pn(x)y 

and (1) becomes  

L(y) = R(x) ---------(2) 

If R(x) = 0 for all x in I, we say  

L(y) = 0 --------(3)  

is a homogeneous differential equation, whereas if R(x)≠0 for some x in I, the equation  

L(y) = R(x) 

 is called a non-homogeneous equation. To study the general solution (2) it is necessary to consider the 

homogeneous equation (3). The reason of this is easily seen. 

Suppose that in some way we know that yg(x,𝑐1, c2,. . . , cn) is the general solution of (3), we expect it to contain n 

arbitrary constants since the equation is of n
th

 order and that yp(x) is a particular solution of (2). If y(x) is any 

solution of (2), we have  

 L(y-yp) = L(y) - L(yp) = R(x) – R(x) = 0 

This shows that y(x) – yp(x) is a solution of (3). 

Since yg(x,𝑐1, c2, . . . , cn) is the general solution of (3), it follows that 

 y(x) – yp(x) = yg(x,𝑐1, c2, . . . , cn) 

Unit 1 & Unit 2
Block I: Ordinary Differential Equations

Units 1 & 2

1

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Linear_polynomial


2 
 

}── (3)  

i.e., y(x) = yp(x) + yg(x,𝑐1, c2, . . . , cn) for a suitable choice of constants 𝑐1, c2, . . . , cn. Thus we obtain the 

following theorem. 

Theorem 1.1: If yg is the general solution of (3) and yp is any particular solution of (2), then yg +yp is the general 

solution of (2). 

We shall later show that if yg is known, then a formal procedure is available for finding yp. This shows that the 

central problem in the theory of linear differential equation is that of solving the corresponding homogeneous 

equation. Accordingly most of our attention will be devoted to study the structure of yg. The following existence and 

uniqueness theorem assure ourselves that the homogeneous equation (3) really has a solution. 

 

Theorem 1.2: Let P1(x), P2(x), . . . , Pn(x) be continuous functions on an interval containing the point x0. If a0, a1, . . . 

,an-1 are any n constants, then the homogeneous equation L(y)=y
(n)

 + P1(x) y
(n-1)

+------+Pn(x)y = 0 has one and only 

one solution y(x) on I satisfying y(x0) = a0, y’(x0) = a1, y′′(x0) = a2, --- y
(n-1)

 (x0) =an-1. Clearly if y(x) ≡ 0,  then 

y
(r)

(x)=0, r =1,2, ---, n-1 and is therefore a unique solution of (3).  

Definition: A set of m functions, f1(x), f2(x), ---, fm(x) defined on some interval I are said to be linearly dependent 

on I if there exist constants C1, C2, ---, Cm, not all zero, but  

c1f1(x) +c2f2(x)+ --- + cmfm(x) =  0 for all x in I. 

If c1 f1(x) + c2f2(x) + --- + cmfm(x) = 0 implies c1=c2 = --- = cm = 0, then the functions will be linearly independent.  

It is worth to noting that if one of fi(x) (i = 1, 2, --- , m) say fp(x) is identically zero on I, then the set of functions are 

linearly dependent, as it is sufficient to chose cp =1 and ci = 0 for all other i.  

If f1, f2, ---, fm are any m solutions of L(y) = 0 on an interval I and c1, c2, ---, cm are any m constants, then  

  L(c1f1 + c2f2+ ---+ cmfm) 

= c1L(f1) + c2L (f2) + --- +cmL(fm) 

= 0, 

which implies that c1f1+c2f2+ ---+cmfm is also a solution of L(y) = 0. Therefore any linear combination of solutions is 

again a solution. The trivial solution is the function which is identically zero on I.  

 

Theorem 1.3: There exist n linearly independent solutions of L(y) = 0 on an interval I where L(y) is given by 

 L(y)= y
(n)

+p1(x)y
(n-1)

 + --- +pn(x)y. 

Proof: Let x0 be a point on I. In view of Theorem 1.2, there is a solution y of L(y) = 0 satisfying  

y1(x0) = 1, y1′ (x0) = 0, y1′′ (x0) = 0, ---, y1
(n-1)

 (x0) = 0. 

In general, for each i =1, 2, ---, n, there is a solution yi satisfying  

yi
(i-1)

 (x0) = 1, yi
(j-1)

 (x0) = 0,  j ≠ i ─── (1) 

We have to show that y1, y2, ---, yn are linearly independent. Suppose there are constants c1, c2, --- , cn such that  

c1y1(x)+c2y2(x) + --- + cnyn(x) = 0 ── (2) for all xεI. 

Differentiating successively n-1 times we obtain   

  c1 y1′ (x) + c2 y2′ (x) + --- + cn yn′ (x) = 0 

---------------------------------------------- 

---------------------------------------------- 

c1y1
(n-1)

 (x)+ c2y2
(n-1)

(x) + --- cnyn
(n-1)

 (x) =0 

for all x in I. In particular, (2) and (3) must hold at x0. 

Putting x= x0 in (2) and using (1), we obtain,  

2
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}── (2) ∀x∈I 

c1 . 1 + c2. 0 + - - - + cn. 0 = 0 

Putting x = x0
 
in the equations (3) and using (1), we obtain  

c2 = c3  = --- = cn = 0, 

and thus the solutions y1 , y2 --- , yn are linearly independent. This proves the theorem.   

Definition: let f1(x), - - - fn(x) be n functions defined on an interval I = [a, b] and each possesing (n-1)th derivatives. 

The Wronskian of these n functions is defined by the determinant  

𝑊 𝑓1𝑓2, … 𝑓𝑛 (𝑥) =   

𝑓1(𝑥)   𝑓2(𝑥) …   𝑓𝑛(𝑥)

𝑓1
′(𝑥)    𝑓2

′(𝑥) … 𝑓𝑛
′(𝑥)

:     ∶     ∶     ∶     ∶

𝑓1
 𝑛−1 

(𝑥)   𝑓2
 𝑛−1 

(𝑥) …𝑓𝑛
 𝑛−1 

(𝑥)

   

 

Theorem 1.4: If y1, y2, ......, yn are n solutions of L(y) = 0 on some interval I, they are linearly independent there if 

and only if W(y1, y2, ......, yn)(x) ≠ 0   ∀ x ∈ I. 

Proof: First we assume that W(y1, y2, ........., yn)(x) ≠ 0   ∀ x∈ I. 

If there are constants y1, y2, ......., yn such that 

c1y1(x) +c2y2(x) +.....................+ cnyn(x) = 0 ── (1)  ∀x∈I 

then clearly 

c1 y1′ (x) +c2 y2′ (x) +..............+ cn yn′ (x) = 0 
: : : : : 

c1y1
(n-1)

(x) +c2y2
 (n-1)

 (x) +............+ cnyn
(n-1)

 (x) = 0  

 

For a fixed x∈I, the equations (1) and (2) are linear homogeneous equations satisfied by c1, c2, ........, cn. 

The determinant of the coefficients is just W(y1, y2, ........., yn)(x), which is not zero. Hence there is only one solution 

of the system viz.  c1= c2 = c3 = ..... = cn = 0. Therefore  y1, y2,......, yn are linearly independent in I. 

Conversely, suppose that y1, y2,........., yn  are linearly independent on I. Suppose that there is an x0 ∈I such that  

 W(y1, y2, ........, yn)(x0) = 0    

This implies that the system of n linear equations 

c1y1(x0) +c2y2
 
(x0) +............+ cnyn(x0) = 0 

c1 y1′ (x0) +c2 y2′ (x0) +..............+ cn yn′ (x0) = 0 

: : : : 

c1y1
(n-1)

(x0) +c2y2
 (n-1)

 (x0) +............+ cnyn
(n-1)

 (x0) = 0  

 

has a solution  c1, c2, ....., cn not all zero. 

We consider the function Φ =c1y1 +c2y2 +......+cnyn 

Now, L(Φ)=0 and from (3), we see that 

Φ(x0) =0, Φ′(x0) = 0, ........ , Φ(n-1)
(x0) = 0 

From the uniqueness theorem (Theorem 2), Φ(x) ≡ 0   ∀𝑥 ∈ 𝐼, and thus 

 

c1y1(x) +c2y2
 
(x) +............+ cnyn(x) = 0 ∀𝑥 ∈ 𝐼. 

}── (3)  
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But this contradicts the fact that y1, y2, ........, yn are linearly independent in I. Thus our supposition that there is a 

point x0 in I such that W(y1, y2, .........., yn)(x0) = 0   must be false. 

Hence W(y1, y2,....................., yn)(x0) ≠ 0   for all 𝑥 ∈ 𝐼. This proves the theorem. 

 

Theorem 1.5: Let y1, y2, ........, yn be n linearly independent solutions of L(y) = 0  on  an interval I. If y(x) is any 

solution of L(y) = 0 on I, it can be expressed in the form y = c1y1 + c2y2 +.......+cnyn, where c1, c2, ......, cn are 

constants. 

Proof: Let x0 be a point in I, and suppose that 

y(x0) = a, y′ (x0) = a2, ........, y
(n-1)

 (x0) = an. 

We show that there exist unique constants c1, c2, ....., cn such that Φ = c1y1 + c2y2 +.....+cnyn is a solution of L(y) =0 

satisfying  Φ(x0) = a1, Φ
1
(x0) = a2, ........, Φ

(n-1)
 (x0) = an. 

By the uniqueness result of Theorem 1.2, we then have y = Φ i.e. y = c1y1 + c2y2 +.......+cnyn. The initial conditions 

for Φ are equivalent to the following equation for c1, c2, ...... , cn: 

 

c1y1(x0) +c2y2
 
(x0) +............+ cnyn(x0) = a1 

c1 y1′ (x0) +c2 y2′
 
(x0) +............+ cn yn′ (x0) = a2 

: : : : 

c1y1
(n-1)

(x0) +c2y2
 (n-1)

 (x0) +............+ cnyn
(n-1)

 (x0) = an 

  

This is a system of  n non-homogeneous equations for c1, c2, ......, cn . The determinant of the coefficients is  just 

W(y1, y2, ....., yn)(x0), which is not zero, since y1, y2, ......., yn are linearly independent. Therefore there is a unique 

solution c1, c2, ....., cn  of the system (1) and this completes the proof. 

 

Theorem 1.6: Let y1, y2, ....., yn be n solutions of L(y) = 0 on an interval I and x0 be any point in I. Then 

W(y1, y2, ......, yn)(x) = exp [ -  𝑝1
𝑥

𝑥0
 𝑡 𝑑𝑡] 𝑤 𝑦1 , 𝑦2 , … , 𝑦𝑛  𝑥0 … (1) 

Proof: We first prove the theorem for n = 2. 

In this case y1, y2 are solutions of the second order linear homogeneous differential equation 

 y′′+p1(x)y′+ p2(x)y = 0 ─(1) 

Therefore, the Wronskian 

 W(y1, y2) = 
𝑦1 𝑦2

𝑦1′ 𝑦2 ′
  = y1y2′ – y1′ y2. 

∴ W′ (y1, y2) = y1 y2′′ - y1′′ y2. 

Since y1, y2  are solutions of (1), we have 

 y1′′= – p1(x)y1′+ p2(x)y1 

 y2′′= – p1(x)y2′+ p2(x)y2 

Hence W′ (y1, y2) = y1(– p1(x)y2′+ p2(x)y2) – (–p1(x)y1′+ p2(x)y1) y2 

                = – p1(x)[ y1y2′ – y1′ y2] 

                = – p1(x)w(y1 y2) 

 

}── (1)  
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From this we see that W(y1 y2) is a solution of the first order linear differential equation 

 z′ = –p1(x)z. 

Solving we get  

 W(y1, y2)(x) = c exp[-  𝑝1
𝑥

𝑥0
 𝑡 𝑑𝑡] 

Putting x=x0, we see that c = W (y1, y2)(x0) and therefore 

 W(y1, y2)(x) = exp[-  𝑝1
𝑥

𝑥0
 𝑡 𝑑𝑡] w(y1, y2)(x0). 

This proves the result for n = 2. 

Now we consider the theorem for general n. 

For brevity, we write W(x) =W(y1, y2, ......., yn)(x) 

Then W(x) = 

𝑦1     𝑦2 … 𝑦𝑛

𝑦1′    𝑦2
′ … 𝑦𝑛 ′

:        ∶ :     

𝑦1
(𝑛−1)

𝑦2
(𝑛−1)

… 𝑦𝑛
(𝑛−1)

  

Differentiating w.r.t. x, we get 

𝑊 ′(𝑥) =  

𝑦1    𝑦2 … 𝑦𝑛

𝑦1′    𝑦2
′ … 𝑦𝑛 ′

:        ∶ :     

𝑦1
(𝑛)

𝑦2
(𝑛)

… 𝑦𝑛
(𝑛)

  

 

Since 𝑦1 , 𝑦2 , … , 𝑦𝑛  are solutions of  

L(y) = y
(n)

 + p1 (x) y
(n-1)

 + P2(x) y
(n-2)

 + ...+ pn-1(x)y′ +pn(x) y = 0,  

we have 

yi
(n)

 = - p1(x)yi
(n-1)

 - p2(x)yi
(n-2)

 -... - Pn-1(x)yi′ -pn(x)yi, i = 1, 2, ..., n, and therefore 

 

∴  𝑊 ′(𝑥) =

 

 

𝑦1       𝑦2 … 𝑦𝑛

𝑦1′    𝑦2
′ … 𝑦𝑛 ′

:        ∶ :       

𝑦1
 𝑛−2 

    𝑦2
 𝑛−2 

… 𝑦𝑛
 𝑛−2 

− 𝑝𝑖

𝑛

𝑖=1

 𝑥 𝑦1
(𝑛−𝑖)

 −  𝑝𝑖

𝑛

𝑖=1

 𝑥 𝑦2
(𝑛−𝑖)

… −  𝑝𝑖

𝑛

𝑖=1

 𝑥 𝑦𝑛
(𝑛−𝑖) 

 

 

Multiplying 1
st
 row by pn, 2

nd
  row by pn-1, ...,(n-1)

th
 row by p2 and then adding with last row, we get 

 𝑊 ′(𝑥) =
 

 

𝑦1      𝑦2 … 𝑦𝑛

𝑦1′    𝑦2
′ … 𝑦𝑛 ′

:        ∶ :      ∶

𝑦1
 𝑛−2     𝑦2

 𝑛−2 
… 𝑦𝑛

 𝑛−2 

−𝑝𝑖 𝑥 𝑦1
(𝑛−1)

 − 𝑝𝑖 𝑥 𝑦2
(𝑛−1)

…− 𝑝𝑖 𝑥 𝑦𝑛
(𝑛−1)

 

 
 

 

= −𝑝1 𝑥  𝑊(𝑥). 

Solving we get,  

W(x) = c exp [-  𝑝1
𝑥

𝑥0
 𝑡 𝑑𝑡] 
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Putting x = x0, we get c = W(x0) 

∴ W(x) = exp [-  𝑝1
𝑥

𝑥0
 𝑡 𝑑𝑡] W(x0) 

This proves the theorem. 

 

Note: The identity (1) is known as Abel’s identity. 

 

Summary: 

 Linear equations with variable coefficient 

 Theorem on general and particular solution 

 Linear independent solution of linear ODE 

 Wronskian 
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      Unit  2 

 

Second Order Linear Differential Equation 

 

Introduction:  

In this unit, we will study linear ordinary differential equations of the second order. In this section we introduce the 

method of variation of parameters to find particular solutions to non-homogeneous differential equation. We give a 

detailed examination of the method as well as derive a formula that can be used to find particular solutions. Then we 

will discuss about the fundamental set of solutions and second order linear ODE in its normal form. 

Method of Variation of parameters: 

Consider the non-homogeneous equation  

L(y) =R(x) ─ (1)  

where L(y) is given by 

 L(y)= y
(n)

+p1(x)y
(n-1)

 + --- +pn(x)y. 

If  Pi(x), i =1, 2,...,n are constants and R(x) has a particular simpler form viz., an exponential, sine, cosine, or a 

polynomial, we can obtain a particular solution of (1) and y = yg + yp is the general solution. 

We now develop a powerful method that always works regardless of the nature of P i(x) and R(x), provided that the 

general solution of the homogeneous equation L(y) = 0 is known. 

Let y(x) = c1y1(x) +c2y2(x) +...+cnyn(x) - - - - (2) 

be the general solution of the homogeneous equation L(y) = 0, - - - - (3) 

where y1, y2, ...,yn are n linearly independent solutions of (3). We replace the constants in (2) by unknown functions 

v1(x), v2(x), ...,vn(x) in such a manner that 

 y(x) = v1(x)y1(x)+v2(x)y2(x)+...+vn(x)yn(x)    will be a solution of (1). 

To find n unknown function it will be necessary to have n equations relating these functions. 

We consider successive (n-1)th derivative of y(x) and write 

y′(x) = v1y1′+v2y2′+ . . .+ vnyn′ 

so that v1′y1+v2′y2+. . .+vn′yn  = 0 

y′′(x) = v1y1′′+v2y2′′+ . . .+vnyn′′ 

so that  v1′y1′+v2′y2′+. . .+vn′yn′  = 0 

: :  : : 

y
(n-1)

(x) = v1y1
(n-1)

+ v2y2
(n-1)

+. . .+ vnyn
(n-1) 

so that  v1′y1
(n-2)

+ v2′y2
(n-2)

+. . .+ vn′yn
(n-2)

 = 0 

Differentiating once w.r.t. x, we get 

y
(n)

(x) = v1y1
(n)

+ v2y2
(n)

+...+ vnyn
(n)

+ v1′y1
(n)

+ v2′y2
(n-1)

+...+ vn′yn
(n-1)

 

Substituting the values of y′(x), y′′(x),  . . .  , y
(n)

(x) in (1), we get 

R(x) = v1[y1
(n)

+p1y1
(n-1)

+ . . .+pn-1y1′ +pny1] 

 + v2[y2
(n)

+p1y2
(n-1)

+ . . .+pn-1y2′ +pny2] 

Unit 3
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 + ....................................................... 

 + vn[yn
(n)

+p1yn
(n-1)

+ . . .+pn-1yn′ +pnyn] 

 + v1′y1
(n-1)

+ v2′y2
(n-1)

+ . . .+ vn′yn
(n-1)

 

Since y1, y2, ...,yn  are solutions of (3), we obtain from above  

 v1′y1
(n-1)

+ v2′y2
(n-1)

+ . . .+ vn′yn
(n-1)

 = R(x) 

Thus we obtain the non-homogeneous system 

 v1′y1
(i)

+ v2′y2
(i)

+ . . .+ vn′yn
(i)

 = 0 

   i =0, 1, 2, . . . , n-2 

 v1′y1
(n-1)

+ v2′y2
(n-1)

+ . . . + vn′yn
(n-1)

 = R(x) 

 

Since the Wronskian w(y1, y2, ...,yn )(x) ≠ 0, the system (4) has a non-trivial solution v1′, v2′,...,vn′ so that 

vi = 
𝑊𝑖(𝑥)

𝑊(𝑥)
 R(x), i = 1, 2, . . . , n 

where Wi(x) is obtained from W(x) by replacing the i-th column of W(x) by (0,0,0, . . .,1) 

∴  vi(x)  =   
𝑊𝑖(𝑡)

𝑊(𝑡)

𝑥

𝑥0
 R(t)dt, i = 1, 2, ....... , n 

With these values of vi(x), i = 1, 2, ......., n, we obtain a particular solution of (1) as  

y(x) = (c1 +v1) y1(x) + (c2 +v2)y2(x) + ....+ (cn + vn)yn(x) 

where c1, c2, ....., cn are arbitrary constants. 

 

 Example 1: Find a particular solution of  

y′′ +2y′ +y = e
-x

log x 

Solution: The corresponding homogeneous equation is 

 y′′ +2y′ +y = 0 

The complementary function is y(x) = (A+Bx)e
-x

 

We assume y(x) = v1(x)e
-x

+V2(x)xe
-x

 to be a solution of the given equation subject to the conditions 

v1′(x)e
-x

+ v2′(x) xe
-x

 = 0 

and  - v1′(x)e
-x

+(e
-x

-xe
-x

) v2′(x) = e
-x

log x 

Here, 

 𝑤 𝑥 =   
𝑒−𝑥                𝑥𝑒−𝑥

−𝑒−𝑥        𝑒−𝑥−𝑥𝑒−𝑥   

 =  𝑒−2𝑥  
1      𝑥

−𝑥       1 − 𝑥
  

=  e
-2x

 ≠0 

∴ 𝑣1′(x) = 
 0     𝑥𝑒−𝑥      
  1        𝑒−𝑥−𝑥𝑒 −𝑥  

𝑒−2𝑥  e
-x

log x 

= -xlogx 

and 𝑣2′(x) = 
 𝑒

−𝑥       0
−𝑒−𝑥     1

 

𝑒−2𝑥  e
-x

log x 

 = log x 

}── (4)  
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∴ 𝑣1(x) = − 𝑡 log 𝑡 𝑑𝑡
𝑥

0
 

             = - 
𝑥2

2
 logx + 

𝑥2

4
 

𝑣2(x) =  log 𝑡 𝑑𝑡
𝑥

0
= xlog x - x

 

So a particular solution of the given equation is 

y(x) =(
𝑥2

4
 - 

𝑥2

2
log 𝑥)𝑒−𝑥 +  𝑥𝑙𝑜𝑔 𝑥 − 𝑥 𝑥𝑒−𝑥  

 

Example 2: Find a particular solution of the equation 

                     y′′ - 2y′ - 3y = 64xe
-x 

Solution: The corresponding homogeneous equation is  

  y′′ - 2y′ - 3y = 0 

The complementary function is y(x) = Ae
3x

 + Be
-x

 

We assume y(x) = v1(x)e
3x

 + v2(x)e
-x

 to be a solution of the given equation subject to the conditions 

  v1′(x)e
3x

 +v2′(x)e
-x

 = 0 

and     3v1′(x)e
3x

 -v2′(x)e
-x

 = 64xe
-x 

Here, 𝑤 𝑥 =  𝑒3𝑥          𝑒−𝑥

3𝑒3𝑥        −𝑒−𝑥   

                  = e
2x 

1         1
3    − 1

  

                         
 = - 4e

2x
 ≠ 0 

∴ 𝑣1(x) = 
 0    𝑒−𝑥

1 −𝑒−𝑥  

−4𝑒2𝑥  64xe
-x 

 = 
−𝑒−𝑥

−4𝑒2𝑥  64xe
-x

 

 = 16xe
-4x

 

and v2′(x) = 
 𝑒3𝑥    0
3𝑒3𝑥     1

 

−4𝑒2𝑥  64xe
-x 

 = 
𝑒3𝑥

−4𝑒2𝑥  64xe
-x 

 = -16x 

∴ 𝑣1(x) =  16𝑥𝑒−4𝑥 𝑑𝑥 

             = 16[- 
𝑒−4𝑥

4
 x - 

𝑒−4𝑥

16
] 

             = - 4xe
-4x

- e
-4x

 

and 𝑣2(x) = − 16𝑥 𝑑𝑥 

 = -8x
2 

Hence a particular solution of the given equation is  

y(x) = – (4x+1)e
-x

 – 8x
2
e

-x
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Exercise: Find a particular solution of each of the following: 

i) y′′ +y = cosec x 

ii) y′′ +4y = tan 2x 

iii) y′′ +2y′+5y = e
-x

sec 2x 

Fundamental set of solutions: 

 A set of functions which has the property that if y1, y2 belong to the set and c1,c2 are any two constants, then 

c1y1+c2y2 belongs to the set also, is called a linear space of functions. We have seen that the set of all solutions of 

L(y) = 0 on an interval I is a linear space of functions. 

If a linear space of functions contains n functions y1, y2,...,yn which are linearly independent and such that every 

function in the space can be represented as a linear combination of these functions, then y1, y2,...,yn is called a basis 

of the linear space, and the dimension of the linear space is the integer n. A basis is sometimes called a fundamental 

set of solutions. 

 Theorem 2.1: If ф1 is a solution of  

 L(y) = y′′+ p1(x)y′ + p2(x)y = 0 ─ (1) 

on an interval I, and ф1(x) ≠ 0 ∀ x ∈ I, a second solution ф2(x) of (1) on I is given by  

ф2 (x) = ф1 (x) 
1

[ф1  𝑠 ]2

𝑥

𝑥0
 exp [ −  𝑝1

𝑠

𝑥0
 𝑡 𝑑𝑡]𝑑𝑠 

The functions ф1 and ф2 form a basis for the solutions of (1). 

Proof: Here L(y) = y′′+ p1(x)y′ + p2(x)y = 0 

Let ф2= ụф1 be a solution on I. 

Then   L(uф1) = (uф1)′′+ P1(x)(u ф1)′ + P2(x) u ф1= 0 

 i.e., u′′ ф1+2u′ ф1′+ uф1′′ + P1(x) u′ ф1+ P1(x) u ф1′ + P2(x) u ф1 = 0 

 i.e., u′′ ф1+u′ [2ф1′+ P1(x) ф1]+u[ф1′′ + P1(x)ф1′ + P2(x)ф1] = 0 

 i.e., u′′ ф1+(2ф1′+ P1(x) ф1) u′ = 0 

Let v = u′. 

Then we have 

 ф1v′+2ф1′v+ P1ф1 v = 0 . . . . . (2) 

 i.e., ф1
2
v′+2ф1 ф1′v+ P1ф1

2
 v = 0  . . . . .  (3) 

 i.e.,( ф1
2
v)′+ P1(ф1

2
 v) = 0 

This implies that 

 ф1
2
 v(x) = c exp[- 𝑝1

𝑥

𝑥0
(t)dt] 

where x0 is a point in I and c is any constant. 

Since any constant multiple of a solution of (3) is again a solution, we see that 

 v(x) = 
1

[ф1  (𝑥)]2 exp [- 𝑝1
𝑥

𝑥0
(t)dt] 

is a solution of (3), and also of (2). 

Therefore two independent solutions of the equation (1) on I are ф1 and ф2 where 

ф2 (x) = ф1(x)  
1

[ф1  (𝑠)]2

𝑥

𝑥0
 exp [- 𝑝1

𝑠

𝑥0
(t)dt] ds 

This completes the proof. 
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Example 3: Find the general solution of x
2
y′′−2y = 0, 0 < x < ∞. 

Solution: It is easy to verify that ф1= x
2
 is a solution of the given homogeneous equation in 0 < x < ∞. Since this 

function does not vanish on 0, 0 < x < ∞, there is another independent solution ф2 of the form ф2= u ф1= ux
2
. 

So we obtain   x
2
(ux

2
)′′ − 2ux

2
 = 0  

 i.e.,  x
2
(u′′x2

+4xu′ +2u) −2ux
2
 = 0 

 i.e., u′′ x2
 + 4xu′ = 0 

 i.e., v′x2
 + 4xv = 0    [u′ = v] 

 i.e., v′x + 4v = 0 

 i.e., 
𝑣′

𝑣
 = − 

4

𝑥
 

             i.e., v = 𝑐𝑒− 
4

𝑥
𝑑𝑥

 

 i.e., v = x
- 4

       [taking c = 1] 

∴ u = − 
1

3
 x

-3 

This gives ф2(x) = − 
1

3𝑥
 

Since any constant multiple of a solution is also a solution, we may choose second solution as ф2(x) = 
1

𝑥
 

Thus x
2
, x

-1
 form a basis of the given equation on 0, 0 < x < ∞. 

 

Example 4: Find the general solution of (x
2−1)y′′− 2xy′ + 2y = (x

2−1)
2 

, 0 < x < ∞, given that y = x is a solution of 

the corresponding homogeneous equation. 

 

Solution. The given equation is  

 = (x
2
-1) y′′- 2xy′ + 2xy′ - 2y = (x

2
-1)

2    . . . . .  .
(1) 

The corresponding homogeneous equation is  

 (x
2
-1) y′′- 2xy′ + 2y = 0  . . . . . (2) 

Given that ф1= x is a solution of the homogeneous equation (2). Let ф2= u ф1 = ux be another solution of (2). 

So we obtain from (2), 

 (x
2
-1) (ux)′′- 2x(ux)′ +2ux = 0 

or,  (x
2
-1) (u′′x+2u′) - 2x(u′x+u) +2ux = 0 

or, u′′x (x
2
-1) + 2u′ (x

2
-1) - 2x

2
u′ = 0 

or, u′′x (x
2
-1) -2u′ = 0 

or, v′x (x
2
-1) - 2v= 0     [u′ = v] 

or, 
v′

𝑣
 = 

2

𝑥(𝑥2−1)
 

or,           log v = -2 
𝑑𝑥

𝑥
 + 

𝑑𝑥

𝑥+1
 + 

𝑑𝑥

𝑥−1
 

or,           log v = - 2logx + log(x+1) +log(x-1) + log c 

or,           v = 
 𝑥+1  𝑥−1 𝑐

𝑥2  

∴  v = 
𝑥2−1

𝑥2            [taking c = 1] 

∴  u =  (1 −
1

𝑥2)dx 

or,  u = ( x + 
1

𝑥
) 

This gives ф2(x)= (x + 
1

𝑥
) x 

i.e., ф2(x)= x
2
 + 1 

11
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Thus x and x
2
 + 1 form a basis of the given equation on 0, 0<x<∞. 

 

 

Example 5: Find the general solution of x
2
y′′- 7xy′ + 15y = 0 given that ф1(x)= x

3
 is a solution. 

Solution: The given homogeneous equation is  

x
2
y′′- 7xy′ + 15y = 0 

Given that ф1= x
3
 is a solution of the homogeneous equation on 0, 0<x<∞. 

Since this function does not vanish on 0, 0<x<∞, there is another independent solution ф2 of the form ф2= u ф1 = ux
3
 

So we obtain x
2
(ux

3
)′′ - 7x(ux

3
)′ + 15 ux

3 
= 0 

 or, x
2
(u′′x3

+ 2u′. 3x
2
 + u.6x) – 7x(u 3x

2
+ u′x3

) + 15ux
3
 = 0  

 or, u′′x
5
 + 6u′x

4
 + 6ux

3
 – 21ux

3
 – 7u′x

4
 + 15ux

3
 = 0  

 or, u′′x
5
 - u′x

4
 = 0 

 or,  log v = log cx 

 ∴ v = x        [taking c = 1] 

            ∴ u =  𝑥 𝑑𝑥 

            i.e., u = 
𝑥2

2
 

This gives ф2 =  
𝑥2

2
 . x

3
 = 

 𝑥5

2
 

Since any constant multiple of a solution is also a solution, we may choose second solution ф2(x)= x
5
 

Thus x
3
, x

5
 form a basis of the given equation on 0, 0 < x < ∞. 

 

Second order linear differential equation – Normal form: 

We have already seen that a linear second order equation as 

𝑑2𝑦

𝑑𝑥 2  + p 
𝑑𝑦

𝑑𝑥
 + Qy = R        . . . . . .      (1) 

can be solved when one integral solution of its corresponding homogeneous equation is known. But when it is not 

possible to get such an integral solution, then we can find a method by which (1) can be solved. 

Let  y = uv be a solution of (1), where u and v are functions of x and none of them is an integral solution of the 

corresponding homogeneous equation of (1). 

Now, 
𝑑𝑦

𝑑𝑥
 = u 

𝑑𝑣

𝑑𝑥
 + v 

𝑑𝑢

𝑑𝑥
 

and  
𝑑2𝑦

𝑑𝑥 2  = u 
𝑑2𝑣

𝑑𝑥 2  + 2 
𝑑𝑢

𝑑𝑥
 
𝑑𝑣

𝑑𝑥
 + v 

𝑑2𝑢

𝑑𝑥 2  

Then from (1) we got, 

u
𝑑2𝑣

𝑑𝑥 2 + 2
𝑑𝑢

𝑑𝑥
 
𝑑𝑣

𝑑𝑥
 +v 

𝑑2𝑢

𝑑𝑥 2  + p (u
𝑑𝑣

𝑑𝑥
 + v 

𝑑𝑢

𝑑𝑥
) + Quv = R 

or,  u
𝑑2𝑣

𝑑𝑥 2 + (2
𝑑𝑢

𝑑𝑥
+ 𝑝𝑢) 

𝑑𝑣

𝑑𝑥
 + v (

𝑑2𝑢

𝑑𝑥 2  + p 
𝑑𝑢

𝑑𝑥
 + Qu) = R          . . . . .  (2) 

Now, the term containing 
𝑑𝑣

𝑑𝑥
 may be removed from (2), if  

we put 2
𝑑𝑢

𝑑𝑥
 +pu = 0      . . . . .     (3) 
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 i.e., u = 𝑒−
1

2
 𝑝  𝑑𝑥

    . . . . . .    (4) 

Using (3) in (2), we obtain, 

u 
𝑑2𝑣

𝑑𝑥 2 + v( 
𝑑2𝑢

𝑑𝑥 2  + p 
𝑑𝑢

𝑑𝑥
 + Qu) = R 

i.e., 
𝑑2𝑣

𝑑𝑥 2 + 
1

𝑢
 (

𝑑2𝑢

𝑑𝑥 2  + p 
𝑑𝑢

𝑑𝑥
 + Qu)v = 

𝑅

𝑢
            . . . . .            (5) 

From (3) we get, 

 
𝑑𝑢

𝑑𝑥
 = - 

1

2
 pu 

∴
𝑑2𝑢

𝑑𝑥 2  = - 
1

2
 p 

𝑑𝑢

𝑑𝑥
 - 

1

2
 u

𝑑𝑝

𝑑𝑥
 

or, 
𝑑2𝑢

𝑑𝑥 2  = 
1

4
 p

2
u - 

1

2
 u 

𝑑𝑝

𝑑𝑥
 

So from (5), we get, 

𝑑2𝑣

𝑑𝑥 2 + 
1

𝑢
 (

1

4
 p

2
u −  

1

2
 u 

𝑑𝑝

𝑑𝑥
 + p 

𝑑𝑢

𝑑𝑥
 + Qu) v = 

𝑅

𝑢
 

or, 
𝑑2𝑣

𝑑𝑥 2 + 
1

𝑢
 (

1

4
 p

2
u −  

1

2
 u 

𝑑𝑝

𝑑𝑥
−

1

2
 p

2
u + Qu)v = 

𝑅

𝑢
 

or, 
𝑑2𝑣

𝑑𝑥 2 +(Q − 
1

2
  
𝑑𝑝

𝑑𝑥
 − 

1

4
 p

2
) v = 

𝑅

𝑢
 

i.e., 
𝑑2𝑣

𝑑𝑥 2 +Lv = M      . . . . .        (6) 

where L = Q − 
1

2
 
𝑑𝑝

𝑑𝑥
 − 

1

4
 p

2
   and   M = 

𝑅

𝑢
 

The equation (6), which does not contain the term 
𝑑𝑣

𝑑𝑥
, is known as normal form of (1). 

 

Example 6: Solve 
𝑑2𝑣

𝑑𝑥 2 - 4x
𝑑𝑦

𝑑𝑥
 + (4x

2
-1)y = -3e

x2
 sin 2x   . . . . .    (1) by reducing it in its normal form. 

Solution: Here P = − 4x 

 Q = 4x
2
 – 1 

 R = - 3e
x2

 sin 2x 

In order to remove the first derivative, we choose  

 u = 𝑒−
1

2
 𝑝  𝑑𝑥

 

     i.e., u = 𝑒−
1

2
 −4𝑥  𝑑𝑥

 

     i.e., u = e
x2

 

Now, putting y = uv = ve
x2

 in (1), we get 

𝑑2𝑣

𝑑𝑥 2 + Lv = M ─ (2) 

where L = Q − 
1

2
 
𝑑𝑝

𝑑𝑥
 − 

1

4
 p

2 

  = (4x
2
 – 1) − 

1

2
 (− 4) − 

1

4
 . 16 x

2
 

  = 4x
2
 – 1+2 - 4x

2
 

  = 1 

13
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and M = 
𝑅

𝑢
   = − 3sin 2x 

Now (2) reduces to  

𝑑2𝑣

𝑑𝑥 2 + v = −3sin 2x      . . . . .      (3) 

Now the complementary function is 

 v = c1cos x + c2 sin x,  where c1, c2 are arbitrary constants. 

P.I = 
1

𝐷2+1
 (-3 sin 2x) 

     = sin 2 x 

So the general solution of (3) is 

      v = c1cos x + c2 sin x + sin 2x 

∴ The general solution of (1) is  

       y = uv 

  i.e., y = e
x2

(c1cos x + c2 sin x + sin 2x) 

 

Example 7: Solve 
𝑑2𝑦

𝑑𝑥 2  −2 tan x 
𝑑𝑦

𝑑𝑥
 −(a

2
+1)y = e

x
 sec x by reducing to normal form. 

 

Solution: The given equation is 

𝑑2𝑦

𝑑𝑥 2  −2 tan x 
𝑑𝑦

𝑑𝑥
 −(a

2
+1)y = e

x
 sec x     . . . . .  (1) 

Here,  P = −2 tan x 

 Q = − (a2
+1) 

 R = e
x
 sec x 

In order to remove the first derivative, we choose 

u = 𝑒−
1

2
 𝑝  𝑑𝑥

      

i.e., u = 𝑒−
1

2
 −2 𝑡𝑎𝑛  𝑥  𝑑𝑥

 

     i.e., u = sec x 

Now putting y = uv = v sec x in (1) we have 

 
𝑑2𝑦

𝑑𝑥 2  + Lv = M    ─ (2) 

where L = Q −  
1

2
 
𝑑𝑝

𝑑𝑥
 − 

1

4
 p

2
 

  = −(a
2
+1) − 

1

2
 (−2 sec

2
x) − 

1

4
 . 4 tan

2
 x 

  = − a
2
 – 1 + sec

2
x – tan

2
x =  −a

2 

and M = 
𝑅

𝑢
 = e

x 

Now, (2) reduces to 

 
𝑑2𝑣

𝑑𝑥 2 – a
2
 v = e

x 
      . . . . .           (3) 
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The complementary function is 

 v = c1e
ax

 + c2e
-ax

, where c1 and c2 are arbitrary constants 

P. I. = 
1

𝐷2−𝑎2 𝑒𝑥      =   
𝑒𝑥

1−𝑎2 

So, general solution of (3) is 

 v = c1e
ax

 + c2e
-ax

 + 
𝑒𝑥

1−𝑎2  

∴ The general solution of (1) is 

 y = uv 

 i.e., y = sec x (c1e
ax

 + c2e
-ax

 + 
𝑒𝑥

1−𝑎2) 

 

Example 8: Solve 
𝑑2𝑦

𝑑𝑥 2 −
2

𝑥
 
𝑑𝑦

𝑑𝑥
+(a

2
+

2

𝑥2)y = 0  by reducing to normal form. 

Solution:  The given equation is  

 
𝑑2𝑦

𝑑𝑥 2 −
2

𝑥
 
𝑑𝑦

𝑑𝑥
+(a

2
+

2

𝑥2)y = 0    . . . . .    (1) 

Here,  P = −
2

𝑥
 

 Q = a
2
+

2

𝑥2 

 R = 0 

In order to remove the first order derivative, we choose 

 u = 𝑒−
1

2
 𝑝𝑑𝑥

 

 i.e., u = 𝑒−
1

2
 − 

2

𝑥
𝑑𝑥

 

 i.e., u = x 

Putting y = uv = vx in (1), we have  

 
𝑑2𝑣

𝑑𝑥 2 + Lv = M    . . . . .     (2) 

where L = Q −  
1

2
 
𝑑𝑝

𝑑𝑥
 − 

1

4
 p

2
 = a

2 
+ 

2

𝑥2 −  
1

2
(

2

𝑥2 ) − 
1

4
. 

4

𝑥2 

 =  a
2 
+ 

2

𝑥2 −  
1

𝑥2 −  
1

𝑥2 

 = a
2 

and M =  
𝑅

𝑢
 = 0 

Therefore,  (2) reduces to  

 
𝑑2𝑣

𝑑𝑥 2 + a2
v = 0   ─ (3) 

Therefore, the general solution of (3) is 

 V = c1 cos ax + c2 sin ax, where c1 and c2 are arbitrary constants 

Hence the general solution of the given equation is  

 y = uv 

i.e.,  y = x (c1 cos ax + c2 sin ax) 
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Summary: 

 Non-homogeneous second order linear ODE 

 Method of variation of parameters 

 Fundamental set of solutions 

 Second order linear ODE – Normal forms 
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Unit 3 

Initial Value Problem and Boundary Value Problem 
 

Introduction:  

Initial value problem does not require to specifying the value at boundaries, instead it needs the value during initial 

condition. These usually apply for dynamic system that is changing over time as in Physics. An example, to solve a 

particle position under differential equation, we need the initial position and also initial velocity. Without these 

initial values, we cannot determine the final position from the equation. In contrast, boundary value problems not 

necessarily used for dynamic system. Instead, it is very useful for a system that has space boundary.  

Initial Value Problem (IVP): 

An initial value problem is a differential equation together with subsidiary conditions to be satisfied by the solution 

function and its derivative, all given at the same value of the independent variable. 

For example, 
𝑑2𝑦

𝑑𝑥 2  + 4y = 0, y(0) = 0, y′(0) = 2 is an IVP. 

Boundary value problem (BVP): 

A boundary value problem is a differential equation together with subsidiary conditions to be satisfied by the 

solution function and its derivatives, where the conditions are given for more than one value of the independent 

variable. As for example,  

 y′′ - 9y = 0, y(0) = 0, y′(1) = 1 is a BVP. 

The general form of BVP is 

Solve:  
𝑑2𝑦

𝑑𝑥 2  + P
 𝑑𝑦

𝑑𝑥
 + Qy =R with the boundary conditions 

 A1y(a) +B1y′(a) = c1 

 A2y(b) + B2y′(b) = c2 , 

where P, Q, R are functions of x and A1, B1, C1, A2, B2, C2 are all real constants. Also a ≠ b; A1, B1 are not together 

zero and also A2, B2 are not together zero. 

The method of successive approximation: 

We now face up to the general problem of finding solution of the equation 

 
 𝑑𝑦

𝑑𝑥
 = f (x, y) 

where f is any real-valued continuous function defined on some rectangle 

 R = {(x,y) : | x-x0| ≤ a, | y - y0| ≤ b, a > 0, b > 0} 

Our aim is to show that on some interval I containing x0, there is a real-valued differentiable function y1 such that 

the points (x, y1(x)) ∈ R for all x∈I and y1′(x) = f(x, y1(x)), y1(x0) = y0.  Such a function y1 is called a solution to the 

initial value problem   y′ = f(x, y)   

   y(x0) = y0 

Our first step will be to show that the initial value problem (1) is equal to an integral equation 

 y = y0+  𝑓 𝑡, 𝑦 𝑑𝑡
𝑥

𝑥0
     . . . . .       (2) 

on I. 

By a solution of (2) on I is meant a real valued continuous function y1 on I such that (x, y1(x)) ∈ R for all 

x∈I and y1(x) = y0+  𝑓 𝑡, 𝑦1(𝑡) 𝑑𝑡
𝑥

𝑥0
 . . . . . .    (3) 

}  . . . . .  (1) 

Unit 4
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for all x∈I. 

Theorem 3.1 : A function y1 is a solution of the IVP (1) on an interval I if and only if it is a solution of the integral 

equation (2) on I. 

Proof: Suppose y1 is a solution of the IVP (1) on I. Then 

 y1′(x) = f (x, y1(x))  – (3) 

Since y1 is continuous on I, and f is continuous on R, the function F defined by F(x) = f (x, y1(x)) is 

continuous on I . 

Integrating (3) from x0 to x, we get 

 y1(x) = y1(x0) +  𝑓 𝑡, 𝑦1(𝑡) 𝑑𝑡
𝑥

𝑥0
      ∀ 𝑥 ∈ 𝐼 

and since y1(x0) = y0 we see that y1 is a solution of (2).  

Conversely, suppose that y1 satisfies (3) on I. Differentiating we find that 

 y1′(x) = f (x, y1(x))  ∀ 𝑥 ∈ 𝐼. 

Moreover, from the above we see that y1(x0) = y0, and thus y1 is a solution of the initial value problem (1). This 

proves the theorem.  

 

Picard’s Method of Successive Approximation:  

We know that the initial value problem 

 y′ = f (x, y), y(x0) = y0  

is equivalent to the integral equation 

 y(x) = y0 +  𝑓 𝑡, 𝑦 
𝑥

𝑥0
𝑑𝑡. 

Since the information concerning the expression of y in term of x is absent the integral on right hand side of the 

above integral equation cannot be evaluated. Here the exact value of y cannot be obtained. Therefore we determine a 

sequence of approximations to the solution of the integral equation as follows:  

First we put y = y0 and obtain y1(x) = y0 +  𝑓 𝑥, 𝑦0 
𝑥

𝑥0
𝑑𝑥 

where y1(x) is the corresponding value of y(x) and is called first approximation of y(x) at any x. To determine still 

better approximation we replace y by y1 in the above integral and obtain a second approximation y2 as 

 y2(x) = y0 +  𝑓 𝑥, 𝑦1(𝑥) 
𝑥

𝑥0
𝑑𝑥. 

Proceeding in this way, we obtain the n-th approximation yn as 

 yn(x) = y0 +  𝑓 𝑥, 𝑦𝑛−1(𝑥) 
𝑥

𝑥0
𝑑𝑥. 

Thus we arrive at a sequence of approximate solutions y1(x), y2(x),  . . . , yn(x) 

 

Example 1: Using Picard’s method of successive approximation, find the third approximation of the solution of the 

equation 

 
 𝑑𝑦

𝑑𝑥
 = x + y

2
, where y = 0 when x = 0. 

Solution : The given problem is  

          y′ =  x + y
2
, y(0) = 0 

We know that n-th approximation yn of the initial value problem y′ =  f(x,y), y(x0) = y0 is given by 
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 yn(x) = y0 +  𝑓 𝑥, 𝑦𝑛−1(𝑥) 
𝑥

𝑥0
𝑑𝑥  – (1) 

Here f(x,y) = x + y
2
, x0 = 0 and y0 = 0. 

So from (1) we get, yn =    𝑥 + 𝑦𝑛−1
2 

𝑥

0
𝑑𝑥   – (2) 

Putting n = 1 in (2), we obtain the first approximation as  

 y1 =    𝑥 + 𝑦0
2 

𝑥

0
𝑑𝑥 

   =  𝑥 𝑑𝑥
𝑥

0
 = 

𝑥2

2
 

Putting n = 2 in (2), we obtain the second approximation as  

 y2 =   𝑥 + 𝑦1
2 

𝑥

0
𝑑𝑥 

   =  (𝑥 
𝑥

0
+ 

𝑥4

4
)𝑑𝑥 

 = 
𝑥2

2
 + 

𝑥5

20
 

Putting n = 3 in (2), we obtain the third approximation as  

 y3 =    𝑥 + 𝑦2
2 

𝑥

0
𝑑𝑥 

     =   𝑥 +
𝑥4

4
+

𝑥7

20
+

𝑥10

400
 

𝑥

0
𝑑𝑥 

    =  
𝑥2

2
+

𝑥5

20
+

𝑥8

160
+  

𝑥11

4400
 

Hence the third approximation of the solution of the given equation is  

 y3 =  
𝑥2

2
+

𝑥5

20
+

𝑥8

160
+ 

𝑥11

4400
 . 

 

Example 2: Using Picard’s method of successive approximation, obtain the third approximation of the solution of 

the initial value problem 

 y′= 2 - 
𝑦

𝑥
 ,  y(1) = 2. 

 

Solution: Given problem is  

                  y′= 2 - 
𝑦

𝑥
 ,  y(1) = 2. 

We know that the n-th approximation yn of the initial value problem  y′= f(x, y), y(x0) is given by  

 yn(x) = y0 +  𝑓 𝑥, 𝑦𝑛−1(𝑥) 
𝑥

𝑥0
𝑑𝑥   – (1) 

Here f(x,y) = 2 - 
𝑦

𝑥
 , x0 = 1 and y0 =2. 

So from (1) we get, 

 yn = 2 +   2 −  
𝑦𝑛−1

𝑥
 

𝑥

1
𝑑𝑥   – (2) 

Putting n = 1 in (2), we obtain the first approximation as  

 y1 = 2+   2 −
𝑦0

𝑥
 

𝑥

1
𝑑𝑥 

   = 2+   2 −
2

𝑥
 

𝑥

1
𝑑𝑥 
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  = 2 + [2x-2log x]1
x
 = 2 + 2x – 2 log x – 2 +0 = 2x -2 log x 

Putting n = 2 in (2), we obtain the second approximation as  

 y2 = 2+   2 −
𝑦1

𝑥
 

𝑥

1
𝑑𝑥 

   = 2+   2 −
2𝑥−2 log 𝑥

𝑥
 

𝑥

1
𝑑𝑥 

  = 2+  2
log 𝑥

𝑥

𝑥

1
𝑑𝑥 = 2 + (log x)

2
 

Putting n = 3 in (2), we obtain the third approximation as  

 y3 = 2+   2 −
𝑦2

𝑥
 

𝑥

1
𝑑𝑥 

     = 2+   2 −
2+(log 𝑥)2

𝑥
 

𝑥

1
𝑑𝑥 

     = 2+ [2x – 2log x - 
1

3
(log x)

3
]1

x
 = 2x – 2log x − 

1

3
(log x)

3
 

Hence the third approximation of the solution of the given equation is 

 y3 = 2x −2 log x − 
1

3
(log x)

3 

 

The Lipschitz’s Condition: 

Let f be a function defined for (x,y) in a set S. We say f satisfy Lipschitz’s Condition on S if there exists a positive 

constant k such that 

  |f(x,y1) – f(x,y2)| ≤ k |y1 – y2|  for all (x, y1), (x, y2) ∈ S. 

The constant  k is called Lipschitz’s  constant. 

Note: If f is continuous and satisfies Lipschitz’s Condition on the rectangle R, then the successive approximation 

converge to a solution of the IVP  
 𝑑𝑦

𝑑𝑥
 = f (x, y), y(x0) = y0 in |x-x0| ≤ α. 

Theorem 3.2: 

Suppose that S is either a rectangle |x-x0| ≤ a, |y-y0| ≤ b, a, b > 0 or a strip |x-x0| ≤ a, |y| < ∝, a > 0, and that f is a real-

valued function defind on S such that 
𝜕𝑓

𝜕𝑦
 exists, is continuous on S, and | 

𝜕𝑓

𝜕𝑦
 (x,y) | ≤ k  for all (x,y) ϵ s, k > 0 is a 

constant. Then f satisfies Lipschitz’s Condition on S with Lipschitz’s  constant k. 

Proof: 

By the M.V.T. for two distinct points (x, y1) and (x, y2), we have  

 |f(x,y1) – f(x,y2)| = |  
𝜕𝑓

𝜕𝑦
 (x, y*)| | y1 – y2 |   

where y* lies in between y1 and y2. Since |  
𝜕𝑓

𝜕𝑦
 (x,y) | ≤ k  for all (x, y) ϵ S, from above we obtain 

 |f(x,y1) – f(x,y2)|≤ k |y1 – y2|  . 

Hence f satisfies Lipschitz’s Condition on S with Lipschitz’s constant k. 

 

Example 3: Show that the function  f(x,y) = xy
2
 satisfies Lipschitz’s Condition on a rectangle R given by R: | x | ≤ 

1, | y | ≤ 1. What happen if R is given by | x | ≤ 1, | y |< ∝. 

Solution: Here f(x,y) = xy
2 

Therefore |  
𝜕𝑓

𝜕𝑦
 (x,y) | = | 2 xy| ≤ 2    for (x, y) ϵ R 
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Hence f satisfies Lipschitz’s Condition on R with Lipschitz’s constant 2.  

Since on the strip S : | x | ≤ 1, | y |< ∞ we have 

|
𝑓(𝑥 ,𝑦1)−𝑓(𝑥 ,0)

𝑦1−0
| = | x ||y1|  → ∞ as |𝑦1| → ∞, if |x| ≠ 0, the above function does not satisfy Lipschitz’s Condition on S. 

Theorem 3.3: Picard’s Existence and Uniqueness Theorem: 

Let (X0,Y0) ϵ R
2
 and let f be a real-valued continuous function defined on the closed rectangle Q = {((x, y) : |x-x0| ≤ 

a, |y-y0| ≤ b, a, b > 0} in R
2
. Further assume that f(x,y) satisfies Lipschitz’s Condition with respect to y in Q, i.e., 

there exists a positive constant k such that |f(x,y1) – f(x,y2) | ≤ k |y1 – y2 | for all (x,yi) ϵ Q, i = 1, 2. Let h = min{a, 
𝑏

𝑀
}, where |f(x,y) | ≤ M for all (x,y) ϵ Q. Then the initial value problem 

 
 𝑑𝑦

𝑑𝑥
 = f (x, y), y(x0) = y0  

has a unique solution in |x-x0| ≤ h . 

Proof: 

Since f(x, y′) is continuous in Q, the initial value problem 

 
 𝑑𝑦

𝑑𝑥
 = f (x, y), y(x0) = y0      . . . . .    (1) 

is equivalent to the integral equation 

 y(x) = y0 +  𝑓 𝑡, 𝑦 
𝑥

𝑥0
 dt      . . . . .     (2) 

We have to find out a unique continuous solution of (2). We define a sequence of function {yn(x)} as follows : 

 y0(x) = y0     

 y1(x) = y0  +   𝑓 𝑡, 𝑦0(𝑡) 
𝑥

𝑥0
 dt   

 y2(x) = y0  +   𝑓 𝑡, 𝑦1(𝑡) 
𝑥

𝑥0
 dt   

 :             :               :                : 

 yn(x) = y0  +   𝑓 𝑡, 𝑦𝑛−1(𝑡) 
𝑥

𝑥0
 dt   

Now, for all |x-x0| ≤ h, we have 

 | y1(x) - y0 | = |   𝑓 𝑡, 𝑦0(𝑡) 
𝑥

𝑥0
 dt   

     ≤   | 𝑓 𝑡, 𝑦0(𝑡) 
𝑥

𝑥0
 dt | 

     ≤ M   𝑑𝑡  
𝑥

𝑥0
 

   =  M |x-x0| ≤ Mh ≤ b 

Hence (x, y1) ϵQ. By induction we assume that (x, yn-1) ϵQ. 

Then | yn(x) - y0 | ≤    |𝑓 𝑡, 𝑦𝑛−1(𝑡) 
𝑥

𝑥0
 dt | 

   ≤ M   𝑑𝑡  
𝑥

𝑥0
 

   = M |x-x0|  ≤ Mh ≤ b 

Hence (x, yn) ϵ Q for all n. 

Now, for all |x-x0| ≤ h, we get 

| yn(x) – yn-1(x) | ≤    |𝑓 𝑡, 𝑦𝑛−1(𝑡) 
𝑥

𝑥0
 - 𝑓 𝑡, 𝑦𝑛−2(𝑡)  | | dt | 
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   ≤ k  | 𝑦𝑛−1(𝑡)
𝑥

𝑥0
 - 𝑦𝑛−2(𝑡) | | dt |      . . . . .    (3) 

where k is a Lipschitz’s  constant. 

Taking n = 1, 2,..., we obtain 

 |y1(x) – y0(x) | ≤    |𝑓 𝑡, 𝑦0(𝑡) 
𝑥

𝑥0
 dt | 

    ≤ M   𝑑𝑡  
𝑥

𝑥0
 

     =  M |x-x0| 

 |y2(x) – y1(x) | ≤ k   |𝑦1 𝑡) − 𝑦0(𝑡 
𝑥

𝑥0
 | |dt | 

    ≤ k M  | 𝑡
𝑥

𝑥0
 - 𝑥0(𝑡) | | dt |      

    = k M 
|𝑥−𝑥0|2

2!
 

By induction, we assume that 

|yn(x) – yn-1(x) | ≤ 
𝑀𝑘𝑛−2

 𝑛−1 !
 | x-x0|

n-1
 

Then  |yn(x) – yn-1(x) | ≤ k  
𝑀𝑘𝑛−2

 𝑛−1 !
  | 𝑡

𝑥

𝑥0
 - 𝑥0 |

n-1
 | dt |      

    = 
𝑀𝑘𝑛−2

 𝑛−1 !
 
| 𝑥−𝑥0|𝑛

𝑛
 

    = 
𝑀

𝑘
  

𝑘𝑛 |𝑥−𝑥0|𝑛

𝑛 !
 

Since the series  
𝑀

𝑘

∝
𝑛=1

𝑘𝑛 |𝑥−𝑥0|𝑛

𝑛 !
 converges uniformly to  

𝑀

𝑘
 [e

k|x-x
0

|
-1], the series  

𝑦0 x +  (𝑦𝑛

∝

𝑛=1

 𝑥 − 𝑦𝑛−1(𝑥))       … . .      (4)  

converges absolutely in |x-x0| ≤ h. 

Now, yn(x) = y0(x) + [y1(x) – y0(x)] +[y2(x) – y1(x)] + ...+[yn(x) – yn-1(x)] 

 = a partial sum of the series (4) 

and so the sequence {yn(x)} also converges uniformly in  |x-x0| ≤ h. 

Let  lim𝑛→∞ 𝑦𝑛  𝑥 =  𝑦 𝑥 , |x − x0|  ≤  h 

Since each yn(x) is continuous is |x-x0| ≤ h,  by construction, and since the convergence is uniform, the limit 

function y(x) is also continuous in |x-x0| ≤ h. 

We shall show that y(x) is the desired continuous solution of the equation (2). 

Since (x,y(x)), (x, yn-1(x)) ϵQ, we have 

| [ 𝑓(𝑡, 𝑦𝑛−1
𝑥

𝑥0
(𝑡)) − 𝑓(𝑡, 𝑦(𝑡))]𝑑𝑡| 

≤ |𝑓(𝑡, 𝑦𝑛−1
𝑥

𝑥0
(𝑡)) − 𝑓(𝑡, 𝑦(𝑡))]𝑑𝑡| 

≤ k   |𝑦𝑛−1 𝑡) − 𝑦(𝑡 
𝑥

𝑥0
 | |dt | 

→ 0 as n →∞ 

∴  𝑓(𝑡, 𝑦𝑛−1
𝑥

𝑥0
(𝑡))𝑑𝑡 →  𝑓

𝑥

𝑥0
(𝑡, 𝑦(𝑡))]𝑑𝑡| as n →∞ 

Taking limit as n →∞ in   yn(x) = y0+ 𝑓(𝑡, 𝑦𝑛−1
𝑥

𝑥0
(𝑡))𝑑𝑡, we obtain y(x) = y0+ 𝑓(𝑡, 𝑦

𝑥

𝑥0
(𝑡))𝑑𝑡 
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This proves that y(x) is a continuous solution of the integral equation (2) and that of initial value problem (1). 

We now show that this continuous solution y(x) is unique. 

If possible, let y(x) and z(x) be the two continuous solution of (1) satisfying the initial conditions y(x0) = y0 and 

z(x0) = y0 respectively.  

Then we have   y(x) = y0+ 𝑓(𝑡, 𝑦
𝑥

𝑥0
(𝑡))𝑑𝑡 

   z(x) = y0+ 𝑓(𝑡, 𝑧
𝑥

𝑥0
(𝑡))𝑑𝑡 

Now, |y(x) – z(x)│ ≤  |𝑓(𝑡, 𝑦
𝑥

𝑥0
(𝑡)) −  𝑓(𝑡, 𝑧(𝑡))||𝑑𝑡| 

   ≤ k   |𝑦 𝑡) − 𝑧(𝑡 
𝑥

𝑥0
 | |dt |    . . . . .    (5) 

as (x,y(x)) ϵ Q and (x, z(x)) ϵ Q. 

Since y(t) – z(t) is continuous in  |x-x0| ≤ h, there exists a positive constant M1, say, such that 

|y(t) – z(t) | ≤ M1, for all t in   |x-x0| ≤ h 

Hence from (5) we get,  

 |y(x) – z(x)│ ≤ M1 k | 𝑑𝑡 |
𝑥

𝑥0
 

   = M1 k |x-x0| 

Substituting this in (5), we obtain 

|y(x) – z(x)│ ≤ M1 k
2
 |𝑡 − 𝑥0  ||𝑑𝑡 |

𝑥

𝑥0
 

  = M1 k
2 

|𝑥−𝑥0|2

2!
 

Continuing this process we obtain at the n-th stage 

 |y(x) – z(x)│ ≤ M1

𝑘𝑛 |𝑥−𝑥0 |𝑛

𝑛 !
      . . . . .    (6) 

Since the series 

 ∝
𝑛=0

𝑘𝑛 |𝑥−𝑥0|𝑛

𝑛 !
 is convergent, we have   

𝑘𝑛 |𝑥−𝑥0|𝑛

𝑛!
 →  0 as n →∝. 

Therefore from (6), we obtain 

 |y(x) – z(x)| = 0 ∀ x in |x-x0| ≤ h 

 i.e.,  y(x) = z(x)   ∀ x in |x-x0| ≤ h 

Thus the solution is unique. This proves the theorem. 

 

Example 4:  If R is defined by the rectangle | x | ≤ a, | y | ≤ b, show that the function f(x,y) = x sin y + y cos x 

satisfies the Lipschitz’s Condition in R with Lipschitz’s  constant a + 1. 

Solution: f(x,y) =  x sin y + y cos x 

and | 
𝜕𝑓

𝜕𝑦
 | = | x cos y + cos x | 

   ≤ | x || cos y | + | cos x | 

   ≤ | x | + 1 

  ≤  a + 1 

Hence f satisfies Lipschitz’s Conditions in R with Lipschitz’s  constant a+1. 
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Gronwall’s Lemma: 

Let u and v be two real-valued positive continuous functions defined in the interval [t0, t0 + h]. Also suppose that 

 u(t) ≤ c +  𝑢 (𝑠
𝑡

𝑡0
)𝑣(𝑠)ds ∀ t ∈  t0 , t0 + h , c ≥ 0 is a constant. 

Then u t ≤ c exp   ∨  s ds
t

t0
  

Proof:  

We consider the following two cases separately.  

Case -1: Let c > 0 

Let U 𝑡 =  𝑐 +  𝑢 s v s ds ∀t ∈ [
𝑡

𝑡0
t0 , t0 + h] 

Cleary U 𝑡 > 0 and  u 𝑡  ≤ 𝑈 𝑡    ∀𝑡 ∈  t0 , t0 + h  

Since 
𝑑𝑈

𝑑𝑡
= 𝑢 𝑡 𝑣 𝑡 ,  it follows that 

 
    𝑑  𝑈 𝑡 

𝑈 𝑡 
=  

𝑢 𝑡 ∨ 𝑡 

𝑈 𝑡 
 𝑑𝑡 ≤  𝑣 𝑡 𝑑𝑡 

i.e., 
𝑑

𝑑𝑡
 [𝑙𝑜𝑔 𝑈(𝑡)]  ≤  𝑣(𝑡), 𝑡0 ≤ 𝑡 ≤ 𝑡0 +  

Integrating over [t0 , t], we get 

 
𝑑

𝑑𝑠

𝑡

𝑡0

 [log 𝑈 𝑠 𝑑𝑠 ≤   𝑣 𝑠 𝑑𝑠
𝑡

𝑡0

  

i.e., 𝑙𝑜𝑔
U(t)

U(t0)
 ≤   𝑣 𝑠 𝑑𝑠

𝑡

𝑡0
 

i.e, U 𝑡 ≤  𝑈 𝑡0 exp[ ∨  𝑠 𝑑𝑠]
𝑡

𝑡𝑜
 

Since U 𝑡0 =  𝑐 and 𝑢 𝑡 ≤  𝑈 𝑡  for all 𝑡 ∈  t0, t0 + h ,  

we get 𝑢 𝑡 ≤ 𝑐 exp[ 𝑣 𝑠 𝑑𝑠]
𝑡

𝑡0
 

Case -2: Let c = 0 

We define 𝑐𝑝 =
1

𝑝
, 𝑝 > 0 

Then c > cp 

Now by the hypothesis,  𝑡 ≤ 𝑐𝑝 +  ∨  𝑠 𝑑𝑠
𝑡

𝑡0
 , where 𝑐𝑝 > 0 

So by Case 1, we obtain  

𝑢 𝑡 ≤  𝑐𝑝 exp  [ 𝑣 𝑠 𝑑𝑠]
𝑡

𝑡0

 

        = 
1

𝑝
 𝑒𝑥𝑝[ 𝑣 𝑠 𝑑𝑠]

𝑡

𝑡0
 

Taking limit p → ∞, we get 

𝑢 𝑡 = 0 = 𝑐𝑒𝑥𝑝 [ 𝑣 𝑠 𝑑𝑠]
𝑡

𝑡0

 

24



25 
 

This completes the proof of the theorem. 

 

Application of Gronwall’s Lemma :  

Suppose that y(x) and z(x) are two solutions of the initial value  

𝑑𝑦

𝑑𝑥
= 𝑓 𝑥, 𝑦 , 𝑦(𝑥0) =  𝑦0  𝑜𝑛 [ 𝑥0 , 𝑥0 + ]. 

Then (x, y(x)), (x, z(x)) ϵ Q and also  

𝑑𝑦(𝑥)

𝑑𝑥
= 𝑓 𝑥, 𝑦 𝑥          , 𝑦 𝑥0 = 𝑦0  

𝑑𝑧 (𝑥)

𝑑𝑥
= 𝑓 𝑥, 𝑧 𝑥             , 𝑧(𝑥0) =  𝑦0        

Integrating from 𝑥0 to x we get  

        𝑦 𝑥 = 𝑦  𝑥0 +   𝑓 𝑡, 𝑦  𝑡  𝑑𝑡
𝑥

𝑥0

 

and 𝑧 𝑥 = 𝑧 𝑥0 +   𝑓 𝑡, 𝑧 𝑡  𝑑𝑡
𝑥

𝑥0

 

This give  𝑦 𝑥 −  𝑧 𝑥  =   |  𝑓 𝑡, 𝑦  𝑡  𝑑𝑡
𝑥

𝑥0

−   𝑓 𝑡, 𝑧  𝑡  𝑑𝑡| 
𝑥

𝑥0

 

≤   𝑓 𝑡, 𝑦  𝑡  −  𝑓 𝑡, 𝑧 𝑡   𝑑𝑡
𝑥

𝑥0

 

≤ 𝑘   𝑦 𝑡 −  𝑧  𝑡  𝑑𝑡
𝑥

𝑥0

 

where k is a  Lipchitz’s constant. 

We define 𝑢 𝑥 =   𝑦 𝑥 −  𝑧 𝑥  , 𝑣 𝑥 = 𝑘 and  𝑐 = 0, for  𝑥0  ≤ 𝑥 ≤ 𝑥0 +  

Then 𝑢 𝑥 ≤ 𝑐 +  𝑢 𝑡 𝑣 𝑡 𝑑𝑡
𝑥

𝑥0

  

So by Gronwall’s lemma, we obtain 

 𝑢 𝑥 ≤ 𝑐 𝑒𝑥𝑝 [ 𝑣 𝑡 𝑑𝑡
𝑥

𝑥0
]  

        = c exp [ 𝑘 𝑑𝑡
𝑥

𝑥0
] 

         = 𝑐 exp 𝑘 𝑥 − 𝑥0   

Hence 𝑢 𝑥 =   𝑦 𝑥 −  𝑥 𝑥  =  0         ∀ 𝑥 ∈ [𝑥0 , 𝑥0 + ] 

Hence 𝑢 𝑥 ≡ 𝑧 𝑥 ∀ 𝑥 ∈  𝑥0 , 𝑥0 +   and the solution is unique. 

 

Fundamental Inequality  

Let y(x) and z(x) be two solutions of the differential equation 
𝑑𝑦

𝑑𝑥
= 𝑓 𝑥 .  

Then |𝑦 𝑥 −  𝑧 𝑥 | ≤  𝑦 𝑥0 −  𝑧 𝑥0  exp[ 𝑘𝑑𝑡]   in  𝑥0 , 𝑥0 +  ,
𝑥

𝑥0

 

assuming that f satisfied Lipschitz’s Condition in Q with Lipschitz’s constant K. This is known as fundamental 

inequality. 
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Proof: We have,  

𝑑𝑦 𝑥 

𝑑𝑥
= 𝑓 𝑥, 𝑦 𝑥   

𝑎𝑛𝑑 
𝑑𝑧(𝑥)

𝑑𝑥
= 𝑓 𝑥, 𝑧 𝑥   

Integrating from 𝑥0 to 𝑥, we obtain  

𝑦 𝑥 = 𝑦 𝑥0 +  𝑓 𝑡, 𝑦 𝑡  𝑑𝑡
𝑥

𝑥0

 

 𝑎𝑛𝑑 𝑧 𝑥 = 𝑧 𝑥0 +  𝑓 𝑡, 𝑧 𝑡  𝑑𝑡
𝑥

𝑥0

 

This gives  𝑦 𝑥 −  𝑧 𝑥 ≤  𝑦 𝑥0 −  𝑧(𝑥0)| +   |𝑓 𝑡, 𝑦 𝑡  −   𝑡, 𝑧  𝑡  |𝑑𝑡
𝑥

𝑥0
 

      ≤   𝑦 𝑥0 −  𝑧 𝑥0  + 𝑘   𝑦 𝑡 −   𝑡  𝑑𝑡
𝑥

𝑥0
  

We define,  

𝑢 𝑥 =  |𝑦 𝑥 −  𝑧(𝑥)| 

  ∨  𝑥 =  𝑘 

𝑐 =   𝑦 𝑥0 −  𝑧 𝑥0       𝑖𝑛  𝑥0 , 𝑥0 +   

 

Now , applying Gronwall’s lemma, we obtain  

 𝑦 𝑥 −  𝑧 𝑥  ≤  𝑦 𝑥0 −  𝑧 𝑥0  exp[ 𝑘𝑑𝑡] 
𝑥

𝑥0

 

 

Example 5: Show that 
𝑑𝑦

𝑑𝑥
= 𝑓  𝑥, 𝑦 =  𝑦

2
3 , 𝑦 0 =  0 has solutions but not unique. 

Solution: The given equation is 
𝑑𝑦

𝑑𝑥
= 𝑦

2
3  

𝑖. 𝑒.,
𝑑𝑦

𝑦
2

3 
= 𝑑𝑥 

On integration, 3𝑦
1

3 = 𝑥 + 𝑐, where c is a constant.  Now, 𝑦 0 =  0, ∴ 𝑐 = 0 

Thus we get  

𝑥 = 3𝑦
1

3  

Therefore  𝑥 = 3𝑦
1

3  is a solution of the given equation.  

We note that y = 0 is also a solution of the given equation. We show that this happens due to the lack of Lipschitz’s 

Condition. We choose  

y1 = 
1

𝑛
, y2 = 0  

Then | f (x1, y1)− f(x2, y2)| = | 𝑦1

2
3  -  𝑦2

2
3 |= 𝑛

1
3 |  

1

𝑛
2

3 
 – 0 | = 𝑛

1
3 | 

1

𝑛
 - 0| = 𝑛

1
3  | y1 – y2| 
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For sufficiently large n, 𝑛
1

3  is greater than any finite number. Hence there is not positive k such that 

 | f(x, 
1

𝑛
) – f(x, 0) | ≤ k | 

1

𝑛
− 0| 

and so Lipschitz’s Condition is not satisfied. 

Note: The above example shows that the continuity of f(x,y) is not enough to ensure the uniqueness of the solution 

of the initial value problem 

𝑑𝑦

𝑑𝑥
= 𝑦

2
3 , y(0) = 0. 

Example 6: For the initial value problem 
𝑑𝑦

𝑑𝑥
=  𝑦2 +  𝑐𝑜𝑠2𝑥, 𝑦 0 = 0, determine the interval of existence of its 

solution given that R is the rectangle containing origin, i.e.,  R = {(x,y) : 0 ≤ x ≤ a, | y | ≤ b, a > 
1

2
, b > 0}. 

Solution: Here, f(x,y) = 𝑦2 +  𝑐𝑜𝑠2𝑥 

Now, | f(x,y) | = |𝑦2 + 𝑐𝑜𝑠2𝑥 | ≤ 1 + b
2 
= M, say 

Since |
𝜕𝑓

𝜕𝑦
 (x, y) | = |2y| ≤ 2b, we see that f(x,y) satisfies Lipschitz’s Condition with Lipschitz’s constant 2b. 

∴ By Picard’s existence and uniqueness theorem, the solution y(x) exists in the interval 0 ≤ x ≤ h, where 

h =  min{a, 
𝑏

𝑀
} 

   = min {a, 
𝑏

𝑏2+1
} 

Now, 
𝑏

𝑏2+1
 = 

1

𝑏+
1

𝑏

 = 
1

( 𝑏−
1

 𝑏
)2+2

≤  
1

2
 

Hence h = min{a, 
𝑏

𝑏2+1
} ≤  

1

2
 

Hence y(x) exists in the interval  0 ≤ x ≤ 
1

2
 . 

Example 7: Consider the initial value problem 

 
𝑑𝑦

𝑑𝑥
=  𝑦2, y(0) = 2. 

Let R be the rectangle given by 

 R = {(x,y) : | x | ≤ a, | y – 2 | ≤ b, a > 0, b >0} 

Find the largest interval of existence of its solution. 

Solution: Here, the given initial value problem is 

 
𝑑𝑦

𝑑𝑥
=  𝑦2, y(0) = 2. 

Let f(x,y) = y
2
 

So, , | f(x,y) | = |𝑦2 | ≤ (2 + b)
2 
= M, say 

Also, 
𝜕𝑓

𝜕𝑦
 = 2 y 

So, |
𝜕𝑓

𝜕𝑦
 | =2 | y | ≤ 2(2+b)        [∵ b > 0 ] 

We see that f(x,y) satisfies Lipschitz’s Condition with Lipschitz’s constant 2 (2+b). 

Therefore by Picard’s existence and uniqueness theorem, the solution y(x) exists in the interval 0 ≤ x ≤ h, where 

h =  min{a, 
𝑏

𝑀
}   = min {a, 

𝑏

(𝑏+1)2} 

27



28 
 

Now, 
𝑏

(𝑏+2)2 = 
𝑏

𝑏2+4𝑏+4
   = 

𝑏

𝑏(𝑏+4+
4

𝑏
)
   = 

1

𝑏+4+
4

𝑏

     = 
1

( 𝑏−
2

 𝑏
)2+ 8

    ≤ 
1

8
 

Hence y(x) exists in the interval of 0 ≤ x ≤ 
1

8
. 
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Unit 4 

 

Sturm Liouville Problem 

 

Adjoint Equation: 

Let L be a differential operation of the n-th order defined by  

L[u] = P0(x) 
𝑑𝑛𝑢

𝑑𝑥 𝑛  + P1(x) 
𝑑𝑛−1𝑢

𝑑𝑥 𝑛−1 +    … +pn-1(x) 
𝑑𝑢

𝑑𝑥
 + pn(x)u. 

Then the differential operation 𝐿  or 𝐿+ defined by 

𝐿  [𝑣] = (-1)
n
 
𝑑𝑛

𝑑𝑥 𝑛  (p0v) +(-1)
n-1 𝑑𝑛−1

𝑑𝑥 𝑛−1 (p1v) +. . .+ (-1)
n
 
𝑑

𝑑𝑥
 (pn-1v) + pnv  

is called the adjoint of L and the equation 𝐿 [v] = 0 is called the adjoint equation of L[u] = 0. 

Particular case: 

The adjoint equation of the second order homogeneous linear differential equation  

L[u] = p0 
𝑑2𝑢

𝑑𝑥 2  + p1

𝑑𝑢

𝑑𝑥
 + p2u = 0      . . . . .   (1)     

is the differential equation 

 𝐿  [𝑣] = (−1)
2
 
𝑑2

𝑑𝑥 2 (p0v) + (−1) 
𝑑

𝑑𝑥
 (p1v) + p2v = 0 

i.e.,  p0v′′ + (2p0′− P1)v′ + (p0′′ – p1′ + p2)v = 0     . . . . .    (2) 

The differential operator 𝐿 , where 

 𝐿  = (−1)
2 

𝑑2

𝑑𝑥 2 (P0) − 
𝑑

𝑑𝑥
(P1) + P2  

is called the adjoint of the linear operator 

L ≡ P0

𝑑2

𝑑𝑥 2 + P1

𝑑

𝑑𝑥
+ P2 

 

Note: We note that the adjoint equation of (2) is the differential equation (1) for if we write (2) in the form 

q0v′′+q1v′+q2v = 0, then the adjoint of (2) is differential equation 

(q0w)′′ - (q1w)′ + q2w = 0 

i.e., q0w′′ + (2q0′- q1)w′ + (q0′′ – q1′ + q2)w = 0    

i.e., p0w′′ + (2p0′- 2 p0′+p1)w′+( p0′′-2 p0′′+ p1′+ p0′′- p1′+ p2) w=0 

i.e., p0w′′ + p1w′+ p2 w = 0. 

 

Self Adjoint Equation: 

Homogeneous linear differential equations which coincide with their adjoint are called self adjoint. 

From (1) and (2), we see that for the differential equation (1) to be self-adjoint, it is necessary that 

       2p0′- p1 = p1 

    i.e., p0′ = p1 

Unit 5 & Unit 6
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The condition is also sufficient for then 

 p0′′- p1′+ p2 = p1′- p1′+ p2 = p2 

 

Theorem 4.1: The second order linear homogeneous differential equation 

 p0u′′- p1u′+ p2u=0 

is self-adjoint if and only if it has the form 

 
𝑑

𝑑𝑥
(p(x)

𝑑𝑢

𝑑𝑥
)+ q(x) u = 0. 

Proof: 

It is known that the given differential equation is self-adjoint if and only if p0′= p1. 

On substitution it follows that  

 p0u′′+ p0′u′+ p2u = 0 

   i.e.,  
𝑑

𝑑𝑥
(p0

𝑑𝑢

𝑑𝑥
)+ p2u = 0, 

which is the given form. 

 

Theorem 4.2: The second order homogeneous differential equation p0u′′+ p1u′+ p2u = 0 can be reduced to self-

adjoint form by multiplying throughout by factor h(x) = 
1

𝑝0
 exp[ 

𝑝1

𝑝0
 dx] 

Proof: 

Multiplying by H(x)/p0 [H(x)≠0] throughout we get from given differential equation 

 H(x)u′′+ H(x) 
𝑝1

 𝑝0
 u′+H(x) 

𝑝2

 𝑝0
 u=0 

This will be self- adjoint if and only if 

 H′(x) = H(x) 
𝑝1

 𝑝0
 

 i.e., 
𝐻 ′ (𝑥)

𝐻(𝑥)
 =  

𝑝1

 𝑝0
, 

which on integrating gives 

 H(x) = exp [ 
𝑝1

 𝑝0
 dx] 

∴ h(x) = 
𝐻(𝑥)

𝑝0
 = 

1

𝑝0
 exp [ 

𝑝1

 𝑝0
 dx] 

Example 1: Obtain the adjoint equation of the differential equation 

(1+x
2
) 

𝑑2𝑢

𝑑𝑥 2  + x 
𝑑𝑢

𝑑𝑥
 − 4u = 0. 

Solution:The given differential equation is  

 (1+x
2
) 

𝑑2𝑢

𝑑𝑥 2  + x 
𝑑𝑢

𝑑𝑥
 − 4u = 0 

Therefore its adjoint equation will be 

(−1)
2 

𝑑2

𝑑𝑥 2 ((1+x
2
)v)+ (−1) 

𝑑

𝑑𝑥
 (xv) − 4v = 0 

i.e., (1+x
2
)v′′+ 4xv′+ 2v − xv′− v− 4v =0 

i.e.,( 1+x
2
)v′′+ 3xv′−3v = 0. 
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Example 2: Reduce the following equation to self-adjoint form.  

(1−x
2
) u′′−xu′+λu = 0.  

 

Solution: Comparing the given equation with the standard form 

 p0u′′+ p1u′+ p2u = 0, 

we get  

 p0 = 1−x
2
,  p1 = −x,  p2 = λ 

So, h(x) = 
1

𝑝0
 exp [ 

𝑝1

 𝑝0
 dx] 

 =
1

1−𝑥2 exp [ 
−𝑥

 1−𝑥2 dx] 

 = 
1

1−𝑥2 exp [
1

2
𝑙𝑜𝑔|1 − 𝑥2|] 

  

 = 
1

 1−𝑥2
 

Multiplying the given equation throughout by h(x), we get 

 1 − 𝑥2 u′′ - 
𝑥

 1−𝑥2
 u′ + 

𝜆

 1−𝑥2
 u = 0, 

which is obviously a self-adjoint equation. 

 

 

Regular Sturm –Liouville Problem:  

A second order Sturm –Liouville problem is a homogeneous boundary value problem of the form 

   

  
𝑑

𝑑𝑥
 𝑝 𝑥 

𝑑𝑦

𝑑𝑥
 +  𝑞 𝑥 + 𝜆𝑟 𝑥  𝑦 = 0      ─── (1) 

 

together with boundary conditions  

 

   𝐴1 𝑦 𝑎 + 𝐵1𝑦
′ 𝑎 = 0 

𝐴2 𝑦 𝑏 + 𝐵2𝑦
′ 𝑏 = 0 

        ── (2) 

 

Where 𝑝 𝑥 , 𝑞 𝑥 , 𝑟 𝑥  𝑎𝑛𝑑 𝑝′ 𝑥  are real valued continuous functions on [a, b] and λ is a parameter.  

 

Also A1, B1, A2, B2 are any constants such that A1 and B1 are not both zero and A2 and B2 are not both zero.  

 

If p(x) and r(𝑥)are positive for all x in [a. b], then equation (1) together with with boundary condition (2) is called 

regular Sturm-Liouville problem. If the conditions “p(x) and r(𝑥) are positive” are not satisfied, then the problem is 

known as Singular S-L problem.  

 

Remark: 
 

Let  𝑝 𝑥 =  1 =  𝑟  𝑥  𝑎𝑛𝑑 𝑞 𝑥 =  0 in  1 . 
Also let 𝐴1 =  𝐴2 = 1,  𝐵1 =  𝐵2 = 0 in  2 . Then (1) and (2) reduces to 𝑦′′ +  𝜆𝑦 = 0, 𝑦 𝑎 = 0 = 𝑦 𝑏 . 

This is the simplest form of regular S-L problem.  

Definition:  

A non-trivial solution of a regular Sturm - Liouville problem is called an eigen function and the corresponding λ is 

called its eigen value.  

Definition:  

Two integrable functions 𝑓 𝑥 and 𝑔(𝑥) are said to be orthogonal with weight function 𝜋(𝑥) on an interval I = [a, 

b], if  𝜋 𝑥 𝑓 𝑥 𝑔 𝑥 = 0
𝑏

𝑎
. 
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Conversion of a 2
nd

 order liner differential equation to S-L form  

Let us consider a second order linear differential equation of the form  

𝑝0 𝑥 
𝑑2𝑦

𝑑𝑥2
+ 𝑝1 𝑥 

𝑑𝑦

𝑑𝑥
+ 𝑝2 𝑥 𝑦 +  𝜆 𝑝3 𝑥 𝑦 = 0 

Where 𝑝0 𝑥  ≠ 0  𝑎𝑛𝑑 𝑝3(𝑥) are positive in the interval where the problem is considered.  

Multiplying the above equation by  𝑥 =  exp[ 
𝑝1 𝑥 

𝑝0 𝑥 
 𝑑𝑥] , we get 

𝑝0   𝑥   𝐼 𝑥 
𝑑2𝑦

𝑑𝑥2
+  𝐼  𝑥  

𝑝1 𝑥 

𝑝0 𝑥 
 
𝑑𝑦

𝑑𝑥
 +  𝐼 𝑥 𝑝2 𝑥 𝑦 + 𝐼 𝑥 𝜆 𝑝3 𝑥 𝑦 = 0 

i. e. , 𝑝0 𝑥 
𝑑

𝑑𝑥
 𝐼 𝑥  

𝑑𝑦

𝑑𝑥
 +  𝐼 𝑥 𝑝2 𝑥 𝑦 + 𝐼 𝑥 𝜆 𝑝3 𝑥 𝑦 = 0 

𝑖. 𝑒.,
𝑑

𝑑𝑥
 𝐼 𝑥  

𝑑𝑦

𝑑𝑥
 +  𝐼 𝑥  

𝑝2 𝑥 

𝑝0 𝑥 
 𝑦 +  𝜆 𝐼 𝑥  

𝑝3 𝑥 

𝑝0 𝑥 
𝑦 = 0. 

Now, putting  𝑥 =  𝐼 𝑥 , 𝑞 𝑥 =  𝐼 𝑥 
𝑝2(𝑥)

𝑝0(𝑥)
 𝑎𝑛𝑑 𝑟 𝑥 = 𝐼 𝑥 

𝑝3(𝑥)

𝑝0(𝑥)
 , we get  

  
𝑑

𝑑𝑥
  𝑝 𝑥 

𝑑𝑦

𝑑𝑥
 +   𝑞 𝑥 +  𝜆𝑟 𝑥  𝑦 = 0, 

which is of Sturm-Liouville form.  

 

Example 3: Find the eigen values and eigen functions of the differential equation 

 
𝑑2𝑦

𝑑𝑥2
+  𝜆𝑦 = 0 , 𝑦 0 = 0 𝑎𝑛𝑑 𝑦 𝜋 = 0, 𝑤here 𝜆 𝑖s a parameter. 

 

Solution: If 𝜆 = 0, then 𝑦′′ =  0 

Therefore, 𝑦 𝑥 =  𝐴𝑥 + 𝐵. 

Since 𝑦 0 =  0 𝑎𝑛𝑑 𝑦 𝜋 = 0, we obtain A = B = 0. 

Therefore 𝑦 𝑥 =  0, a trivial solution.  

If λ < 0, then the general solution of the given equation is  

𝑦 𝑥 =  𝐴𝑒 −𝜆𝑥 + 𝐵𝑒 −𝜆𝑥  

Using boundary conditions, we obtain A= B = 0. 

Hence, we again obtain a trivial solution.  

Finally, if λ > 0, then the general solution of the given equation become  

𝑦 𝑥 =  𝐴 𝑐𝑜𝑠 𝜆𝑥 + B sin 𝜆𝑥 

Now, 𝑦 0 =  0 ⇒ 𝐴 = 0 

and 𝑦 𝜋 = 0 ⇒ 𝐵 𝑆𝑖𝑛  𝜆𝜋 = 0 

Now, B ≠ 0; for, in that case solution becomes trivial.  

So sin  𝜆𝜋 = 0 

i.e.,  𝜆 = n,   an integer 

i.e.,  𝜆 = 𝑛2  ,           n = 1, 2, 3, ........ 
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Thus the solution of the given equation is given by y(x) = Sin nx, n = 1, 2, 3, . . . . The values of 𝜆 namely 1, 4, 9, 16 

... are called the eigen values and the corresponding solutions s𝑖𝑛𝑥, 𝑠𝑖𝑛2𝑥, 𝑠𝑖𝑛3𝑥  …  are called the eigen 

functions. 

The general solution of the given equation becomes 

𝑦 =   𝑎𝑛 sin 𝑛𝑥         ───

∝

𝑛=1

 (1) 

where an are arbitrary constants.  

Since  sin 𝑚𝑥 𝑠in 𝑛𝑥 𝑑𝑥 = 0 if 𝑚 ≠ 𝑛
𝜋

0

 

           =  
𝜋

2
 if m=n 

It follows that  

 𝑦 𝑥 sin 𝑚𝑥 𝑑𝑥 = 𝑎𝑛  sin 𝑚𝑥 Sin 𝑑𝑥
𝜋

0

𝜋

0

 

i. e. , an =  
2

𝜋
  y x  𝑠in 𝑛𝑥 𝑑𝑥, 𝑛 = 1, 2, 3, . . [∵ 𝑚 = 𝑛]

𝜋

0
 . . . . .  (2) 

Hence (1) is the general solution of the given equation where the coefficient an are calculated from (2).  

 

Theorem 4.3: Sturm Separation Theorem: 

Statement: Let 𝑓(𝑥)and 𝑔(𝑥) be two linearly independent solutions of  

𝑢′′  𝑥 +  𝑝 𝑥 𝑢′ 𝑥 +  𝑞 𝑥  𝑢 𝑥 = 0. 

Then the zeros of 𝑓(𝑥) and 𝑔(𝑥) occur alternatively.  

Proof:  

Let 𝑔(𝑥) vanishes at x = xi. Since f(x) and g(x) are linearly independent solutions of the given equation, the 

Wronskian  

W 𝑓, 𝑔; 𝑥𝑖 =   
𝑓(𝑥𝑖) 𝑔(𝑥𝑖)

𝑓′(𝑥𝑖) 𝑔′(𝑥𝑖)
 = 𝑓 𝑥𝑖 𝑔

′ 𝑥𝑖 ≠ 0 𝑖𝑓 𝑔 𝑥𝑖 =  0 

This shows that 𝑓(𝑥𝑖)  ≠ 0 𝑎𝑛𝑑 𝑔′ 𝑥𝑖 ≠ 0. 

If 𝑥1 and x2 are two consecutive zeros of g(x), then 𝑔′ (𝑥1),  𝑔′ (𝑥2), 𝑓 𝑥1  𝑎𝑛𝑑  𝑓 𝑥2  are all non-zero. Moreover, 

𝑔′ 𝑥1  𝑎𝑛𝑑 𝑔′ 𝑥2  cannot have the some sign, because if the function 𝑔(𝑥) is decreasing at x = x1, then it must be 

increasing at 𝑥 = 𝑥2 and vice –versa. Since 𝑤(𝑓, 𝑔;  𝑥𝑖) has constant sign, it follows that 𝑓(𝑥) must vanish 

somewhere between 𝑥1 and 𝑥2. This proves the theorem. 

 

Theorem 4.4: Sturm Comparison theorem: 

Statement: Let 𝑓(𝑥) and 𝑔(𝑥) be two non-trivial solution of the differential equations  

𝑢" (𝑥) + 𝑝(𝑥) 𝑢(𝑥) = 0 and 𝑣"(𝑥) + 𝑞(𝑥) 𝑣(𝑥) = 0 

respectively where 𝑝 𝑥 >  𝑞 𝑥 . Then 𝑓(𝑥) vanishes at least once in between two consecutive zeros of g(x). 

Proof: 

Let 𝑥1  and 𝑥2  be two consecutive zeros of g x , i. e, 𝑔 𝑥1 =  𝑔 𝑥2 =  0 and 𝑓 𝑥 ≠ 0 at any point in the open 

interval (𝑥1 , 𝑥2). Without any loss of generality, we may assume that both 𝑓(𝑥) and 𝑔(𝑥) are positive in (𝑥1 , 𝑥2), for 

either of the functions can be replaced by its negative. Since g(x) is a non-trivial solution, it follows that 𝑔′(𝑥1)  ≠  0 

and also 𝑔′(𝑥2)  ≠ 0. 
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Again, since g(x) is positive in (𝑥1 , 𝑥2), it follows 𝑔′ 𝑥1 > 0 and 𝑔′(𝑥2) < 0. 

So, W 𝑓, 𝑔;  𝑥1 =   
𝑓(𝑥1) 𝑔(𝑥1)

𝑓 ′(𝑥1) 𝑔′(𝑥1)
 = 𝑓 𝑥1 𝑔

′ 𝑥1 >  0 

and W 𝑓, 𝑔;  𝑥2 =   
𝑓(𝑥2) 𝑔(𝑥2)

𝑓 ′(𝑥2) 𝑔′(𝑥2)
 = 𝑓 𝑥2 𝑔

′ 𝑥2 <  0. 

Now, 
𝑑

𝑑𝑥
 𝑊 𝑓, 𝑔;  𝑥  = 

𝑑

𝑑𝑥
  𝑓 𝑥  𝑔′ 𝑥 −  𝑓 ′ 𝑥 𝑔 𝑥   

 = 𝑓 𝑥  g''(x)-f'' 𝑥 𝑔(𝑥) 

 = 𝑓 𝑥 𝑔 𝑥  𝑝 𝑥 − 𝑞 𝑥  >  0 in (x1, x2). 

Hence, W(f, g; x) is strictly increasing in (x1, x2) and so W(f, g; x2) > W(f, g; x1), a contradiction. Thus f(x) has at 

least one zero in between two consecutive zeros of g(x). 

 

Theorem 4.5:  

The eigen functions of the Regular Sturm-Liouville problem  

𝑑

𝑑𝑥
  𝑝 𝑥 

𝑑𝑦

𝑑𝑥
  +  {𝑞 𝑥 +  𝜆𝑟 𝑥 }𝑦 = 0, 

with boundary conditions  

          𝐴1𝑦 𝑎 + 𝐵1𝑦
′ 𝑎 = 0 

and   𝐴2𝑦 𝑏 +  𝐵2𝑦
′ 𝑏 = 0 

are orthogonal in [a, b] with weight function r(𝑥) .  

 

Proof: Let u(x) and v(x) are eigen functions of the given problem with eigen values λ and 𝜇 respectively. 

Then 
𝑑

𝑑𝑥
 𝑝 𝑥 𝑢′ 𝑥  +   𝑞 𝑥 + 𝜆𝑟 𝑥  𝑢 𝑥 = 0     ───     1   

and 
𝑑

𝑑𝑥
 𝑝 𝑥 𝑣 ′ 𝑥  +  𝑞 𝑥 + 𝜇𝑟 𝑥  𝑣 𝑥 = 0      ───      2   

Now, (2) x u(x) – (1) x v(x) gives  

        𝑢 𝑥 
𝑑

𝑑𝑥
 𝑝 𝑥 𝑣′ 𝑥  −  𝑣 𝑥 

𝑑

𝑑𝑥
(𝑝 𝑥 𝑢′ 𝑥 ) =  𝜆 − 𝜇  𝑟 𝑥 𝑢  𝑥  𝑣(𝑥)  

i.e,  
𝑑

𝑑𝑥
[𝑢 𝑥  𝑝 𝑥 𝑣′ 𝑥  − 𝑣 𝑥  𝑝 𝑥) 𝑢′ 𝑥   =   𝜆 − 𝜇  𝑟 𝑥 𝑢  𝑥  𝑣(𝑥) 

Integrating from a to b, we get 

 𝜆 − 𝜇   𝑟
𝑎

𝑏

 𝑥 𝑢  𝑥  𝑣 𝑥 𝑑𝑥 =  𝑢 𝑥 𝑝 𝑥 𝑣′ 𝑥 −  𝑣 𝑥 𝑝 𝑥 𝑢′ 𝑥  𝑏
𝑎

 

            =  𝑢 𝑏 𝑝 𝑏 𝑣′ 𝑏 − 𝑣 𝑏 𝑝 𝑏 𝑢′ 𝑏   

                − [𝑢 𝑎 𝑝 𝑎  𝑣′ 𝑎 −  𝑣 𝑎 𝑝 𝑎 𝑢′ 𝑎 ]  

             =   −  
𝐵2

𝐴2
 𝑢′ 𝑏 𝑝 𝑏  𝑣′  𝑏 +  

𝐵2

𝐴2
 𝑣 ′ 𝑏 𝑝 𝑏 𝑢′ 𝑏     

              −[ −
𝐵1

𝐴1
 𝑢′ 𝑎 𝑝 𝑎  𝑣′  𝑎 + 

𝐵1

𝐴1
 𝑣′ 𝑎  𝑝 𝑎  𝑢′ 𝑎 ] 

          = 0                                                        (using  boundary condions) 

Since  𝜆 − 𝜇 ≠ 𝑜 it follows that   
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               𝑟 𝑥 𝑢 𝑥 𝑣 𝑥 𝑑𝑥 = 0
𝑏

𝑎

 

This completes the proof.  

 

Note:  

(1) The eigen values of a Sturm –Liouville problem are all real and non-negative.  

(2) The eigen values of a Sturm-Liouville problem can be arranged to from a strictly increasing infinite sequence 

and λn→ ∞ an n→∞. 

(3) For each eigen value of a Sturm-Liouville problem, there exists one and only one linearly independent eigen 

function.  

Sturm-Liouville Expansion: 

Let y1(x), y2(x), ...,yn(x), ... are eigen functions of the Regular Sturm-Liouville problem. Suppose that a function f(x) 

is given in the interval a < x < b and that we wish to express f(x) in terms of the eigen functions yn(x), i.e., we wish 

to have 

𝑓 𝑥 =  𝑎𝑛𝑦𝑛

∞

𝑛=1

(𝑥)───  1   

         = a1y1(x) + a2y2(x) +.  .  .+ anyn(x) + . . .  

This gives 

 𝑟 𝑥 𝑦𝑛

𝑏

𝑎

(𝑥)𝑓 𝑥 𝑑𝑥 = 𝑎𝑛  𝑟 𝑥 [𝑦𝑛 (𝑥)]2𝑑𝑥
𝑏

𝑎

 

 [∵  𝑟 𝑥 𝑦𝑚
𝑏

𝑎
 𝑥 𝑦𝑛 𝑥 𝑑𝑥 = 0 if m ≠ n] 

If we write ∝n =  𝑟 𝑥 [𝑦𝑛(𝑥)]2𝑑𝑥
𝑏

𝑎
, we obtain 

 

𝑎𝑛 =
1

∝𝑛

 𝑟 𝑥 𝑦𝑛 (𝑥)
𝑏

𝑎

𝑓 𝑥 𝑑𝑥     ───  2  

 

Expansion of the form (1) with their coefficients given by (2) often called Sturm-Liouville expansion or expansion 

in eigen functions. 

 

Example 4: For the equation y′′+λy = 0 (λ>0), find the eigen values and eigen functions which satisfy the end point 

conditions y(0) = 0 and y(2π)= 0. Verify also that these eigen functions corresponding to different eigen values are 

orthogonal in [0,2π]. 

 

Solution: The general solution of the given equation is  

 y(x) = A cos  𝜆 x+ B sin  𝜆 x 

Putting the initial conditions, we have 

 A = 0 

and B sin 2 𝜆 π = 0 

If  B = 0, then we get the trivial solution. 

So, to get the non-trivial solution, we consider B ≠ 0. 
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Then    sin 2 𝜆 π = 0 

 i.e., sin 2 𝜆 π = sin n π            , n = 1, 2, 3, ... 

 i.e.,    λ = 
𝑛2

4
 

Thus the solution of the given equation is given by y = sin
𝑛𝑥

2
, n = 1, 2, 3,...... The values of λ viz. 

1

4
 , 

4

4
 , 

9

4
 , ... are 

called eigen values and the corresponding solutions sin 
𝑥

2
 , sin 

2𝑥

2
 ,... are called the eigen functions. 

The general solution of the given equation becomes 

 

𝑦 =  𝑎𝑛

∝

𝑛=1

sin
𝑛𝑥

2
  ───  1  

where an are arbitrary constants. 

 

Now, the weight function is r(x) = 1 and yn(x) = sin
𝑛𝑥

2
 , u(x) = sin 

𝑛1𝑥

2
 , v(x) = sin 

𝑛2𝑥

2
 

Then 

            𝑟 𝑥  𝑢 𝑥  𝑣 𝑥  𝑑𝑥
2𝜋

0

 

        =   sin 
𝑛1𝑥

2
sin 

𝑛2𝑥

2
 𝑑𝑥

2𝜋

0

 

        =
1

2
 [𝑐𝑜𝑠 

(𝑛2 − 𝑛1)𝑥

2
− 𝑐𝑜𝑠 

(𝑛2 + 𝑛1)𝑥

2
]𝑑𝑥

2𝜋

0

 

         = 0 

∴  𝑟 𝑥  𝑢 𝑥  𝑣 𝑥  𝑑𝑥
2𝜋

0

= 0 

This proves that the eigen functions corresponding to the different eigen values are orthogonal. 
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Unit  5 

 

Green’s Function 

 

Green’s Function: 

Suppose that we want to solve a non-homogeneous equation 

 L [u(x)] = f(x),   a ≤ x ≤ b  ───  1  

where L is a differential operator defined by 

 L ≡ 
𝑑

𝑑𝑥
 [p(x) 

𝑑

𝑑𝑥
 ] + q (x). 

Here p(x),  p′(x) and q(x) are given real valued continuous functions defined on [a,b]. 

Equation (1) is considered with boundary conditions 

 m1 u(a) + m2 u′(a) = 0 ───  2  

 and m3 u(b) + m4u′(b) = 0 ───  3  

with the usual assumption that at least one of m1 and m2 and one of m3 and m4 are non-zero. 

If we can find two linearly independent solutions of the homogeneous equation L[u(x)] = 0, the solution of (1) can 

be obtained in the form 

 u x =  𝐺 𝑥, 𝑧 𝑓 𝑧 𝑑𝑧.
𝑏

𝑎

 

The function G(x, z) is called the Green’s function of the problem. 

Suppose we have to solve the boundary value problem 

𝑑2𝑢

𝑑𝑥 2  + k(x) 
𝑑𝑢

𝑑𝑥
 + p(x)u = f(x),    a ≤ x ≤ b   ───  4  

 m1u(a) + m2u′(a) = 0 ───  5  

 m3u(b) + m4u′(b) = 0 ───  6  

Let u1(x) and u2(x) be two linearly independent solutions of the corresponding homogeneous equation of (4). For 

simplicity, we may assume that u1 satisfy the boundary condition at x = a and u2 satisfy the boundary condition at x= 

b. 

i.e., m1u1(a) + m2u1′(a) = 0 

and m3u2 (b) + m4 u2′(b) = 0 

Then the general solution of (4) can be written as 

u(x) = c1u1(x) + c2u2(x) +  
𝑢1 𝑧 𝑢2 𝑥 −𝑢2 𝑧 𝑢1(𝑥)

𝑊(𝑧)

𝑥

𝑎
 f(z) dz ───  7  

where W(z) is the Wronskian of u1 and u2 and W ≢ 0 because u1 and u2 are linearly independent. 

Differentiating (7) with respect to x, we get 

 

u′ x =  𝑐1u1
′  x + c2u2

′  x +  [𝑢1
𝑥

𝑎
 𝑧 𝑢2

′  𝑥 −  𝑢2 𝑧 𝑢1
′ (𝑥)]

𝑓(𝑧)

𝑤(𝑧)
 dz 

[ by Leibnitz’s rule 
𝑑

𝑑𝑥
 𝑓 𝑥, 𝑧 𝑑𝑧 =   

𝜕𝑓 (𝑥 ,𝑧)

𝜕𝑥

𝑏

𝑎

𝑏

𝑎
 dz] 
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Now, we apply the boundary condition (5) to the general solution u(x). 

At x = a, we have  m1u(a) + m2u′(a) =  c1(m1u1(a) + m2u1′(a)) + c2(m1u2(a)+m2u2′(a)) = 0. 

Since u1 satisfy the boundary condition at x = a, we have 

c2(m1u2(a)+m2u2′(a)) = 0  i.e., c2 = 0   

At x = b, we have m3u(b) + m4 u′(b) = 0 

 i.e., c1(m3u1(b) + m4u1′(b)) +  [𝑢1
𝑏

𝑎
 𝑧  𝑚3𝑢2 𝑏 + 𝑚4𝑢2′ 𝑏  − 𝑢2 𝑧 [𝑚3𝑢1 𝑏 + 𝑚4𝑢1

′  𝑏 ]]
𝑓 𝑧 

𝑤 𝑧 
= 0 

 i.e., c1(m3u1(b) + m4u1′(b)) - (m3u1(b) + m4u1′(b))  
𝑢2 𝑧 𝑓(𝑧)

𝑤(𝑧)

𝑏

𝑎
 𝑑𝑧 = 0 

 i.e., c1 =  
𝑢2 𝑧 𝑓(𝑧)

𝑤(𝑧)

𝑏

𝑎
 𝑑𝑧 

Then from (7) we get 

u(x) = u1(x) 𝑢2
𝑏

𝑎
(𝑧) 

𝑓(𝑧)

𝑤(𝑧)
 dz +  [𝑢1

𝑥

𝑎
 𝑧 𝑢2 𝑥 − 𝑢2 𝑧 𝑢1(𝑥)] 

𝑓(𝑧)

𝑤(𝑧)
 dz  

       =  𝑢1
𝑥

𝑎
 𝑧 𝑢2 𝑥  

𝑓(𝑧)

𝑤(𝑧)
 dz +  u1(x) 𝑢2

𝑏

𝑥
(𝑧) 

𝑓(𝑧)

𝑤(𝑧)
 dz  . . . . .  (8) 

These two integrals can be combined into one. We first define Green’s function for the problem (4), (5), (6) as 

     G(x,z) = 
𝑢1 𝑍 𝑢2(𝑥)

𝑤(𝑧)
          , a ≤ z ≤ x 

 = 
𝑢2 𝑍 𝑢1(𝑥)

𝑤(𝑧)
          , x ≤ z ≤ b 

Then the formula given in (8) simplifies to  

 u(x) =  𝐺 𝑥, 𝑧 𝑓 𝑧    𝑑𝑧
𝑏

𝑎
. 

 

Example 1: Solve by constructing Green’s function 

 
𝑑2𝑢

𝑑𝑥 2  − u = −1    , 0 < x < 1 

 u(0) = 0    ,  u(1) = 0 

Solution: First we have to find out two linearly independent solutions of the homogeneous differential equation  

          u′′ - u = 0  

that satisfies the boundary conditions as required. 

The general solution of the homogeneous differential equation is  

 u(x) = c1 cos hx + c2 sin hx. 

Since u1(x) is required to satisfy the condition at the left, u1(0) = 0, we take c1 = 0, c2 = 1 and conclude u1(x) = sin hx. 

The second solution is to satisfy u2(1) = 0. We may take  

         u2(x) = sin h1 cos hx – cosh1 sin hx =sin h(1-x) 

The Wronskian of u1 and u2 is 

 

𝑊 𝑥 =   
sinh 𝑥          sinh 1 − 𝑥 
cosh 𝑥    − cosh(1 − 𝑥)

 = − sinh 1 

Therefore, the Green’s function for this problem is  
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      G(x,z) = −
sinh 𝑧    sinh (1−𝑥)

sinh 1
,   0 ≤ z ≤ x 

 = − 
sinh 𝑥    sinh (1−𝑧)

sinh 1
,   x ≤ z ≤ 1 

Furthermore,  since f(x) = −1, the solution is the integral 

u(x) =  − 𝐺 𝑥, 𝑧 𝑑𝑧
1

0
 

     =  
sinh 𝑧    sinh (1−𝑥)

sinh 1

𝑥

0
 dz +  

sinh 𝑥  sinh (1−𝑧)

sinh 1

1

𝑥
 dz 

     = 
  sinh (1−𝑥)

sinh 1
 (cosh x – 1) – 

sinh 𝑥

sinh 1
 (1 – cosh(1−x) 

     = 
1

sinh 1
 [sinh (1−x) cosh x + cosh (1−x) sinh x] − 

sinh (1−𝑥)+sinh x 

sinh 1
 

      = 1 − 
sinh (1−𝑥)+sinh x 

sinh 1
 

 

Example 2: Solve the following boundary value problem, by constructing Green’s function, 

 
1

𝑥
 

𝑑

𝑑𝑥
 𝑥

𝑑𝑢

𝑑𝑥
 =  𝑓 𝑥        , 0 < x < 1, 

 given that u(0)  is bounded and u(1) = 0. 

Solution: The corresponding homogeneous equation is 
1

𝑥
 (xu′′ + u′) = 0 

  or, u′′ + 
𝑢′

𝑥
 = 0 

  or, 
𝑑

𝑑𝑥
 (

𝑑𝑢

𝑑𝑥
) + 

1

𝑥
 (

𝑑𝑢

𝑑𝑥
) = 0 

  or, 
𝑑(

𝑑𝑢

𝑑𝑥
)

𝑑𝑢

𝑑𝑥

 + 
𝑑𝑥

𝑥
 = 0 

Integrating, log(
𝑑𝑢

𝑑𝑥
) + log x = log c1,     c1 = constant 

 or, x
𝑑𝑢

𝑑𝑥
 = c1 

 or, du = c1 
𝑑𝑢

𝑑𝑥
 

∴ Integrating, u = c1log x + c2 ,   c2 = constant 

Since u1 is required to satisfy the condition at the left, u1(0) is bounded we take c1= 0 and c2= 1 and conclude  u1(x) 

=1. 

The second solution is to satisfy u2(1) = 0. We take take c1= 1 and c2= 0 and conclude u2(x)= logx. 

∴ 𝑊 𝑧 =   
1        log 𝑧
0         1/𝑧

  = 
1

𝑧
 

Therefore, the Green’s function for this problem is 

∴ 𝐺 𝑥, 𝑧 =  𝑧 log 𝑥 ,     0 < 𝑧 ≤ 𝑥 

 = z log z,       x ≤ z < 1 

Therefore the solution of the given differential equation is  

           u(x) =  𝐺(𝑥, 𝑧)
1

0
 f(z) dz. 
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Another definition of Green’s function: 

A function G(x, z) defined on [a,b] ×[a,b] is called a Green’s function for the boundary value problem L[u] = 0 with 

boundary conditions 

 m1u(a) + m2u′(a) = 0 

 m3u(b) + m4 u′(b) = 0, 

where L ≡ 
𝑑

𝑑𝑥
 [ p(x) 

𝑑

𝑑𝑥
] + q(x), 

if for a given z, 

     G(x, z) = G1(x, z) if x < z 

 = G2 (x, z) if x > z 

where G1 and G2 are such that 

(1) G1 satisfies the boundary condition at x = a and L(G1) = 0 for x < z; 

(2) G2 satisfies the boundary condition at x = b and L(G2) = 0 for x> z; 

(3) The function G(x, z) is continuous at x = z; 

(4) The derivative of G with respect to x has a jump discontinuity at x = z and [ 
𝜕𝐺2

𝜕𝑥
−  

𝜕𝐺1

𝜕𝑥
 ]x = z  = − 

1

𝑝(𝑧)
. 

With this definition, the Green’s function for the above boundary value problem is constructed. 

 

Example 3: Find solution of the following B.V.P. by constructing Green’s function  u′′ = f(x)    , u(0) = 0 = u (1) 

 

Solution: The general solution of the corresponding homogeneous equation is  u(x) = ax+b. 

Let G1(x, z) = c1x + c2     , 0< x < z 

and  G2(x, z) = c3x + c4     ,z< x < 1 

Then        G1(0, z) = 0 ⟹ c2 = 0 

 G2(1, z) = 0 ⟹ c3 + c4 = 0 

Now, [ 
𝜕𝐺2

𝜕𝑥
−  

𝜕𝐺1

𝜕𝑥
 ]x = z  = − 1⟹ c3 + c1 = −1 ⟹ c3 = c1 – 1 

 

G is continuous at x = z ⟹ c1z = c3z + c4  

  i.e., z(c1 − c3) = c4 

  i.e., c4  = z 

 

∴ c3  = −z  and c1  = −z + 1 

Thus G(x, z) = x(1−z)    , 0 < x < z 

      = z(1−x)    , z < x < 1. 

 

∴ The solution of the problem is  

 𝑢 𝑥 =   𝐺  𝑥, 𝑧 𝑓 𝑧 𝑑𝑧
1

0
 

 

where 𝐺 𝑥, 𝑧 =  𝑧 1 − 𝑥 , 0 < 𝑧 < 𝑥 

         = 𝑥 1 − 𝑧 , 𝑥 < 𝑧 < 1. 

 

Exercise: 
1. Find the Green’s function of the B.V.P. 

 𝑢" = 0, 𝑢(0) = 0 = 𝑢(𝑙). 
Exercise: 

2. Solve the following B.V.P. by constructing Green’s function  

 𝑢" = 𝑓(𝑥) = 0, 𝑢(0) =  0,   𝑢(𝑖) = 𝑢′(1) = 0 
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Unit 6 

 

Second Order Linear Differential Equation in Complex 

Domain 
 

Solution of 2
nd

 order linear differential equation in complex domain: 

 

Let           
𝑑2𝑤

𝑑𝑧2 + 𝑝 𝑧 
𝑑𝑤

𝑑𝑧
+  𝑞 𝑧 𝑤 =  0 ───  1   

be a given differential equation in the complex variable z, where p(z) and q(z) are functions of z. A point z = z0 is 

called an ordinary point of (1) if both p(z) and q(z) are analytic at z0, i.e., if p(z) and q(z) have the following 

expressions.  

         𝑝 𝑧 =   𝑝𝑛 (𝑧 − 𝑧0)𝑛∝
𝑛=0   and   q 𝑧 =   𝑞𝑛 (𝑧 − 𝑧0)𝑛∝

𝑛=0 . 

 
A point 𝑧 = 𝑧0is called a regular singularity of the equation (1) if at least one of p(z) and q(z) are not analytic at 𝑧0, 

but (𝑧 − 𝑧0) p(z) and (𝑧 − 𝑧0)2𝑞(𝑧) are analytic at 𝑧0, i.e., if 𝑧0 is at best a simple pole of p(z) and a double pole of 

q(z). If 𝑧0 is neither an ordinary point nor a regular singularity of (1), then 𝑧0 is called an irregular singularity of (1).  

 

We are interested to obtain solutions of the differential equation (1) in the neighborhood of an ordinary point and 

regular singularity. The result in the neighbourhood of an ordinary point is due to Fuch.  

 

Theorem 6.1: Fuch’s theorem:  

 

Statement: Let 𝑧0 be an ordinary point of the differential equation  

                          
𝑑2𝑤

𝑑𝑧2 + 𝑝 𝑧 
𝑑𝑤

𝑑𝑧
+  𝑞 𝑧 𝑤 = 0 ─── (1) 

and let 𝑎0,  𝑎1  be arbitrary constants. Then there exists a unique function w(z), which is analytic at 𝑧0 , is a 

solution of (1) in certain nbd of 𝑧0 and satisfies the initial conditions 𝑤 𝑧0 = 𝑎0 and 𝑤 ′ 𝑧0 = 𝑎1 . 

Furthermore, if the power series expansion of p(z) and q(z) are valid in |z-z0| < R, (R>0), then the power 

series expansion of w(z) is also valid in |z-z0| < R. 

 
Proof: 

Without loss of generality, we may assume that 𝑧0 = 0. Since p(z) and q(z) are both analytic at 𝑧0, we have  

           𝑝 𝑧 =   𝑝𝑛𝑧𝑛

∞

𝑛=0

 and 𝑞 𝑧 =   𝑞𝑛𝑧𝑛

∞

𝑛=0

 in  𝑧 < 𝑅, 𝑅 > 0. 

   Let 𝑤 𝑧 =   𝑎𝑛𝑧𝑛

∞

𝑛=0

 be a solution of  1 . 

Then 
𝑑𝑤

𝑑𝑧
=   𝑛𝑎𝑛𝑧𝑛−1

∞

𝑛=1

=    𝑛 + 1  𝑎𝑛+1𝑧
𝑛

∞

𝑛=0

 

and 
𝑑2𝑤

𝑑𝑧2
=   𝑛 𝑛 − 1 𝑎𝑛𝑧𝑛−2 =   𝑛 + 1 (𝑛 + 2) 𝑎𝑛+2

∞

𝑛=0

𝑧𝑛

∞

𝑛=2

 

 

So from (1) we obtain  

  𝑛 + 2  𝑛 + 1 𝑎𝑛+2𝑧
𝑛 +   𝑝𝑛𝑧𝑛   

∞

𝑛=0

    𝑛 + 1 𝑎𝑛+1

∞

𝑛=0

 

∞

𝑛=0

𝑧𝑛 +   𝑞𝑛𝑧𝑛   

∞

𝑛=0

   𝑎𝑛

∞

𝑛=0

𝑧𝑛 = 0 
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i. e. ,      𝑛 + 2  𝑛 + 1 𝑎𝑛+2 +   𝑝𝑛−𝑘   𝑘 + 1 𝑎𝑘+1 +

𝑛

𝑘=0

  

∞

𝑛=0

 𝑞𝑛−𝑘

𝑛

𝑘=0

𝑎𝑘  zn = 0  

 

Thus an must satisfy the relation  

−  𝑛 + 2  𝑛 + 1 𝑎𝑛+2 =  [ 𝑘 + 1 𝑝𝑛−𝑘  𝑎𝑘+1

𝑛

𝑘=0

+ 𝑎𝑘𝑞𝑛−𝑘]       ──      (2) 

 

Putting n=0, 1, 2, ... we get   

-2.1.a2 =a1p0 +𝑞0a0 

-3.2.a3 = a1p1 + 2a2p0 + a0q1 + a1q0 

-4.3.a4 = a1p2 + 2a2p1 + 3a3 p0 + a0q2 + a1q1 + a2q0 

. 

. 

. 

The above recurrence relations exhibit that the coefficients an, n = 2, 3, are obtained uniquely in terms of a0 and a1. 

With these coefficients an, 𝑤 𝑧 =  𝑎𝑛𝑧𝑛∝
𝑛=0  satisfies the given equation (1). 

 

We now show that the expansion of w(z) is valid in | z | < R so that the solution is analytic. Let r be a positive real 

number less than R. Since p(z) and q(z) are analytic in | z | < R, the series  𝑝𝑛𝑧𝑛∞
𝑛=0   and  𝑞𝑛𝑧𝑛∝

𝑛=0  are both 

converges in | z | < R. By Cauchy’s inequality, we have 

 | 𝑝𝑛  | ≤ 
𝑀

𝑟𝑛       and | 𝑞𝑛  | ≤ 
𝑀

𝑟𝑛     ∀ n, 

where M = max{| p(z) |, | q (z) | } in  | z | < R . 

 

Then from (2), we get 

| (n+1)(n+2)an+2 | ≤ 
𝑀

𝑟𝑛   [(k + 1)| ak+1|  + |ak|]rk𝑛
𝑘=0

 

i.e., (n+1)(n+2)| an+2 | ≤ 
𝑀

𝑟𝑛   [(k + 1)| ak+1|  +  |ak|]rk𝑛
𝑘=0  + M | an+1 |r          ──     (3) 

We define b0 = | a0 |, b1 = | a1| and bn by 

 (n+1)(n+2) bn+2 ≤ 
𝑀

𝑟𝑛   [(k + 1) bk+1 + bk]rk𝑛
𝑘=0  + M bn+1 r        ──     (4) 

   n = 0, 1, 2, .... 

Comparing (4) with (3) we see that an induction yields |an|≤ bn ∀n,  bn ≥ 0 

   n = 0, 1, 2, .... 

We now show that the series  𝑏𝑛𝑧𝑛∞
𝑛=0  converges in | z | < r. 

In fact, 

𝑛 𝑛 + 1 𝑏𝑛+1 =  
𝑀

𝑟𝑛−1
 [(𝑘 + 1)𝑏𝑘+1

𝑛−1
𝑘=0 + 𝑏𝑘]𝑟𝑘 + 𝑀𝑏𝑛𝑟         ──     (5) 

and  𝑛 − 1 𝑛 𝑏𝑛 =  
𝑀

𝑟𝑛−2
 [(𝑘 + 1)𝑏𝑘+1

𝑛−2
𝑘=0 + 𝑏𝑘 ]𝑟𝑘 + 𝑀𝑏𝑛−1𝑟        ──    (6) 

Now, r ×(6) – (7) gives. 

n(n+1) bn+1r − (n−1)nbn = M(nbn + bn-1) r + Mbnr
2
 – Mbn-1r 

   

i.e., 
𝑏𝑛+1

𝑏𝑛
 = 

𝑀𝑛𝑟 +𝑀𝑟 2+𝑛(𝑛−1)

𝑛 𝑛+1 𝑟
 

 

Thus lim𝑛→∞

𝑏𝑛+1

𝑏𝑛
 = 

1

𝑟
 

i.e., lim
𝑛→∞

|
𝑏𝑛+1𝑧𝑛+1

𝑏𝑛𝑧𝑛  | = 
|𝑧|

𝑟
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Thus the series  𝑏𝑛𝑧𝑛∞
𝑛=0  converges in | z | < r. Since | an| ≤ bn for all n, by comparison test, the series  𝑎𝑛𝑧𝑛∝

𝑛=0  

converges in | z | < r. Since r <R is arbitrary, it follows that the series   𝑎𝑛𝑧𝑛∝
𝑛=0  converges in| z | < R. 

Therefore w(z) =  𝑎𝑛𝑧𝑛∝
𝑛=0  is analytic in | z | < R which satisfies the given differential equation (1) with w(0) = a0 

and w′(0) = a1. Since for a given set of values a0, a1, we obtain the coefficients uniquely in terms of a0 and a1, the 

solution w(z) =  𝑎𝑛𝑧𝑛∝
𝑛=0  is unique. This proves the theorem. 

 

 

Example 1: Obtain the solution of the differential equation 

 (1−z
2
)
𝑑2𝑤

𝑑𝑧 2  - 2z 
𝑑𝑤

𝑑𝑧
 + n(n+1) w = 0          ──       (1) 

in the neighbourhood of z = 0. 

 

Solution: Comparing the given equation to the standard form 

 w′′(z) + p(z)w′(z) + q(z) w = 0, 

we obtain p(z) = −
2𝑧

1−𝑧2     and     q(z) = 
𝑛(𝑛+1)

1−𝑧2  ,  both of which are analytic at z = 0. 

Hence z = 0 is an ordinary point of the given equation. So according to Fuch’s theorem, there exists a unique 

solution w(z) which is analytic in certain neighbourhood of z = 0 which satisfies the initial conditions w(0) = a0 and 

w′(0) = a1, where a0 and a1 are arbitrary constants. We write 

𝑤 𝑧 =  𝑎𝑘𝑧
𝑘

∝

𝑘=0

 

Then 

𝑑𝑤

𝑑𝑧
=  𝑘𝑎𝑘𝑧𝑘−1

∝

𝑘=1

 

 

𝑑2𝑤

𝑑𝑧2
=  𝑘(𝑘 − 1)𝑎𝑘𝑧𝑘−2

∝

𝑘=2

 

Substituting in (1), we get 

(1 − 𝑧2  𝑘 𝑘 − 1 𝑎𝑘𝑧𝑘−2 − 2𝑧  𝑘𝑎𝑘𝑧𝑘−1 + 𝑛(𝑛 + 1)

∝

𝑘=1

∝

𝑘=2

 𝑎𝑘𝑧
𝑘 = 0

∞

𝑘=0

 

Equating the coefficient of z
k
 to zero, we obtain 

(k+2)(k+1)ak+2 –k(k−1)ak−2kak + n(n+1) ak = 0 

i.e., (k+2)(k+1)ak+2 = [k(k-1) +2k –n(n+1)]ak 

 

i.e.,    ak+2 = 
𝑘 𝑘+1 −𝑛(𝑛+1)

 𝑘+2 (𝑘+1)
 ak 

 = − 
 𝑛−𝑘 (𝑛+𝑘+1)

 𝑘+2 (𝑘+1)
 ak 

Putting k = 0, 1, 2, ... in succession, we get 

 

a2 = − 
𝑛(𝑛+1)

1.2
 a0 

 

a3 = − 
(𝑛−1)(𝑛+2)

2.3
 a1 

 

a4 = − 
(𝑛−2)(𝑛+3)

3.4
 a2 =  

 𝑛−2 𝑛 𝑛+1 (𝑛+3)

4!
 a0 
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 a5 =  
−(𝑛−3)(𝑛+4)

4.5
 a3 =  

 𝑛−3  𝑛−1  𝑛+2 (𝑛+4)

5!
 a1 

and so on. 

Therefore the solution of (1) becomes 

𝑤 𝑧 =  𝑎𝑘𝑧
𝑘

∝

𝑘=0

 

= a0[1− 
𝑛(𝑛+1)

2!
 z

2
 +  

 𝑛−2 𝑛 𝑛+1 (𝑛+3)

4!
 z

4
 − ...] 

 

+ a1[z− 
(𝑛−1)(𝑛+2)

3!
 z

3
 +  

 𝑛−3  𝑛−1  𝑛+2 (𝑛+4)

5!
 z

5
 − ...] 

where  a0 and a1 are arbitrary constants. 

 

Note: The differential equation (1) is known as Legendre differential equation. 

 

Theorem 6.2: Frobenius Theorem  

Statement: Let z = 0 be a regular singularity of the differential equation 

𝑑2𝑤

𝑑𝑧2
+ 𝑝 𝑧 

𝑑𝑤

𝑑𝑧
+  𝑞 𝑧 𝑤 = 0 

and let the power series expansion of zp(z) and z
2
q(z) are valid in | z | < R, R > 0. Then there exists at least one 

solution of the given equation of the form  

                𝑤 𝑧 = 𝑧𝑚  𝑎𝑛𝑧𝑛

∞

𝑛=0

 

where m is a scalar and the series  𝑎𝑛𝑧𝑛∞
𝑛=0   is convergent at least in | z | < R. 

 

Example 2: Obtain the solution of the differential equation  

             𝑧2 𝑑2𝑤

𝑑𝑧 2 + 𝑧
𝑑𝑤

𝑑𝑧
+   𝑧2 − 𝜈2 𝑤 = 0         ──      (1) 

in the nbd of z = 0 , 𝜈 is neither zero nor an integer. 

 

Solution: Comparing (1) with the equation w′′(z) +p(z)w′(z)+q(z)w(z) = 0 

we get   p(z) = 
1

𝑧
 and  q(z) = 

𝑧2−𝜈2

𝑧2  

Since both zp(z) = 1 and z
2
q(z) = z

2
 – 𝜈2

 are analytic at z = 0, the point z =0 is a regular singularity of (1). 

Let 

                    𝑤 𝑧 =  𝑎𝑛𝑧𝑛+𝑚

∝

𝑛=0

 

be  a solution of (1). Then 

𝑤′ 𝑧 =   𝑛 + 𝑚 𝑎𝑛𝑧𝑛+𝑚−1

∝

𝑛=0
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𝑤′′ 𝑧 =   𝑛 + 𝑚  𝑛 + 𝑚 − 1 𝑎𝑛𝑧𝑛+𝑚−2

∝

𝑛=0

 

So from (1) we obtain 

𝑧2   𝑛 + 𝑚  𝑛 + 𝑚 − 1 𝑎𝑛𝑧𝑛+𝑚−2

∝

𝑛=0

+  𝑧   𝑛 + 𝑚 𝑎𝑛𝑧𝑛+𝑚−1

∝

𝑛=0

+ (𝑧2 − 𝜈2)  𝑎𝑛𝑧𝑛+𝑚 = 0

∝

𝑛=0

 

Equation the coefficient of z
m
 to zero, we get 

          [m(m−1) +m−𝜈2
]a0= 0 

If a0 ≠ 0 is arbitrary, then the indicial equation is 

 m
2−𝜈2 

= 0. 

So, the exponents are m = ± 𝜈  

Equating to zero, the coefficient of z
n+m

, we get 

(n+m) (n+m−1) an +(n+m) an  − 𝜈2 an = 0 

i.e., (n+m)
2
 an − 𝜈2an = − an-2 

i.e., an (n+m+𝜈) (n+m−𝜈)= − an-2 

i.e., an = −
1

(n+m+𝜈) (n+m−𝜈)
  an-2 ── (2) 

The relation (2) will determine the even coefficients in terms of a0 and the odd coefficients in terms of a1. 

Since a-1 = 0, we get a1 = 0. 

Consequently a2n+1 = 0 for all n. 

Now, from (2) we get for m = 𝜈, 

 an = 
−1

𝑛(𝑛+2𝜈)
  an-2 

Putting n = 2, 4, 6, ..., we obtain 

 a2 = −
1

2(2+2𝜈)
  a0 = −

1

2.2(𝜈+1)
 a0 

 a4 = −
1

4(4+2𝜈)
  a2 = (−1)2 1

22.21.2 𝜈+1 (ν+2)
 a0 

 a6 = −
1

6(6+2𝜈)
  a4 = (−1)3 1

22.31.2.3  𝜈+1 (ν+2)(ν+3)
 a0 

In general, 

 a2n = (−1)𝑛 1

22n 1.2…n 𝜈+1  ν+2 …(ν+n)
 a0 

     = (−1)𝑛 Γ 𝜈+1 

22n n!Γ 𝜈+1  ν+1 (ν+2)…(ν+n)
 a0 

     = (−1)𝑛 Γ 𝜈+1 

22n Γ 𝑛+1 Γ(n+ν+1)
 a0 

Hence the general solution of (1) near z = 0 corresponding to the exponent 𝜈 is given by 

𝑤1(𝑧) = 𝑧𝜈  𝑎2𝑛𝑧2𝑛

∝

𝑛=0
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          = 𝑧𝜈  (−1)𝑛  

∝

𝑛=0

Γ 𝜈 + 1 a0

22nΓ 𝑛 + 1 Γ(n + ν + 1)
𝑧2𝑛  

 

Taking a0 = 
1

2𝜈Γ(ν+1)
, we obtain a particular solution denoted by 

𝐽𝜈 𝑧 = (
𝑧

2
)𝜈  (−1)𝑛  

∞

𝑛=0

(
z
2

)2n

Γ 𝑛 + 1 Γ(n + ν + 1)
 

Solution corresponding to the exponent – 𝜈 will be obtained symmetrically as 

𝐽−𝜈 𝑧 =  (−1)𝑛  

∞

𝑛=0

(
z
2

)2n−ν

Γ 𝑛 + 1 Γ(n − ν + 1)
 

Therefore the general solution of (1) is given by 

                    w(z) = A 𝐽𝜈 (z) + B𝐽−𝜈 (z) 

where A and B are arbitrary constants. 

 

Note: If 𝜈 is an integer, then 

𝐽−𝜈 𝑧 =  (−1)𝑛  

∞

𝑛=0

(
z
2

)2n−ν

Γ 𝑛 + 1 Γ(n − ν + 1)
 

  

           =  (−1)𝑛  

∞

𝑛=𝜈

(
z
2

)2n−ν

Γ 𝑛 + 1 Γ(n − ν + 1)
 

     

           =  (−1)𝑘+𝜈  

∞

𝑘=0

(
z
2

)2k+ν

Γ 𝑘 + 𝜈 + 1 Γ(k + 1)
 

        = (−1)𝜈  𝐽𝜈(𝑧) 

In this case the solutions are linearly dependent. 

 

Note: The differential equation (1) is known as the Bessel’s differential equation. 

 

Exercise 1: Obtain a solution of the Gauss hypergeometric differential equation 

z(1−z) 
𝑑2𝑤

𝑑𝑧 2 +  𝑐 −  𝑎 + 𝑏 + 1 𝑧 
𝑑𝑤

𝑑𝑧
− 𝑎𝑏𝑤 = 0      ──       (1) 

near z = 0, c is neither an integer nor zero. 

 

Exercise 2: Obtain a solution of the Hermite differential equation 

 
𝑑2𝑤

𝑑𝑧 2 − 2𝑧
𝑑𝑤

𝑑𝑧
+ 2𝑛 𝑤 = 0   

near z = 0, n being a constant. 

∵
1

Γ(𝑝)
= 0 𝑖𝑓 𝑝 = 0 𝑜𝑟 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒ger 

[Putting  n = k + 𝜈] 
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10 Special Functions

10.1 Introduction

The classification theorem, together with the folk theorem concerning the type of O.D.E.’s

that arise in mathematical physics, implies that once the solution to the standard form

differential equations (9.2.6) and (9.3.2) are known, the solutions appropriate to most physical

problems may be obtained as special cases. The present chapter is therefore devoted to

applying the techniques of chapter 8 to solve these two master equations. The solutions so

generated are, of course, in series form and in general cannot be expressed in closed form in

terms of elementary functions. As a result much of the chapter is devoted to constructing

analytic continuations of the solutions to the general complex plane and using these to derive

the properties that are useful in manipulating these functions in physical problems. The

general properties are then written explicitly for the special cases of Bessel’s and Legendre’s

equations since these are the most commonly encountered and furnish classic examples of the

techniques described.

10.2 Hypergeometric Functions

The aim is to explicitly generate a series solution to the Hypergeometric equation (9.2.6):

z(1− z)y′′(z) + [c− (1 + a+ b)z]y′(z)− aby(z) = 0. (10.2.1)

Since the coefficient functions have a simple form in powers of z it is convenient to expand

about the regular singular point at z = 0. From Fuchs’s theorem it follows that the solution

must have the following form:

y(z) =
∞∑
n=0

ynz
n+s (10.2.2)

which, when substituted into the differential equation gives the following indicial equation:

I(s) = s(s− 1 + c) = 0 (10.2.3)

and recursion relation:

yn+1 =

[
(n+ s+ a)(n+ s+ b)

(n+ s+ 1)(n+ s+ c)

]
yn n ≥ 0. (10.2.4)

The roots of the indicial equation are s1 = 0 and s2 = 1− c. From the general discussion

in section 8.5 the series ansatz may fail to generate both solutions if c should be an integer.

Recalling the property Γ(z+1) = zΓ(z) satisfied by Euler’s gamma function allows the general

solution to the recursion relation (10.2.4) to be written down immediately:

yn(s) = C

[
Γ(n+ s+ a)Γ(n+ s+ b)

Γ(n+ s+ 1)Γ(n+ s+ c)

]
. (10.2.5)
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The constant C is determined to be y0[Γ(s + 1)Γ(s + c)]/[Γ(s + a)Γ(s + b)] by the initial

condition that eq. (10.2.5) reduce to the free parameter y0 when n = 0. Eq. (10.2.5) then

reduces to:

yn(s) =

[
Γ(c+ s)Γ(s+ 1)

Γ(a+ s)Γ(b+ s)

] [
Γ(n+ s+ a)Γ(n+ s+ b)

Γ(n+ s+ c)Γ(n+ s+ 1)

]
y0. (10.2.6)

Inspection of the limit

lim
n→∞

yn+1(s)zs+n+1

yn(s)zs+n
= lim

n→∞

[
(n+ s+ a)(n+ s+ b)

(n+ s+ 1)(n+ s+ c)

]
z = z, (10.2.7)

together with the ratio test, implies that for any a, b, c and s the series in eq. (10.2.2)

converges for |z| < 1.

The solution corresponding to s = 0 is now easily written. With the conventional choice

that y0 = 1 the series solution using s = 0 in eq. (10.2.6) is:

y1(z) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(n+ a)Γ(n+ b)

Γ(n+ c)n!
zn

= 1 +
ab

c
z +

a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2
+ ...

≡ F (a, b; c; z)

≡ 2F1(a, b; c; z). (10.2.8)

The function F (a, b; c; z) defined by this series is called the Hypergeometric function and its

definition makes sense provided that c 6= 0,−1,−2, ... and |z| < 1.

The second solution corresponds to the choice s = 1 − c. The corresponding solution is

therefore given by:

y2(z) =
Γ(2− c)

Γ(a+ 1− c)Γ(b+ 1− c)

∞∑
n=0

Γ(n+ a+ 1− c)Γ(n+ b+ 1− c)
Γ(n+ 2− c)n!

zn+1−c

= z1−c
[
1 +

(a+ 1− c)(b+ 1− c)
2− c

z + ...

]
= z1−cF (a+ 1− c, b+ 1− c; 2− c; z) (10.2.9)

This second solution is well defined only if c 6= 2, 3, ... and |z| < 1. If c = 1 then the solutions

(10.2.8) and (10.2.9) are not distinct. For non-integral c the two solutions y1(z) and y2(z) are

linearly independent since they behave differently as z → 0 and so cannot be proportional to

one another.

10.3 Confluent Hypergeometric Functions

The series solution to the Confluent Hypergeometric equation (9.3.2):

zy′′(z) + (c− z)y′(z)− ay(z) = 0 (10.3.1)
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can be obtained in a similar fashion. It is more instructive, however, to obtain it directly from

the previously constructed Hypergeometric function. To do so take u = z/λ and b = 1/λ in

eq. (10.2.6). The solution to the Confluent equation is obtained by taking the limit as λ→ 0

with all other quantities fixed:

y1(u) ≡ M(a, c;u)

≡ 1F1(a; c;u)

= lim
λ→0

F (a, 1/λ; c;λu) (10.3.2)

for c 6= 0,−1, .... The required limit for the n+ 1’th term of the series is:

X ≡ lim
λ→0

[
λn

Γ(n+ 1/λ)

Γ(1/λ)

]
= lim

λ→0

[
λn
(

1

λ

)(
1

λ
+ 1

)
...

(
1

λ
+ n− 1

)]
= lim

λ→0
[1(1 + λ)(1 + 2λ)...(1 + (n− 1)λ)]

= 1. (10.3.3)

This leaves the following series solution to eq. (10.3.1):

M(a, c; z) =

[
Γ(c)

Γ(a)

] ∞∑
n=0

[
Γ(a+ n)

Γ(c+ n)

]
zn

n!

= 1 +
[a
c

]
z +

[
a(a+ 1)

c(c+ 1)

]
z2

2
+ ... (10.3.4)

for c 6= 0,−1, .... This function is called the Confluent Hypergeometric function.

Using the limit:

lim
n→∞

yn+1z
n+1

ynzn
= lim

n→∞

[
(a+ n)

(c+ n)(n+ 1)

]
z = 0 (10.3.5)

in the ratio test implies that the series (10.3.4) has an infinite radius of convergence.

The second solution is similarly found to be given by:

y2(z) = z1−cM(a+ 1− c, 2− c; z) (10.3.6)

provided c 6= 2, 3, 4.... For c = 1 solutions (10.3.2) and (10.3.6) are not distinct. For noninteger

c these solutions are well-defined for all finite z and linearly independent.

EXAMPLES:

From the results of chapter 9 we know that the solutions to Bessel’s equation and the

Associated Legendre equation can be directly expressed in terms of the Hypergeometric and

Confluent Hypergeometric series. Eq. (9.4.9) relates the solutions for the Associated Legendre

equation:

y1(z) = Cm

(
1− z
1 + z

)m/2
F

[
1

2
(1 +

√
1− 4t),

1

2
(1−

√
1− 4t); 1 +m;

1

2
(1− z)

]
. (10.3.7)
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with m 6= −1,−2, ..., to the Hypergeometric function. Cm denotes a constant. If m < 0 the

solution can be taken as eq. (10.3.7) with m replaced everywhere by −m since the Associated

Legendre equation is invariant under this substitution. This is equivalent to the expression

(10.2.9) for y2(z). Since the two roots to the indicial equation differ by c = 1 +m, the second

linearly independent solution does not have the simple series form and must be constructed

using the techniques of section 8.5.

Similarly, referring to eq. (9.4.17) shows that the solutions to Bessel’s equation are given

in terms of the confluent hypergeometric series by:

y1(z) = Cνz
νe−izM

[
1

2
+ ν, 1 + 2ν; 2iz

]
(10.3.8)

for ν 6= −1
2 ,−1,−3

2 , .... Cν again denotes a constant. The second solution is simply found by

taking ν → −ν in this equation:

y2(z) = C−νz
−νe−izM

[
1

2
− ν, 1− 2ν; 2iz

]
(10.3.9)

provided ν 6= 1
2 , 1,

3
2 , ....

This construction is not limited to the Legendre or Bessel equations. To illustrate this

point and for convenience of reference, the solution to the most frequently occuring O.D.E.’s

of mathematical physics are briefly listed here in terms of Hypergeometric or Confluent Hy-

pergeometric series:

1. ULTRASPHERICAL (GEGENBAUER) EQUATION:

(1− z2)y′′(z)− (2β + 1)zy′(z) + n(n+ 2β)y(z) = 0. (10.3.10)

The regular solutions to this equation are denoted Tn
β(z) and are called Ultraspherical

functions. They are related to the Hypergeometric series by:

Tn
β(z) =

Γ(n+ 2β + 1)

2βn!Γ(β + 1)
F

[
−n, n+ 2β + 1; 1 + β;

1

2
(1− z)

]
. (10.3.11)

2. ASSOCIATED LEGENDRE FUNCTIONS:

y′′(z)− 2z

1− z2
y′(z) +

[
`(`+ 1)

1− z2
− m2

(1− z2)2

]
y(z) = 0. (10.3.12)

The regular solutions are the Associated Legendre functions, denoted P`
m(z):

P`
m(z) =

1

2mm!

(`+m)!

(`−m)!
(1− z2)m/2F

[
m− `,m+ `+ 1;m+ 1;

1

2
(1− z)

]
. (10.3.13)

This result is derived in sections 9.4 and 10.6. Notice that these are special cases of

ultraspherical functions.
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3. CHEBYSHEV POLYNOMIALS:

y′′(z)− z

1− z2
y′(z) +

n2

1− z2
y(z) = 0. (10.3.14)

has regular solutions, Tn(z), called Chebyshev polynomials:

Tn(z) = F

[
−n, n;

1

2
;
1

2
(1− z)

]
. (10.3.15)

These are again special cases of the ultraspherical functions.

4. BESSEL FUNCTIONS:

y′′(z) +
1

z
y′(z) +

(
1− ν2

z2

)
y(z) = 0. (10.3.16)

has as regular solutions the Bessel functions Jν(z). As shown in sections 9.4 and 10.7

these are given by:

Jν(z) =
1

Γ(ν + 1)

(z
2

)ν
e−izM

[
ν +

1

2
, 2ν + 1; 2iz

]
. (10.3.17)

5. HERMITE FUNCTIONS:

y′′(z)− 2zy′(z) + 2ny(z) = 0. (10.3.18)

has Hermite functions, Hn(z), as regular solutions:

H2n(z) = (−)n
(2n)!

n!
M

[
−n, 1

2
; z2

]
(10.3.19)

H2n+1(z) = (−)n
2(2n+ 1)!

n!
zM

[
−n, 3

2
; z2

]
. (10.3.20)

6. ASSOCIATED LAGUERRE FUNCTIONS:

y′′(z) +
k + 1− z

z
y′(z) +

n

z
y(z) = 0. (10.3.21)

The solutions are the Associated Laguerre functions, Ln
k(z), given by:

Ln
k(z) =

(n+ k)!

n!k!
M [−n, k + 1; z]. (10.3.22)
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Lecture 1 First-Order Partial Differential Equations

A first order PDE in two independent variables x, y and the dependent variable z can be

written in the form

f(x, y, z,
∂z

∂x
,
∂z

∂y
) = 0. (1)

For convenience, we set

p =
∂z

∂x
, q =

∂z

∂y
.

Equation (1) then takes the form

f(x, y, z, p, q) = 0. (2)

The equations of the type (2) arise in many applications in geometry and physics. For

instance, consider the following geometrical problem.

EXAMPLE 1. Find all functions z(x, y) such that the tangent plane to the graph z = z(x, y)

at any arbitrary point (x0, y0, z(x0, y0)) passes through the origin characterized by the PDE

xzx + yzy − z = 0.

The equation of the tangent plane to the graph at (x0, y0, z(x0, y0)) is

zx(x0, y0)(x− x0) + zy(x0, y0)(y − y0)− (z − z(x0, y0)) = 0.

This plane passes through the origin (0, 0, 0) and hence, we must have

−zx(x0, y0)x0 − zy(x0, y0)y0 + z(x0, y0) = 0. (3)

For the equation (3) to hold for all (x0, y0) in the domain of z, z must satisfy

xzx + yzy − z = 0,

which is a first-order PDE.

EXAMPLE 2. The set of all spheres with centers on the z-axis is characterized by the

first-order PDE yp− xq = 0.

The equation

x2 + y2 + (z − c)2 = r2, (4)

where r and c are arbitrary constants, represents the set of all spheres whose centers lie

on the z-axis. Differentiating (4) with respect to x, we obtain

2

(
x+ (z − c)

∂z

∂x

)
= 2 (x+ (z − c)p) = 0. (5)

Unit 11 & Unit 12Unit 12Unit 11 & Unit 12
Block II : Partial Differential Equations
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Differentiate (4) with respect to y to have

y + (z − c)q = 0. (6)

Eliminating the arbitrary constant c from (5) and (6), we obtain the first-order PDE

yp− xq = 0. (7)

Equation (4) in some sense characterized the first-order PDE (7).

EXAMPLE 3. Consider all surfaces described by an equation of the form

z = f(x2 + y2), (8)

where f is an arbitrary function, described by the first-order PDE.

Writing u = x2 + y2 and differentiating (8) with respect to x and y, it follows that

p = 2xf ′(u); q = 2yf ′(u),

where f ′(u) = df
du . Eliminating f ′(u) from the above two equations, we obtain the same

first-order PDE as in (7).

REMARK 4. The function z described by each of the equations (4) and (8), in some

sense, a solution to the PDE (7). Observe that, in Example 2, PDE (7) is formulated

by eliminating arbitrary constants from (4) whereas in Example 3, PDE (7) is formed by

eliminating an arbitrary function.

1 Formation of first-order PDEs

The applications of conservation principles often yield a first-order PDEs. We have seen

in the previous two examples that a first-order PDE can be formed either by eliminat-

ing arbitrary constants or an arbitrary function involved. Below, we now generalize the

arguments of Example 2 and Example 3 to show that how a first-order PDE can be formed.

Method I (Eliminating arbitrary constants): Consider two parameters family of sur-

faces described by the equation

F (x, y, z, a, b) = 0, (9)

where a and b are arbitrary constants. Equation (9) may be thought of as a generalization

of the relation (4).
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Differentiating (9) with respect to x and y, we obtain

∂F

∂x
+ p

∂F

∂z
= 0 (10)

∂F

∂y
+ q

∂F

∂z
= 0. (11)

Eliminate the constants a, b from equations (9), (10) and (11) to obtain a first-order PDE

of the form

f(x, y, z, p, q) = 0. (12)

This shows that a family of surfaces described by the relation (9) gives rise to a first-order

PDE (12).

Method II (Eliminating arbitrary function): Now consider the generalization of Ex-

ample 3. Let u(x, y, z) = c1 and v(x, y, z) = c2 be two known functions of x, y and z

satisfying a relation of the form

F (u, v) = 0, (13)

where F is an arbitrary function of u and v. Differentiating (13) with respect to x and y

lead to the equations

Fu(ux + uzp) + Fv(vx + vzp) = 0

Fu(uy + uzq) + Fv(vy + vzq) = 0.

Eliminating Fu and Fv from the above two equations, we obtain

p
∂(u, v)

∂(y, z)
+ q

∂(u, v)

∂(z, x)
=
∂(u, v)

∂(x, y)
, (14)

which is a first-order PDE of the form f(x, y, z, p, q) = 0. Here, ∂(u,v)
∂(x,y) = uxvy − uyvx.

2 Classification of first-order PDEs

We classify the equation (1) depending on the special forms of the function f . If (1) is of

the form

a(x, y)
∂z

∂x
+ b(x, y)

∂z

∂y
+ c(x, y)z = d(x, y)

then it is called linear first-order PDE. Note that the function f is linear in ∂z
∂x ,

∂z
∂y and

z with all coefficients depending on the independent variables x and y only.

If (1) has the form

a(x, y)
∂z

∂x
+ b(x, y)

∂z

∂y
= c(x, y, z)
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then it is called semilinear because it is linear in the leading (highest-order) terms ∂z
∂x

and ∂z
∂y . However, it need not be linear in z. Note that the coefficients of ∂z

∂x and ∂z
∂y are

functions of the independent variables only.

If (1) has the form

a(x, y, z)
∂z

∂x
+ b(x, y, z)

∂z

∂y
= c(x, y, z)

then it is called quasi-linear PDE. Here the function f is linear in the derivatives ∂z
∂x

and ∂z
∂y with the coefficients a, b and c depending on the independent variables x and y as

well as on the unknown z. Note that linear and semilinear equations are special cases of

quasi-linear equations.

Any equation that does not fit into one of these forms is called nonlinear.

EXAMPLE 5.

1. xzx + yzy = z (linear)

2. xzx + yzy = z2 (semilinear)

3. zx + (x+ y)zy = xy (linear)

4. zzx + zy = 0 (quasilinear)

5. xz2x + yz2y = 2 (nonlinear)

3 Cauchy’s problem or IVP for first-order PDEs

Recall the initial value problem for a first-order ODE which ask for a solution of the

equation that takes a given value at a given point of R. The IVP for first-order PDE ask

for a solution of (2) which has given values on a curve in R2. The conditions to be satisfied

in the case of IVP for first-order PDE are formulated in the classic problem of Cauchy

which may be stated as follows:

Let C be a given curve in R2 described parametrically by the equations

x = x0(s), y = y0(s); s ∈ I, (15)

where x0(s), y0(s) are in C1(I). Let z0(s) be a given function in C1(I). The IVP or

Cauchy’s problem for first-order PDE

f(x, y, z, p, q) = 0 (16)

is to find a function u = u(x, y) with the following properties:
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• u(x, y) and its partial derivatives with respect to x and y are continuous in a region

Ω of R2 containing the curve C.

• u = u(x, y) is a solution of (16) in Ω, i.e.,

f(x, y, u(x, y), ux(x, y), uy(x, y)) = 0 in Ω.

• On the curve C

u(x0(s), y0(s)) = z0(s), s ∈ I. (17)

The curve C is called the initial curve of the problem and the function z0(s) is called the

initial data. Equation (17) is called the initial condition of the problem.

NOTE:Geometrically, Cauchy’s problem may be interpreted as follows: To find a solution

surface u = u(x, y) of (16) which passes through the curve C whose parametric equations

are

x = x0(s), y = y0(s) z = z0(s). (18)

Further, at every point of which the direction (p, q,−1) of the normal is such that

f(x, y, z, p, q) = 0.

The proof of existence of a solution of (16) passing through a curve with equations

(18) requires some more assumptions on the function f and the nature of the curve C.

We now state the classic theorem due to Kowalewski in the following theorem (cf. [10]).

THEOREM 6. (Kowalewski) If g(y) and all its derivatives are continuous for |y− y0| < δ,

if x0 is a given number and z0 = g(y0), q0 = g′(y0), and if f(x, y, z, q) and all its partial

derivatives are continuous in a region S defined by

|x− x0| < δ, |y − y0| < δ, |q − q0| < δ,

then there exists a unique function ϕ(x, y) such that:

(a) ϕ(x, y) and all its partial derivatives are continuous in a region

Ω : |x− x0| < δ1, |y − y0| < δ2;

(b) For all (x, y) in Ω, z = ϕ(x, y) is a solution of the equation

∂z

∂x
= f(x, y, z,

∂z

∂y
)

(c) For all values of y in the interval |y − y0| < δ1, ϕ(x0, y) = g(y).

We conclude this lecture by introducing different kinds of solutions of first-order PDE.
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DEFINITION 7. (A complete solution or a complete integral) Any relation of the

form

F (x, y, z, a, b) = 0 (19)

which contains two arbitrary constants a and b and is a solution of a first-order PDE is

called a complete solution or a complete integral of that first-order PDE.

DEFINITION 8. (A general solution or a general integral) Any relation of the form

F (u, v) = 0

involving an arbitrary function F connecting two known functions u(x, y, z) and v(x, y, z)

and providing a solution of a first-order PDE is called a general solution or a general

integral of that first-order PDE.

It is possible to derive a general integral of the PDE once a complete integral is known.

With b = ϕ(a), if we take any one-parameter subsystem

f(x, y, z, a, ϕ(a)) = 0

of the system (19) and form its envelope, we obtain a solution of equation (16). When

ϕ(a) is arbitrary, the solution obtained is called the general integral of (16) corresponding

to the complete integral (19).

When a definite ϕ(a) is used, we obtain a particular solution.

DEFINITION 9. (A singular integral) The envelope of the two-parameter system (19)

is also a solution of the equation (16). It is called the singular integral or singular solution

of the equation.

NOTE: The general solution of an equation of type (1) can be obtained by solving

systems of ODEs. This is not true for higher-order equations or for systems of first-order

equations.

Practice Problems

1. Classify whether the following PDE is linear, quasi-linear or nonlinear:

(a) zzx − 2xyzy = 0; (b) z2x + zzy = 2; (c) zx + 2zy = 5z; (d) xzx + yzy = z2.

2. Eliminate the arbitrary constants a and b from the following equations to form the

PDE:

(a) ax2 + by2 + z2 = 1; (b) z = (x2 + a)(y2 + b).
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Lecture 2 Linear First-Order PDEs

The most general first-order linear PDE has the form

a(x, y)zx + b(x, y)zy + c(x, y)z = d(x, y), (1)

where a, b, c, and d are given functions of x and y. These functions are assumed to be

continuously differentiable. Rewriting (1) as

a(x, y)zx + b(x, y)zy = −c(x, y)z + d(x, y), (2)

we observe that the left hand side of (2), i.e.,

a(x, y)zx + b(x, y)zy = ∇z · (a, b)

is (essentially) a directional derivative of z(x, y) in the direction of the vector (a, b), where

(a, b) is defined and nonzero. When a and b are constants, the vector (a, b) had a fixed

direction and magnitude, but now the vector can change as its base point (x, y) varies.

Thus, (a, b) is a vector field on the plane.

The equations

dx

dt
= a(x, y),

dy

dt
= b(x, y), (3)

determine a family of curves x = x(t), y = y(t) whose tangent vector (dxdt ,
dy
dt ) coincides

with the direction of the vector (a, b). Therefore, the derivative of z(x, y) along these

curves becomes

dz

dt
=

d

dt
z{(x(t), y(t))} =

∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

= zx(x(t), y(t))a(x(t), y(t)) + zy(x(t), y(t))b(x(t), y(t))

= −c(x(t), y(t))z(x(t), y(t)) + d(x(t), y(t))

= −c(t)z(t) + d(t),

where we have used the chain rule and (1). Thus, along these curves, z(t) = z(x(t), y(t))

satisfies the ODE

z′(t) + c(t)z(t) = d(t). (4)

Let µ(t) = exp
[∫ t

0 c(τ)dτ
]
be an integrating factor for (4). Then, the solution is given by

z(t) =
1

µ(t)

[∫ t

0
µ(τ)d(τ)dτ + z(0)

]
. (5)
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The approach described above to solve (1) by using the solutions of (3)-(4) is called the

method of characteristics. It is based on the geometric interpretation of the partial

differential equation (1).

NOTE: (i) The ODEs (3) is known as the characteristics equation for the PDE (1). The

solution curves of the characteristic equation are the characteristics curves for (1).

(ii) Observe that µ(t) and d(t) depend only on the values of c(x, y) and d(x, y) along

the characteristics curve x = x(t), y = y(t). Thus, equation (5) shows that the values z(t)

of the solution z along the entire characteristics curve are completely determined, once

the value z(0) = z(x(0), y(0)) is prescribed.

(iii) Assuming certain smoothness conditions on the functions a, b, c, and d, the exis-

tence and uniqueness theory for ODEs guarantees a unique solution curve (x(t), y(t), z(t))

of (3)-(4) (i.e., a characteristic curve) passes through a given point (x0, y0, z0) in (x, y, z)-

space.

1 The method of characteristics for solving linear first-order IVP

In practice we are not interested in determining a general solution of the partial differential

equation (1) but rather a specific solution z = z(x, y) that passes through or contains a

given curve C. This problem is known as the initial value problem for (1). The method

of characteristics for solving the initial value problem for (1) proceeds as follows.

Let the initial curve C be given parametrically as:

x = x(s), y = y(s), z = z(s). (6)

for a given range of values of the parameter s. The curve may be of finite or infinite extent

and is required to have a continuous tangent vector at each point.

Every value of s fixes a point on C through which a unique characteristic curve passes

(see, Fig. 2.1). The family of characteristic curves determined by the points of C may be

parameterized as

x = x(s, t), y = y(s, t), z = z(s, t)

with t = 0 corresponding to the initial curve C. That is, we have

x(s, 0) = x(s), y(s, 0) = y(s), z(s, 0) = z(s).

In other words, we have the following:
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Figure 2.1: Characteristic curves and construction of the integral surface

The functions x(s, t) and y(s, t) are the solutions of the characteristics

system (for each fixed s)

d

dt
x(s, t) = a(x(s, t), y(s, t)),

d

dt
y(s, t) = b(x(s, t), y(s, t))

with given initial values x(s, 0) and y(s, 0).

(7)

Suppose that

z(x(s, 0), y(s, 0)) = g(s), (8)

where g(s) is a given function. We obtain z(x(s, t), y(s, t)) as follows: Let

z(s, t) = z(x(s, t), y(s, t)), c(s, t) = c(x(s, t), y(s, t)), d(s, t) = d(x(s, t), y(s, t)) (9)

and

µ(s, t) = exp

[∫ t

0
c(s, t)dt

]
. (10)

Analogous to formula (5), for each fixed s, we obtain

z(s, t) =
1

µ(s, t)

[∫ t

0
µ(s, t)d(s, t)dt+ g(s)

]
. (11)

z(s, t) is the value of z at the point (x(s, t), y(s, t)). Thus, as s and t vary, the point

(x, y, z), in xyz-space, given by

x = x(s, t), y = y(s, t), z = z(s, t), (12)
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traces out the surface of the graph of the solution z of the PDE (1) which meets the

initial curve (8). The equations (12) constitute the parametric form of the solution of (1)

satisfying the initial condition (8) [i.e., a surface in (x, y, z)-space that contains the initial

curve ]

NOTE: If the Jacobian J(s, t) = xsyt − xtys ̸= 0, then the equations x = x(s, t) and

y = y(s, t) can be inverted to give s and t as (smooth) functions of x and y i.e., s = s(x, y)

and t = t(x, y). The resulting function z = z(x, y) = z(s(x, y), t(x, y)) satisfies the PDE

(1) in a neighborhood of the curve C (in view of (4) and the initial condition (6)) and is

the unique solution of the IVP.

EXAMPLE 1. Determine the solution the following IVP:

∂z

∂y
+ c

∂z

∂x
= 0, z(x, 0) = f(x),

where f(x) is a given function and c is a constant.

Solution. A step by step procedure for the finding solution is given below.

Step 1.(Finding characteristic curves)

To apply the method of characteristics, parameterize the initial curve C as follows: as

follows:

x = s, y = 0, z = f(s). (13)

The family of characteristics curves x((s, t), y(s, t)) are determined by solving the ODEs

d

dt
x(s, t) = c,

d

dt
y(s, t) = 1

The solution of the system is

x(s, t) = ct+ c1(s) and y(s, t) = t+ c2(s).

Step 2. (Applying IC)

Using the initial conditions

x(s, 0) = s, y(s, 0) = 0.

we find that

c1(s) = s, c2(s) = 0,

and hence

x(s, t) = ct+ s and y(s, t) = t.
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Step 3. (Writing the parametric form of the solution)

Comparing with (1), we have c(x, y) = 0 and d(x, y) = 0. Therefore, using (10) and (11),

we find that

d(s, t) = 0, µ(s, t) = 1.

Since z(x(s, 0), y(s, 0)) = z(s, 0) = g(s) = f(s), we obtain z(s, t) = f(s). Thus, the

parametric form of the solution of the problem is given by

x(s, t) = ct+ s, y(s, t) = t, z(s, t) = f(s).

Step 4. (Expressing z(s, t) in terms of z(x, y)) Expressing s and t as s = s(x, y) and

t = t(x, y), we have

s = x− cy, t = y.

We now write the solution in the explicit form as

z(x, y) = z(s(x, y), y(x, y)) = f(x− cy).

Clearly, if f(x) is differentiable, the solution z(x, y) = f(x − cy) satisfies given PDE as

well as the initial condition.

NOTE: Example 1 characterizes unidirectional wave motion with velocity c. If we con-

sider the initial function z(x, 0) = f(x) to represent a waveform, the solution z(x, y) =

f(x− cy) shows that a point x for which x− cy = constant, will always occupy the same

position on the wave form. If c > 0, the entire initial wave form f(x) moves to the right

without changing its shape with speed c (if c < 0, the direction of motion is reversed).

EXAMPLE 2. Find the parametric form of the solution of the problem

−yzx + xzy = 0

with the condition given by

z(s, s2) = s3, (s > 0).

Solution. To find the solution, let’s proceed as follows.

Step 1. (Finding characteristic curves)

The family of characteristics curves (x(s, t), y(s, t)) are determined by solving

d

dt
x(s, t) = −y(s, t), d

dt
y(s, t) = x(s, t)

with initial conditions

x(s, 0) = s, y(s, 0) = s2.
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The general solution of the system is

x(s, t) = c1(s) cos(t) + c2(s) sin(t) and y(s, t) = c1(s) sin(t)− c2(s) cos(t).

Step 2. (Applying IC)

Using ICs, we find that

c1(s) = s, c2(s) = −s2,

and hence

x(s, t) = s cos(t)− s2 sin(t) and y(s, t) = s sin(t) + s2 cos(t).

Step 3. (Writing the parametric form of the solution)

Comparing with (1), we note that c(x, y) = 0 and d(x, y) = 0. Therefore, using (10)

and (11), it follows that

d(s, t) = 0, µ(s, t) = 1.

In view of the given condition curve and z = z(s, t), we obtain

z(x(s, 0), y(s, 0)) = z(s, s2) = g(s) = s3, z(s, t) = s3.

Thus, the parametric form of the solution of the problem is given by

x(s, t) = s cos(t)− s2 sin(t), y(s, t) = s sin(t) + s2 cos(t), z(s, t) = s3.

Step 4. (Expressing z(s, t) in terms of z(x, y))

Writing s and t as a function of x and y, it is an easy exercise to show that

z(x, y) =
1√
8

[
−1 +

√
1 + 4(x2 + y2)

]3/2
.

Practice Problems

1. Find the general solution of the following PDE in the indicated domain.

(A) xzx + 2yzy = 0, for x > 0, y > 0

(B) yzx − 4xzy = 2xy, for all (x, y)

(C) xzx − xyzy = z, for all (x, y)

2. Find a particular solution of the following PDEs satisfying the given side conditions.
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Lecture 3 Quasilinear First-Order PDEs

A first order quasilinear PDE is of the form

a(x, y, z)
∂z

∂x
+ b(x, y, z)

∂z

∂y
= c(x, y, z). (1)

Such equations occur in a variety of nonlinear wave propagation problems. Let us assume

that an integral surface z = z(x, y) of (1) can be found. Writing this integral surface in

implicit form as

F (x, y, z) = z(x, y)− z = 0.

Note that the gradient vector∇F = (zx, zy,−1) is normal to the integral surface F (x, y, z) =

0. The equation (1) may be written as

azx + bzy − c = (a, b, c) · (zx, zy,−1) = 0. (2)

This shows that the vector (a, b, c) and the gradient vector ∇F are orthogonal. In other

words, the vector (a, b, c) lies in the tangent plane of the integral surface z = z(x, y) at

each point in the (x, y, z)-space where ∇F ̸= 0.

At each point (x, y, z), the vector (a, b, c) determines a direction in (x, y, z)-space is

called the characteristic direction. We can construct a family of curves that have the

characteristic direction at each point. If the parametric form of these curves is

x = x(t), y = y(t), and z = z(t), (3)

then we must have

dx

dt
= a(x(t), y(t), z(t)),

dy

dt
= b(x(t), y(t), z(t)),

dz

dt
= c(x(t), y(t), z(t)), (4)

because (dx/dt, dy/dt, dz/dt) is the tangent vector along the curves. The solutions of (4)

are called the characteristic curves of the quasilinear equation (1).

We assume that a(x, y, z), b(x, y, z), and c(x, y, z) are sufficiently smooth and do not

all vanish at the same point. Then, the theory of ordinary differential equations ensures

that a unique characteristic curve passes through each point (x0, y0, z0). The IVP for

(1) requires that z(x, y) be specified on a given curve in (x, y)-space which determines a

curve C in (x, y, z)-space referred to as the initial curve. To solve this IVP, we pass a

characteristic curve through each point of the initial curve C. If these curves generate a

surface known as integral surface. This integral surface is the solution of the IVP.
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REMARK 1. (i) The characteristic equations (4) for x and y are not, in general, uncoupled

from the equation for z and hence differ from those in the linear case (cf. Eq. (3) of Lecture

2).

(ii) The characteristics equations (4) can be expressed in the nonparametric form as

dx

a
=
dy

b
=
dz

c
. (5)

Below, we shall describe a method for finding the general solution of (1). This method

is due to Lagrange hence it is usually referred to as the method of characteristics or the

method of Lagrange.

1 The method of characteristics

It is a method of solution of quasi-linear PDE which is stated in the following result.

THEOREM 2. The general solution of the quasi-linear PDE (1) is

F (u, v) = 0, (6)

where F is an arbitrary function and u(x, y, z) = c1 and v(x, y, z) = c2 form a solution of

the equations
dx

a
=
dy

b
=
dz

c
. (7)

Proof. If u(x, y, z) = c1 and v(x, y, z) = c2 satisfy the equations (1) then the equations

uxdx+ uydy + uzdz = 0,

vxdx+ vydy + vzdz = 0

are compatible with (7). Thus, we must have

aux + buy + cuz = 0,

avx + bvy + cvz = 0.

Solving these equations for a, b and c, we obtain

a
∂(u,v)
∂(y,z)

=
b

∂(u,v)
∂(z,x)

=
c

∂(u,v)
∂(x,y)

. (8)

Differentiate F (u, v) = 0 with respect to x and y, respectively, to have

∂F

∂u

{
∂u

∂x
+
∂u

∂z

∂z

∂x

}
+
∂F

∂v

{
∂v

∂x
+
∂v

∂z

∂z

∂x

}
= 0

∂F

∂u

{
∂u

∂y
+
∂u

∂z

∂z

∂y

}
+
∂F

∂v

{
∂v

∂y
+
∂v

∂z

∂z

∂y

}
= 0.

65



MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 18

Eliminating ∂F
∂u and ∂F

∂v from these equations, we obtain

∂z

∂x

∂(u, v)

∂(y, z)
+
∂z

∂y

∂(u, v)

∂(z, x)
=
∂(u, v)

∂(x, y)
(9)

In view of (8), the equation (9) yields

a
∂z

∂x
+ b

∂z

∂y
= c.

Thus, we find that F (u, v) = 0 is a solution of the equation (1). This completes the

proof. �.

REMARK 3. • All integral surfaces of the equation (1) are generated by the integral

curves of the equations (4).

• All surfaces generated by integral curves of the equations (4) are integral surfaces of

the equation (1).

EXAMPLE 4. Find the general integral of xzx + yzy = z.

Solution. The associated system of equations are

dx

x
=
dy

y
=
dz

z
.

From the first two relation we have

dx

x
=
dy

y
=⇒ lnx = ln y + ln c1 =⇒

x

y
= c1.

Similarly,

dz

z
=
dy

y
=⇒ z

y
= c2.

Take u1 =
x
y and u2 =

z
y . The general integral is given by

F (
x

y
,
z

y
) = 0.

EXAMPLE 5. Find the general integral of the equation

z(x+ y)zx + z(x− y)zy = x2 + y2.

Solution. The characteristic equations are

dx

z(x+ y)
=

dy

z(x− y)
=

dz

x2 + y2
.

Each of these ratio is equivalent to

ydx+ xdy − zdz

0
=
xdx− ydy − zdz

0
.
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Consequently, we have

d{xy − z2

2
} = 0 and d{1

2
(x2 − y2 − z2)} = 0.

Integrating we obtain two integrals

2xy − z2 = c1 and x2 − y2 − z2 = c2,

where c1 and c2 are arbitrary constants. Thus, the general solution is

F (2xy − z2, x2 − y2 − z2) = 0,

where F is an arbitrary function.

Next, we shall discuss a method for solving a Cauchy problem for the first-order quasi-

linear PDE (1). The following theorem gives conditions under which a unique solution of

the initial value problem for (1) can be obtained.

THEOREM 6. Let a(x, y, z), b(x, y, z) and c(x, y, z) in (1) have continuous partial deriva-

tives with respect to x, y and z variables. Let the initial curve C be described parametrically

as

x = x(s), y = y(s), and z = z(x(s), y(s)).

The initial curve C has a continuous tangent vector and

J(s) =
dy

ds
a[x(s), y(s), z(s)]− dx

ds
b(x(s), y(s), z(s)] ̸= 0 (10)

on C. Then, there exists a unique solution z = z(x, y), defined in some neighborhood of

the initial curve C, satisfies (1) and the initial condition z(x(s), y(s)) = z(s).

Proof. The characteristic system (4) with initial conditions at t = 0 given as x =

x(s), y = y(s), and z = z(s) has a unique solution of the form

x = x(s, t), y = y(s, t), z = z(s, t),

with continuous derivatives in s and t, and

x(s, 0) = x(s), y(s, 0) = y(s), z(s, 0) = z(s).

This follows from the existence and uniqueness theory for ODEs. The Jacobian of the

transformation x = x(s, t), y = y(s, t) at t = 0 is

J(s) = J(s, t)|t=0 =

∣∣∣∣∣ ∂x
∂s

∂x
∂t

∂y
∂s

∂y
∂t

∣∣∣∣∣
t=0

=

[
∂y

∂t
a− ∂x

∂t
b

]
t=0

̸= 0. (11)
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in view of (10). By the continuity assumption, the Jacobian J ̸= 0 in a neighborhood

of the initial curve. Thus, by the implicit function theorem, we can solve for s and t as

functions of x and y near the initial curve. Then

z(s, t) = z(s(x, y), t(x, y)) = Z(x, y).

a solution of (1), which can be easily seen as

c =
dz

dt
=

∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

= a
∂z

∂x
+ b

∂z

∂y
,

where we have used (4). The uniqueness of the solution follows from the fact that any two

integral surfaces that contain the same initial curve must coincide along all the charac-

teristic curves passing through the initial curve. This is a consequence of the uniqueness

theorem for the IVP for (4). This completes our proof. �.

EXAMPLE 7. Consider the IVP:

∂z

∂y
+ z

∂z

∂x
= 0

z(x, 0) = f(x),

where f(x) is a given smooth function.

Solution. We solve this problem using the following steps.

Step 1. (Finding characteristic curves)

To solve the IVP, we parameterize the initial curve as

x = s, y = 0, z = f(s).

The characteristic equations are

dx

dt
= z,

dy

dt
= 1,

dz

dt
= 0.

Let the solutions be denoted as x(s, t), t(s, t), and z(s, t). We immediately find that

x(s, t) = zt+ c1(s), y(s, t) = t+ c2(s), z(s, t) = c3(s),

where ci, i = 1, 2, 3 are constants to be determined using IC.

Step 2. (Applying IC) The initial conditions at s = 0 are given by

x(s, 0) = s, y(s, 0) = 0, z(s, 0) = f(s).
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Using these condition, we obtain

x(s, t) = zt+ s, y(s, t) = t, z(s, t) = f(s).

Step 3. (Writing the parametric form of the solution)

The solutions are thus given by

x(s, t) = zt+ s = f(s)t+ s, y(s, t) = t, z(s, t) = f(s).

Step 4. (Expressing z(s, t) in terms of z(x, y)) Applying the condition (10), we find that

J(s) = −1 ̸= 0, along the entire initial curve. We can immediately solve for s(x, y) and

t(x, y) to obtain

s(x, y) = x− tf(s), t(x, y) = y.

Since t = y and s = x− tf(s) = x− yz, the solution can also be given in implicit form as

z = f(x− yz).

EXAMPLE 8. Solve the following quasi-linear PDE:

zzx + yzy = x, (x, y) ∈ R2

subject to the initial condition

z(x, 1) = 2x, x ∈ R.

Solution. Here a(x, y, z) = z, b(x, y, z) = y, c(x, y, z) = x. The characteristics

equations are

dx

dt
= z, x(s, 0) = s,

dy

dt
= y, y(s, 0) = 1,

dz

dt
= x, z(s, 0) = 2s.

On solving the above ODEs, we obtain

x(s, t) =
s

2
(3et − e−t), y(s, t) = et, z(s, t) =

s

2
(3et + e−t).

Solving for (s, t) in terms of (x, y), we obtain

s(x, y) =
2xy

3y2 − 1
, t(x, y) = ln(y),

z(x, y) = z(s(x, y), t(x, y)) =
(3y2 + 1)x

(3y2 − 1)
.
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Note that the characteristics variables imply that y must be positive (y = et). In fact, the

solution z is valid only for 3y2 − 1 > 0, i.e., for y > 1√
3
> 0. Observe that the change of

variables is valid only where ∣∣∣∣∣ xs(s, t) xt(s, t)

ys(s, t) yt(s, t)

∣∣∣∣∣ ̸= 0.

It is easy to verify that this condition leads to y ̸= 1/
√
3.

Practice Problems

1. Find a solution of the PDE zx + zzy = 6x satisfying the condition z(0, y) = 3y.

2. Find the general integral of the PDE

(2xy − 1)zx + (z − 2x2)zy = 2(x− yz)

and also the particular integral which passes through the line x = 1, y = 0.

3. Solve zx + zzy = 2x, z(0, y) = f(y).

4. Find the solution of the equation zx + zzy = 1 with the data

x(s, 0) = 2s, y(s, 0) = s2, z(0, s2) = s.

5. Find the characteristics of the equation zxzy = z, and determine the integral surface

which passes through the parabola x = 0, y2 = z.
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Lecture 4 Nonlinear First-Order PDEs

The general nonlinear first-order PDE is written in the form

F (x, y, z, zx, zy) = 0, (1)

where F is not linear in zx and zy. Setting zx = p and zy = q, rewrite (1) as

F (x, y, z, p, q) = 0. (2)

1 The method of characteristics for nonlinear PDEs

Recall the method of characteristics for solving first-order linear PDE:

F (x, y, z, p, q) = a(x, y)p+ b(x, y)q + c(x, y)z − d(x, y) = 0.

In this method, the PDE becomes an ODEs along the characteristics curves which may

be regarded as the solutions of the system

x′(t) = a(x(t), y(t)) and y′(t) = b(x(t), y(t)). (3)

Note that Fp = a(x, y) and Fq = b(x, y). Hence, (3) may be written as

x′(t) = Fp and y′(t) = Fq. (4)

For solving first-order nonlinear PDE (1), the relation (4) motivates us to define charac-

teristics curves as solutions of the system

x′(t) = Fp(x(t), y(t), z(t), p(t), q(t)) and y′(t) = Fq(x(t), y(t), z(t), p(t), q(t)), (5)

where z(t) = z(x(t), y(t)), p(t) = zx(x(t), y(t)), q(t) = zy(x(t), y(t)). However, unlike the

linear case, the right sides of (5) depend not only on x(t) and y(t), but also on z(t), p(t)

and q(t). Thus, we can expect a large system of five ODEs for the five unknown x(t), y(t),

z(t), p(t) and q(t). For the remaining three equations, notice that

z′(t) =
d

dt
{z(x(t), y(t))}

= zxx
′(t) + zyy

′(t)

= p(t)x′(t) + q(t)y′(t)

= p(t)Fp(x(t), y(t), z(t), p(t), q(t)) + q(t)Fq(x(t), y(t), z(t), p(t), q(t)). (6)
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Along a characteristics p is a function of t. The equation for p′(t) is obtained as follows:

p′(t) =
d

dt
{zx(x(t), y(t))}

= zxxx
′(t) + zxyy

′(t)

= zxxFp(x(t), y(t), z(t), p(t), q(t)) + zxyFq(x(t), y(t), z(t), p(t), q(t)). (7)

Using the fact that z(x, y) should solve the PDE (1), we obtain

0 =
d

dx
{F (x, y, z(x, y), zx(x, y), zy(x, y))}

= Fx + Fzzx + Fpzxx + Fqzyx.

Therefore,

p′(t) = zxxFq + zxyFq = −(Fx + pFz). (8)

Similarly,

q′(t) = −[Fy + qFz]. (9)

Thus, we have the following system of five ODEs

x′(t) = Fp(x(t), y(t), z(t), p(t), q(t))

y′(t) = Fq(x(t), y(t), z(t), p(t), q(t))

z′(t) = p(t)Fp(x(t), y(t), z(t), p(t), q(t)) + q(t)Fq(x(t), y(t), z(t), p(t), q(t))

p′(t) = −{Fx(x(t), y(t), z(t), p(t), q(t)) + p(t)Fz(x(t), y(t), z(t), p(t), q(t))}

q′(t) = −{Fy(x(t), y(t), z(t), p(t), q(t)) + q(t)Fz(x(t), y(t), z(t), p(t), q(t))}

(10)

These equations constitute the characteristics system of the PDE (1) and are known as

the characteristics equations associated with PDE (1).

NOTE: If the functions which appear in equations (10) satisfy a Lipschitz condition,

there is a unique solution of the equations for each prescribed set of initial values of the

variables. Therefore the characteristics strip is uniquely determined by any initial element

(x(t0), y(t0), z(t0), p(t0), q(t0)) at any initial point t0 of t.

An important result about characteristic strips is given below.

THEOREM 1. The function F (x, y, z, p, q) is a constant along every characteristics strip

of the equation F (x, y, z, p, q) = 0.
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Proof. Along a characteristic strip, we have

d

dt
{F (x(t), y(t), z(t), p(t), q(t))} = Fxx

′(t) + Fyy
′(t) + Fzz

′(t) + Fpp
′(t) + Fqq

′(t)

= FxFp + FyFq + Fz(pFp + qFq)− Fp(Fx + pFz)− Fq(Fy + qFz)

= 0.

This implies F (x, y, z, p, q) = k, a constant along the strip.

2 Solving Cauchy’s problem for nonlinear PDEs

The objective of this section to solve PDE

F (x, y, z, zx, zy) = 0

subject to an appropriate initial condition (i.e., z assume prescribed values on some curve).

Let (f(s), g(s)) traces out a regular curve in the xy-plane as s varies. We regard this

curve as being an initial curve. We seek a solution u(x, y) of the following problem (known

as Cauchy’s problem).

F (x, y, z, zx, zy) = 0, u(f(s), g(s)) = G(s), (11)

where G(s) is a continuously differentiable function. Such a problem may have no solution

(e.g., the PDE z2x+ z
2
y +1 = 0). However, if a solution exists in some neighborhood of the

initial curve, then such a solution can often be determined using the following steps (cf.

[1]).

Step 1: Find functions h(s) and k(s) (if possible) such that

F (f(s), g(s), G(s), h(s), k(s)) = 0, G′(s) = h(s)f ′(s) + k(s)g′(s) and

Fp(f(s), g(s), G(s), h(s), k(s))g
′(s)− Fq(f(s), g(s), G(s), h(s), k(s))f

′(s) ̸= 0. (12)

Note that if h(s) and k(s) do not exist, then (11) has no solution. If there are several

choices for (h(s), k(s)), then a solution of (11) exists for each such choice.

Step 2: For each fixed s, solve the following charateristics system for x(s, t), y(s, t),

z(s, t), p(s, t),q(s, t) with the given initial conditions p(s, 0) = h(s), q(s, 0) = k(s), where

h(s) and k(s) are the functions found in Step 1.
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d

dt
x(s, t) = Fp(x(s, t), y(s, t), z(s, t), p(s, t), q(s, t))

d

dt
y(s, t) = Fq(x(s, t), y(s, t), z(s, t), p(s, t), q(s, t))

d

dt
z(s, t) = p(s, t)Fp(x(s, t), y(s, t), z(s, t), p(s, t), q(s, t))

+q(s, t)Fq(x(s, t), y(s, t), z(s, t), p(s, t), q(s, t)) (13)

d

dt
p(s, t) = −[Fx(x(s, t), y(s, t), z(s, t), p(s, t), q(s, t))

+p(s, t)Fz(x(s, t), y(s, t), z(s, t), p(s, t), q(s, t))]

d

dt
q(s, t) = −[Fy(x(s, t), y(s, t), z(s, t), p(s, t), q(s, t))

+q(s, t)Fz(x(s, t), y(s, t), z(s, t), p(s, t), q(s, t))]

Step 3: As s and t vary, the point (x, y, z), defined by

x = x(s, t), y = y(s, t), z = z(s, t) (14)

traces out the graph of a solution z of (11) in the xyz-space, in a neighborhood of the

curve traced out by (f(s), g(s), G(s)). In some cases, one can use the first two equations

in (14) to solve for s and t in terms of x and y (say, s = s(x, y) and t = t(x, y)) to obtain a

solution z(x, y) = z(s(x, y), t(x, y)), for (x, y) in a neighborhood of the curve (f(s), g(s)).

To illustrate the above steps, let us consider the following example.

EXAMPLE 2. Solve the PDE zxzy − z = 0 subject to the condition z(s,−s) = 1.

Solution. Here, we have

F (x, y, z, p, q) = pq − z.

The characteristics system (13) takes the form

dx

dt
= Fp = q(t),

dy

dt
= Fq = p(t),

dz

dt
= pFp + qFq = 2p(t)q(t),

dp

dt
= −[Fx + p(t)Fz] = p(t),

dq

dt
= −[Fy + q(t)Fz] = q(t).

Note that
dp

dt
= p(t) =⇒ p(t) = cet and

dq

dt
= q(t) =⇒ q(t) = det,

where c and d are arbitrary constants. Since we are looking for a characteristics strip (i.e.,

F (x, y, z, p, q) = 0), we set z(t) = p(t)q(t) = cde2t. The equations for the characteristic

strip are:

x(t) = det + d1, y(t) = cet + c1, z(t) = cde2t, p(t) = cet, q(t) = det,
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where c1 and d1 are constants.

The initial condition z(s,−s) = 1 is given on the line y = −x traced out by (s,−s),
in (11), we have f(s) = s and g(s) = −s. We must find h(s) and k(s) such that

1 = G(s) = h(s)k(s) 0 = G′(s) = h(s)− k(s),

0 ̸= Fp(. . .)(−1)− Fq(. . .)(1) = −k(s)− h(s).

Thus, we have two choices h(s) = 1 and k(s) = 1, or h(s) = −1 and k(s) = −1. For the

choice h(s) = 1 and k(s) = 1, we obtain

x(s, t) = et − 1 + s, y(s, t) = et − 1− s, z(s, t) = e2t, p(s, t) = et, q(s, t) = et.

From the first two equations, we obtain

et = (x+ y + 2)/2.

Then the solution is

z(x, y) = e2t =
(x+ y + 2)2

4
.

If we choose h(s) = −1 and k(s) = −1, the solution is given by

z(x, y) =
(x+ y − 2)2

4
.

Practice Problems

Solve the following Cauchy’s problem:

1. pq − z = 0, z(x,−x) = x

2. p+ zq = 2x, z(0, y) = f(y)

3. Find the solution of the equation p+ zq = 1 with the data

x(s, 0) = 2s, y(s, 0) = s2, z(0, s2) = s.

4. Find the characteristics of the equation pq = z, and determine the integral surface

which passes through the parabola x = 0, y2 = z.
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Lecture 5 Compatible Systems and Charpit’s Method

In this lecture, we shall study compatible systems of first-order PDEs and the Charpit’s

method for solving nonlinear PDEs. Let’s begin with the following definition.

DEFINITION 1. (Compatible systems of first-order PDEs) A system of two first-

order PDEs

f(x, y, z, p, q) = 0 (1)

and

g(x, y, z, p, q) = 0 (2)

are said to be compatible if they have a common solution.

THEOREM 2. The equations f(x, y, z, p, q) = 0 and g(x, y, z, p, q) = 0 are compatible on

a domain D if

(i) J = ∂(f,g)
∂(p,q) =

∣∣∣∣∣ fp fq

gp gq

∣∣∣∣∣ ̸= 0 on D.

(ii) p and q can be explicitly solved from (1) and (2) as p = ϕ(x, y, z) and q = ψ(x, y, z).

Further, the equation

dz = ϕ(x, y, z)dx+ ψ(x, y, z)dy

is integrable.

THEOREM 3. A necessary and sufficient condition for the integrability of the equation

dz = ϕ(x, y, z)dx+ ψ(x, y, z)dy is

[f, g] ≡ ∂(f, g)

∂(x, p)
+
∂(f, g)

∂(y, q)
+ p

∂(f, g)

∂(z, p)
+ q

∂(f, g)

∂(z, q)
= 0. (3)

In other words, the equations (1) and (2) are compatible iff (3) holds.

EXAMPLE 4. Show that the equations

xp− yq = 0, z(xp+ yq) = 2xy

are compatible and solve them.

Solution. Take f ≡ xp− yq = 0, g ≡ z(xp+ yq)− 2xy = 0. Note that

fx = p, fy = −q, fz = 0, fp = x, fq = −y.

and

gx = zp− 2y, gy = zq − 2x, gz = xp+ yq, gp = zx, gq = zy.
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Compute

J ≡ ∂(f, g)

∂(p, q)
=

∣∣∣∣∣ fp fq

gp gq

∣∣∣∣∣ =
∣∣∣∣∣ x −y
zx zy

∣∣∣∣∣ = zxy + zxy = 2zxy ̸= 0

for x ̸= 0, y ̸= 0, z ̸= 0. Further,

∂(f, g)

∂(x, p)
=

∣∣∣∣∣ fx fp

gx gp

∣∣∣∣∣ =
∣∣∣∣∣ p x

zp− 2y zx

∣∣∣∣∣ = zxp− x(zp− 2y) = 2xy

∂(f, g)

∂(z, p)
=

∣∣∣∣∣ fz fp

gz gp

∣∣∣∣∣ =
∣∣∣∣∣ 0 x

xp+ yq zx

∣∣∣∣∣ = 0− x(xp+ yq) = −x2p− xyq

∂(f, g)

∂(y, q)
=

∣∣∣∣∣ fy fq

gy gq

∣∣∣∣∣ =
∣∣∣∣∣ −q −y
zq − 2x zy

∣∣∣∣∣ = −qzy + y(zq − 2x) = −2xy

∂(f, g)

∂(z, q)
=

∣∣∣∣∣ fz fq

gz gq

∣∣∣∣∣ =
∣∣∣∣∣ 0 −y
xp+ yq zy

∣∣∣∣∣ = y(xp+ yq) = y2q + xyp.

It is an easy exercise to verify that

[f, g] ≡ ∂(f, g)

∂(x, p)
+
∂(f, g)

∂(y, q)
+ p

∂(f, g)

∂(z, p)
+ q

∂(f, g)

∂(z, q)

= 2xy − x2p2 − xypq − 2xy + y2q2 + xypq

= y2q2 − x2p2

= 0.

So the equations are compatible.

Next step to determine p and q from the two equations xp−yq = 0, z(xp+yq) = 2xy.

Using these two equations, we have

zxp+ zyq − 2xy = 0 =⇒ xp+ yq =
2xy

z

=⇒ 2xp =
2xy

z
=⇒ p =

y

z
= ϕ(x, y, z).

and

xp− yq = 0 =⇒ q =
xp

y
=
xy

yz
=
x

z

=⇒ q =
x

z
= ψ(x, y, z).

Substituting p and q in dz = pdx+ qdy, we get

zdz = ydx+ xdy = d(xy),
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and hence integrating, we obtain

z2 = 2xy + k,

where k is a constant.

NOTE: For the compatibility of f(x, y, z, p, q) = 0 and g(x, y, z, p, q) = 0 it is not nec-

essary that every solution of f(x, y, z, p, q) = 0 be a solution of g(x, y, z, p, q) = 0 or

vice-versa as is generally believed. For instance, the equations

f ≡ xp− yq − x = 0 (4)

g ≡ x2p+ q − xz = 0 (5)

are compatible. They have common solutions z = x + c(1 + xy), where c is an arbitrary

constant. Note that z = x(y + 1) is a solution of (4) but not of (5).

Charpit’s Method: It is a general method for finding the complete integral of a

nonlinear PDE of first-order of the form

f(x, y, z, p, q) = 0. (6)

Basic Idea: The basic idea of this method is to introduce another partial differential

equation of the first order

g(x, y, z, p, q, a) = 0 (7)

which contains an arbitrary constant a and is such that

(i) Equations (6) and (7) can be solved for p and q to obtain

p = p(x, y, z, a), q = q(x, y, z, a).

(ii) The equation

dz = p(x, y, z, a)dx+ q(x, y, z, a)dy (8)

is integrable.

When such a function g is found, the solution

F (x, y, z, a, b) = 0

of (8) containing two arbitrary constants a, b will be the solution of (6).

Note: Notice that another PDE g is introduced so that the equations f and g are com-

patible and then common solutions of f and g are determined in the Charpit’s method.

The equations (6) and (7) are compatible if

[f, g] ≡ ∂(f, g)

∂(x, p)
+
∂(f, g)

∂(y, q)
+ p

∂(f, g)

∂(z, p)
+ q

∂(f, g)

∂(z, q)
= 0.
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Expanding it, we are led to the linear PDE

fp
∂g

∂x
+ fq

∂g

∂y
+ (pfp + qfq)

∂g

∂z
− (fx + pfz)

∂g

∂p
− (fy + qfz)

∂g

∂q
= 0. (9)

Now solve (9) to determine g by finding the integrals of the following auxiliary equations:

dx

fp
=
dy

fq
=

dz

pfp + qfq
=

dp

−(fx + pfz)
=

dq

−(fy + qfz)
(10)

These equations are known as Charpit’s equations which are equivalent to the character-

istics equations (10) of the previous Lecture 4.

Once an integral g(x, y, z, p, q, a) of this kind has been found, the problem reduces to

solving for p and q, and then integrating equation (8).

REMARK 5. 1. For finding integrals, all of Charpit’s equations (10) need not to be used.

2. p or q must occur in the solution obtained from (10).

EXAMPLE 6. Find a complete integral of

p2x+ q2y = z. (11)

Solution. To find a complete integral, we proceed as follows.

Step 1: (Computing fx, fy, fz, fp, fq).

Set f ≡ p2x+ q2y − z = 0. Then

fx = p2, fy = q2, fz = −1, fp = 2px, fq = 2qy.

=⇒ pfp + qfq = 2p2x+ 2q2y, −(fx + pfz) = −p2 + p, −(fy + qfz) = −q2 + q.

Step 2: (Writing Charpit’s equations and finding a solution g(x, y, z, p, q, a)).

The Charpit’s equations (or auxiliary) equations are:

dx

fp
=
dy

fq
=

dz

pfp + qfq
=

dp

−(fx + pfz)
=

dq

−(fy + qfz)

=⇒ dx

2px
=

dy

2qy
=

dz

2(p2x+ q2y)
=

dp

−p2 + p
=

dq

−q2 + q

From which it follows that

p2dx+ 2pxdp

2p3x+ 2p2x− 2p3x
=

q2dy + 2qydq

2q3y + 2q2y − 2q3y

=⇒ p2dx+ 2pxdp

p2x
=
q2dy + 2qydq

q2y
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On integrating, we obtain

log(p2x) = log(q2y) + log a

=⇒ p2x = aq2y, (12)

where a is an arbitrary constant.

Step 3: (Solving for p and q).

Using (11) and (12), we find that

p2x+ q2y = z, p2x = aq2y

=⇒ (aq2y) + q2y = z =⇒ q2y(1 + a) = z

=⇒ q2 =
z

(1 + a)y
=⇒ q =

[
z

(1 + a)y

]1/2
.

and

p2 = aq2
y

x
= a

z

(1 + a)y

y

x
=

az

(1 + a)x

=⇒ p =

[
az

(1 + a)x

]1/2
.

Step 4: (Writing dz = p(x, y, z, a)dx+ q(x, y, z, a)dy and finding its solution).

Writing

dz =

[
az

(1 + a)x

]1/2
dx+

[
z

(1 + a)y

]1/2
dy

=⇒
(
1 + a

z

)1/2

dz =
(a
x

)1/2
dx+

(
1

y

)1/2

dy.

Integrate to have

[(1 + a)z]1/2 = (ax)1/2 + (y)1/2 + b

the complete integral of the equation (11).

Practice Problems

1. Show that the equations xp − yq = x and x2p + q = xz are compatible and solve

them.

2. Show that the equations f(x, y, p, q) = 0 and g(x, y, p, q) = 0 are compatible if

∂(f, g)

∂(x, p)
+
∂(f, g)

∂(y, p)
= 0.

3. Find complete integrals of the equations:

(i) p = (z + qy)2; (ii) (p2 + q2)y = qz
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Lecture 6 Some Special Types of First-Order PDEs

We shall consider some special types of first-order partial differential equations whose

solutions may be obtained easily by Charpit’s method.

Type (a): (Equations involving only p and q)

If the equation is of the form

f(p, q) = 0 (1)

then Charpit’s equations take the form

dx

fp
=
dy

fq
=

dz

pfp + qfq
=
dp

0
=
dq

0

An immediate solution is given by p = a, where a is an arbitrary constant. Substituting

p = a in (1), we obtain a relation

q = Q(a).

Then, integrating the expression

dz = adx+Q(a)dy

we obtain

z = ax+Q(a)y + b, (2)

where b is a constant. Thus, (2) is a complete integral of (1).

Note: Instead of taking dp = 0, we can take dq = 0 ⇒ q = a. In some problems, taking

dq = 0 the amount of computation involved may be reduced considerably.

EXAMPLE 1. Find a complete integral of the equation pq = 1.

Solution. If p = a then pq = 1 ⇒ q = 1
a . In this case, Q(a) = 1/a. From (2), we

obtain a complete integral as

z = ax+
y

a
+ b

=⇒ a2x+ y − az = c,

where a and c are arbitrary constants.

Type (b) (Equations not involving the independent variables):

For the equation of the type

f(z, p, q) = 0, (3)
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Charpit’s equation becomes

dx

fp
=
dy

fq
=

dz

pfp + qfq
=

dp

−pfz
=

dq

−qfz
.

From the last two relation, we have

dp

−pfz
=

dq

−qfz
=⇒ dp

p
=
dq

q

=⇒ p = aq, (4)

where a is an arbitrary constant. Solving (3) and (4) for p and q, we obtain

q = Q(a, z) =⇒ p = aQ(a, z).

Now

dz = pdx+ qdy

=⇒ dz = aQ(a, z)dx+Q(a, z)dy

=⇒ dz = Q(a, z) [adx+ dy] .

It gives complete integral as ∫
dz

Q(a, z)
= ax+ y + b, (5)

where b is an arbitrary constant.

EXAMPLE 2. Find a complete integral of the PDE p2z2 + q2 = 1.

Solution. Putting p = aq in the given PDE, we obtain

a2q2z2 + q2 = 1

=⇒ q2(1 + a2z2) = 1

=⇒ q = (1 + a2z2)−1/2.

Now,

p2 = (1− q2)/z2 =

(
1− 1

(1 + a2z2)

)(
1

z2

)
=⇒ p2 =

a2

1 + a2z2

=⇒ p = a(1 + a2z2)−1/2.

Substituting p and q in dz = pdx+ qdy, we obtain

dz = a(1 + a2z2)−1/2dx+ (1 + a2z2)−1/2dy

=⇒ (1 + a2z2)1/2dz = adx+ dy

=⇒ 1

2a

{
az(1 + a2z2)1/2 − log[az + (1 + a2z2)1/2]

}
= ax+ y + b,
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which is the complete integral of the given PDE.

Type (c): (Separable equations)

A first-order PDE is separable if it can be written in the form

f(x, p) = g(y, q). (6)

That is, a PDE in which z is absent and the terms containing x and p can be separated

from those containing y and q. For this type of equation, Charpit’s equations become

dx

fp
=

dy

−gq
=

dz

pfp − qgq
=

dp

−fx
=

dq

−gy
.

From the last two relation, we obtain an ODE

dp

−fx
=
dx

fp
=⇒ dp

dx
+
fx
fp

= 0 (7)

which may be solved to yield p as a function of x and an arbitrary constant a. Writing

(7) in the form fpdp+ fzdx = 0, we see that its solution is f(x, p) = a. Similarly, we get

g(y, q) = a. Determine p and q from the equation

f(x, p) = a, g(y, q) = a

and then use the relation dz = pdx+ qdy to determine a complete integral.

EXAMPLE 3. Find a complete integral of p2y(1 + x2) = qx2.

Solution. First we write the given PDE in the form

p2(1 + x2)

x2
=
q

y
(separable equation)

It follows that

p2(1 + x2)

x2
= a2 =⇒ p =

ax√
1 + x2

,

where a is an arbitrary constant. Similarly,

q

y
= a2 =⇒ q = a2y.

Now, the relation dz = pdx+ qdy yields

dz =
ax√
1 + x2

dx+ a2ydy =⇒ z = a
√

1 + x2 +
a2y2

2
+ b,

where a and b are arbitrary constant, a complete integral for the given PDE.
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Type (d): (Clairaut’s equation)

A first-order PDE is said to be in Clairaut form if it can be written as

z = px+ qy + f(p, q). (8)

Charpit’s equations take the form

dx

x+ fp
=

dy

y + fq
=

dz

px+ qy + pfp + qfq
=
dp

0
=
dq

0
.

Now, dp = 0 =⇒ p = a, where a is an arbitrary constant.

dq = 0 =⇒ q = b, where b is an arbitrary constant.

Substituting the values of p and q in (8), we obtain the required complete integral

z = ax+ by + f(a, b).

EXAMPLE 4. Find a complete integral of (p+ q)(z − xp− yq) = 1.

Solution. The given PDE can be put in the form

z = xp+ yq +
1

p+ q
, (9)

which is of Clairaut’s type. Putting p = a and q = b in (9), a complete integral is given

by

z = ax+ by +
1

a+ b
,

where a and b are arbitrary constants.

Practice Problems

Find complete integrals of the following PDEs.

1. p+ q = pq

2.
√
p+

√
q = 1

3. z = p2 − q2

4. p(1 + q) = qz

5. p2 + q2 = x+ y

6. z = px+ qy +
√

1 + p2 + p2

7. zpq = p2(xq + p2) + q2(yp+ q2)
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Lecture 1 Classification of Second-Order PDEs

Classification of PDEs is an important concept because the general theory and methods

of solution usually apply only to a given class of equations. Let us first discuss the

classification of PDEs involving two independent variables.

1 Classification with two independent variables

Consider the following general second order linear PDE in two independent variables:

A
∂2u

∂x2
+B

∂2u

∂x∂y
+ C

∂2u

∂y2
+D

∂u

∂x
+ E

∂u

∂y
+ Fu+G = 0, (1)

where A, B, C, D, E, F and G are functions of the independent variables x and y. The

equation (1) may be written in the form

Auxx +Buxy + Cuyy + f(x, y, ux, uy, u) = 0, (2)

where

ux =
∂u

∂x
, uy =

∂u

∂y
, uxx =

∂2u

∂x2
, uxy =

∂2u

∂x∂y
, uyy =

∂2u

∂y2
.

Assume that A, B and C are continuous functions of x and y possessing continuous partial

derivatives of as high order as necessary.

The classification of PDE is motivated by the classification of second order algebraic

equations in two-variables

ax2 + bxy + cy2 + dx+ ey + f = 0. (3)

We know that the nature of the curves will be decided by the principal part ax2+bxy+cy2

i.e., the term containing highest degree. Depending on the sign of the discriminant b2−4ac,

we classify the curve as follows:

If b2 − 4ac > 0 then the curve traces hyperbola.

If b2 − 4ac = 0 then the curve traces parabola.

If b2 − 4ac < 0 then the curve traces ellipse.

With suitable transformation, we can transform (3) into the following normal form

x2

a2
− y2

b2
= 1 (hyperbola).

x2 = y (parabola).

x2

a2
+
y2

b2
= 1 (ellipse).

Unit 13

85



MODULE 3: SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS 3

Linear PDE with constant coefficients. Let us first consider the following general

linear second order PDE in two independent variables x and y with constant coefficients:

Auxx +Buxy + Cuyy +Dux + Euy + Fu+G = 0, (4)

where the coefficients A,B,C,D,E, F and G are constants. The nature of the equation

(4) is determined by the principal part containing highest partial derivatives i.e.,

Lu ≡ Auxx +Buxy + Cuyy. (5)

For classification, we attach a symbol to (5) as P (x, y) = Ax2 +Bxy+Cy2 (as if we have

replaced x by ∂
∂x and y by ∂

∂y ). Now depending on the sign of the discriminant (B2−4AC),

the classification of (4) is done as follows:

B2 − 4AC > 0 =⇒ Eq. (4) is hyperbolic

B2 − 4AC = 0 =⇒ Eq. (4) is parabolic

B2 − 4AC < 0 =⇒ Eq. (4) is elliptic

(6)

(7)

(8)

Linear PDE with variable coefficients. The above classification of (4) is still valid if

the coefficients A,B,C,D,E and F depend on x, y. In this case, the conditions (6), (7)

and (8) should be satisfied at each point (x, y) in the region where we want to describe its

nature e.g., for elliptic we need to verify

B2(x, y)− 4A(x, y)C(x, y) < 0

for each (x, y) in the region of interest. Thus, we classify linear PDE with variable coeffi-

cients as follows:

B2(x, y)− 4A(x, y)C(x, y) > 0 at (x, y) =⇒ Eq. (4) is hyperbolic at (x, y)

B2(x, y)− 4A(x, y)C(x, y) = 0 at (x, y) =⇒ Eq. (4) is parabolic at (x, y)

B2(x, y)− 4A(x, y)C(x, y) < 0 at (x, y) =⇒ Eq. (4) is elliptic at (x, y)

(9)

(10)

(11)

Note: Eq. (4) is hyperbolic, parabolic, or elliptic depends only on the coefficients of the

second derivatives. It has nothing to do with the first-derivative terms, the term in u, or

the nonhomogeneous term.

EXAMPLE 1.

1. uxx + uyy = 0 (Laplace equation). Here, A = 1, B = 0, C = 1 and B2 − 4AC =

−4 < 0. Therefore, it is an elliptic type.
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2. ut = uxx (Heat equation). Here, A = −1, B = 0, C = 0. B2 − 4AC = 0. Thus, it is

of parabolic type.

3. utt−uxx = 0 (Wave equation). In this case, A = −1, B = 0, C = 1 and B2−4AC =

4 > 0. Hence, it is of hyperbolic type.

4. uxx + xuyy = 0, x ̸= 0 (Tricomi equation). B2 − 4AC = −4x. Given PDE is

hyperbolic for x < 0 and elliptic for x > 0. This example shows that equations with

variable coefficients can change form in the different regions of the domain.

2 Classification with more than two variables

Consider the second-order PDE in general form:

n∑
i=1

n∑
j=1

aij
∂2u

∂xi∂xj
+

n∑
i=1

bi
∂u

∂xi
+ cu+ d = 0, (12)

where the coefficients aij , bi, c and d are functions of x = (x1, x2, · · · , xn) alone and u =

u(x1, x2, · · · , xn).

Its principal part is

L ≡
n∑

i=1

n∑
j=1

aij
∂2

∂xi∂xj
. (13)

It is enough to assume that A = [aij ] is symmetric if not, let āij =
1
2(aij +aji) and rewrite

L ≡
n∑

i=1

n∑
j=1

āij
∂2

∂xi∂xj
. (14)

Note that ∂2u
∂xi∂xj

= ∂2u
∂xj∂xi

. As in two-space dimension, let us attach a quadratic form P

with (14) (i.e., replacing ∂u
∂xi

by xi).

P (x1, x2, · · · , xn) =
n∑

i=1

n∑
j=1

aijxixj . (15)

Since A is a real valued symmetric (aij = aji) matrix, it is diagonalizable with real

eigenvalues λ1, λ2, . . . , λn (counted with their multiplicities). In other words, there exists

a corresponding set of orthonormal set of n eigenvectors, say σ1, σ2, · · · , σn with R =
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[σ1, σ2, · · · , σn] as column vectors such that

RTAR =



λ1

λ2 ⃝
·

·
⃝ ·

λn


= D (16)

We now classify (12) depending on sign of eigenvalues of A:

(a) If λi > 0 ∀i or λi < 0 ∀i then (12) is elliptic type.

(b) If one or more of the λi = 0 then (12) is parabolic type.

(c) If one of the λi < 0 or λi > 0, and all the remaining have

opposite sign then (12) is said to be of hyperbolic type.

EXAMPLE 2.

1. ∇2u = uxx+uyy +uzz = 0. In this case, λi = 1 > 0 for all i = 1, 2, 3. It is an elliptic

PDE since all eigenvalues are of one sign.

2. It is an easy exercise to check that ut −∇2u = 0 is of parabolic type.

3. The equation utt −∇2u = 0 is of hyperbolic type.

EXAMPLE 3. Classify ux1x1 + 2(1 + cx2)ux2x3 = 0.

To symmetrize, write it as

ux1x1 + (1 + cx2)ux2x3 + (1 + cx2)ux3x2 = 0

i.e., ∂TxA∂x − c∂x2 = 0, where

A =


1 0 0

0 0 1 + cx2

0 1 + cx2 0

 ∂x =


∂x1

∂x2

∂x3


Eigenvalues are λ1 = 1, λ2 = 1 + cx2, λ3 = −(1 + cx2) and normalized eigenvectors

σ1 =


1

0

0

 σ2 =


0

1/
√
2

1/
√
2

 σ3 =


0

1/
√
2

−1/
√
2
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So

R =


1 0 0

0 1/
√
2 1/

√
2

0 1/
√
2 −1/

√
2


Note that R = RT = R−1.

RTAR =


1 0 0

0 1 + cx2 0

0 0 −(1 + cx2)

 = D

Equation is parabolic if x2 = −1
c (c ̸= 0), hyperbolic if x2 > −1

c and x2 < −1
c . For c = 0,

λ1 = λ2 = 1 and λ3 = −1, it is hyperbolic type.

Practice Problems

1. Classify the following equations into hyperbolic, elliptic or parabolic type.

(A) 5uxx − 3uyy + (cosx)ux + eyuy + u = 0.

(B) exuxx + eyuyy − u = 0.

(C) xuxx + uyy = 0.

(D) 8uxx + uyy − ux + [log(2 + x2)]u = 0.

(E) sin2 xuxx + sin 2xuxy + cos2 xuyy = x.

2. Classify the following equations into elliptic, parabolic, or hyperbolic type.

(A) uxx + 2uyz + (cosx)uz − ey
2
u = cosh z.

(B) uxx + 2uxy + uyy + 2uzz − (1 + xy)u = 0.

(C) ezuxy − uxx = log[x2 + y2 + z2 + 1].

3. Determine the regions where uxx − 2x2uxz + uyy + uzz = 0 is of hyperbolic, elliptic

and parabolic.
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Lecture 2 Canonical Forms or Normal Forms

By a suitable change of the independent variables we shall show that any equation of the

form

Auxx +Buxy + Cuyy +Dux + Euy + Fu+G = 0, (1)

where A, B, C, D, E, F and G are functions of the variables x and y, can be reduced to a

canonical form or normal form. The transformed equation assumes a simple form so that

the subsequent analysis of solving the equation will be become easy.

Consider the transformation of the indpendent variables from (x, y) to (ξ, η) given by

ξ = ξ(x, y), η = η(x, y). (2)

Here, the functions ξ and η are continuously differentiable and the Jacobian

J =
∂(ξ, η)

∂(x, y)
=

∣∣∣∣∣ ξx ξy

ηx ηy

∣∣∣∣∣ = (ξxηy − ξyηx) ̸= 0 (3)

in the domain where (1) holds.

Using chain rule, we notice that

ux = uξξx + uηηx

uy = uξξy + uηηy

uxx = uξξξ
2
x + 2uξηξxηx + uηηη

2
x + uξξxx + uηηxx

uxy = uξξξxξy + uξη(ξxηy + ξyηx) + uηηηxηy + uξξxy + uηηxy

uyy = uξξξ
2
y + 2uξηξyηy + uηηη

2
y + uξξyy + uηηyy

Substituting these expression into (1), we obtain

Ā(ξx, ξy)uξξ + B̄(ξx, ξy; ηx, ηy)uξη + C̄(ηx, ηy)uηη = F (ξ, η, u(ξ, η), uξ(ξ, η), uη(ξ, η)), (4)

where

Ā(ξx, ξy) = Aξ2x +Bξxξy + Cξ2y

B̄(ξx, ξy; ηx, ηy) = 2Aξxηx +B(ξxηy + ξyηx) + 2Cξyηy

C̄(ηx, ηy) = Aη2x +Bηxηy + Cη2y .

An easy calculation shows that

B̄2 − 4ĀC̄ = (ξxηy − ξyηx)
2(B2 − 4AC). (5)

Unit 14
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The equation (5) shows that the transformation of the independent variables does not

modify the type of PDE.

We shall determine ξ and η so that (4) takes the simplest possible form. We now

consider the following cases:

Case I: B2 − 4AC > 0 (Hyperbolic type)

Case II: B2 − 4AC = 0 (Parabolic type)

Case III: B2 − 4AC < 0 (Elliptic type)

Case I: Note that B2 − 4AC > 0 implies the equation Aα2 + Bα + C = 0 has two real

and distinct roots, say λ1 and λ2. Now, choose ξ and η such that

∂ξ

∂x
= λ1

∂ξ

∂y
and

∂η

∂x
= λ2

∂η

∂y
. (6)

Then the coefficients of uξξ and uηη will be zero because

Ā = Aξ2x +Bξxξy + Cξ2y = (Aλ21 +Bλ1 + C)ξ2y = 0,

C̄ = Aη2x +Bηxηy + Cη2y = (Aλ22 +Bλ2 + C)η2y = 0.

Thus, (5) reduces to

B̄2 = (B2 −AC)(ξxηy − ξyηx)
2 > 0

as B2−4AC > 0. Note that (6) is a first-order linear PDE in ξ and η whose characteristics

curves are satisfy the first-order ODEs

dy

dx
+ λi(x, y) = 0, i = 1, 2. (7)

Let the family of curves determined by the solution of (7) for i = 1 and i = 2 be

f1(x, y) = c1 and f2(x, y) = c2, (8)

respectively. These family of curves are called characteristics curves of PDE (5). With

this choice, divide (4) throughout by B̄ (as B̄ > 0) and use (7)-(8) to obtain

∂2u

∂ξ∂η
= ϕ(ξ, η, u, uξ, uη), (9)

which is the canonical form of hyperbolic equation.

EXAMPLE 1. Reduce the equation uxx = x2uyy to its canonical form.

Solution. Comparing with (1) we find that A = 1, B = 0, C = −x2.

The roots of the equations Aα2 +Bα+C = 0 i.e., α2 + x2 = 0 are given by λi = ±x.
The differential equations for the family of characteristics curves are

dy

dx
± x = 0.
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whose solutions are y + 1
2x

2 = c1 and y − 1
2x

2 = c2. Choose

ξ = y +
1

2
x2, η = y − 1

2
x2.

An easy computation shows that

ux = uξξx + uηηx,

uxx = uξξξ
2
x + 2uξηξxηx + uηηη

2
x + uξξxx + uηηxx

= uξξx
2 − 2uξηx

2 + uηηx
2 + uξ − uη,

uyy = uξξξ
2
y + 2uξηξyηy + uηηη

2
y + uξξyy + uηηyy,

= uξξ + 2uξη + uηη.

Substituting these expression in the equation uxx = x2uyy yields

4x2uξη = (uξ − uη)

or 4(ξ − η)uξη =
1

4(ξ − η)
(uξ − uη)

or uξη =
1

4(ξ − η)
(uξ − uη)

which is the required canonical form.

CASE II: B2 − 4AC = 0 =⇒ the equation Aα2 + Bα + C = 0 has two equal roots, say

λ1 = λ2 = λ. Let f1(x, y) = c1 be the solution of dy
dx + λ(x, y) = 0. Take ξ = f1(x, y) and

η to be the any function of x and y which is independent of ξ.

As before, Ā(ξx, ξy) = 0 and hence from equation (5), we obtain B̄ = 0. Note that

C̄(ηx, ηy) ̸= 0, otherwise η would be a function of ξ. Dividing (4) by C̄, the canonical form

of (2) is

uηη = ϕ(ξ, η, u, uξ, uη). (10)

which is the canonical form of parabolic equation.

EXAMPLE 2. Reduce the equation uxx + 2uxy + uyy = 0 to canonical form.

Solution. In this case, A = 1, B = 2, C = 1. The equation α2+2α+1 = 0 has equal

roots λ = −1. The solution of dy
dx − 1 = 0 is x− y = c1 Take ξ = x− y. Choose η = x+ y.

proceed as in Example 1 to obtain uηη = 0 which is the canonical form of the given PDE.

CASE III: When B2− 4AC < 0, the roots of Aα2+Bα+C = 0 are complex. Following

the procedure as in CASE I, we find that

uξη = ϕ1(ξ, η, u, uξ, uη). (11)
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The variables ξ, η are infact complex conjugates. To get a real canonical form use the

transformation

α =
1

2
(ξ + η), β =

1

2i
(ξ − η)

to obtain

uξη =
1

4
(uαα + uββ), (12)

which follows from the following calculation:

uξ = uααξ + uββξ =
1

2
uα +

1

2i
uβ

uξη =
1

2
(uαααη + uαββη) +

1

2i
(uβααη + uβββη)

=
1

4
(uαα + uββ).

The desired canonical form is

uαα + uββ = ψ(α, β, u(α, β), uα(α, β), uβ(α, β)). (13)

EXAMPLE 3. Reduce the equation uxx + x2uyy = 0 to canonical form.

Solution. In this case, A = 1, B = 0, C = x2. The roots are λ1 = ix, λ2 = −ix.
Take ξ = iy + 1

2x
2, η = −iy + 1

2x
2. Then α = 1

2x
2, β = y. The canonical form is

uαα + uββ = − 1

2α
uα.

Practice Problems

1. Reduce the following equations to canonical/normal form:

(A) 2uxx − 4uxy + 2uyy + 3u = 0.

(B) uxx + yuyy = 0.

(C) uxy + ux + uy = 2x.

2. Show that the equation

uxx − 6uxy + 12uyy + 4ux − u = sin(xy)

is of elliptic type and obtain its canonical form.

3. Determine the regions where Tricomi’s equation uxx + xuyy = 0 is of elliptic,

parabolic, and hyperbolic types. Obtain its characteristics and its canonical form in

the hyperbolic region.
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Lecture 3 Superposition Principle and Wellposedness

A very important fact concerning linear PDEs is the superposition principle, which is

stated below.

A linear PDE can be written in the form

L[u] = f, (1)

where L[u] denotes a linear combination of u and some of its partial derivatives, with

coefficients which are given functions of the independent variables.

DEFINITION 1. (Superposition principle) Let u1 be a solution of the linear PDE

L[u] = f1

and let u2 be a solution of the linear PDE

L[u] = f2.

Then, for any any constants c1 and c2, c1u1 + c2u2 is a solution of

L[u] = c1f1 + c2f2.

That is,

L[c1u1 + c2u2] = c1f1 + c2f2. (2)

In particular, when f1 = 0 and f2 = 0, (2) implies that if u1 and u2 are solutions of the

homogeneous linear PDE L[u] = 0, then c1u1 + c2u2 will also be a solution of L[u] = 0.

EXAMPLE 2. Observe that u1(x, y) = x3 is a solution of the linear PDE uxx − uy = 6x,

and u2(x, y) = y2 is a solution of uxx − uy = −2y. Then, using superposition principle, it

is easy to verify that 3u1(x, y)− 4u2(x, y) will be a solution of uxx − uy = 18x+ 8y.

REMARK 3. Note that the principle of superposition is not valid for nonlinear partial

differential equations. This failure makes it difficult to form families of new solutions

from an original pair of solutions.

EXAMPLE 4. Consider the nonlinear first order PDE uxuy − u(ux + uy) + u2 = 0. Note

that ex and ey are two solutions of this equation. However, c1e
x + c2e

y will not be a

solution, unless c1 = 0 or c2 = 0.

Solution. Define D[u] := (ux − u)(uy − u). For any u, v ∈ C1, we have

D[u+ v] = (ux + vx − u− v)(uy + vy − u− v)

= D[u] +D[v] + (uy − u)(vx − v) + (ux − u)(vy − v).

Unit 15
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The computation shows that D[u + v] ̸= D[u] + D[v] in general. Taking u = c1e
x and

v = c2e
y, an easy computation shows that

D[c1e
x + c2e

y] = D[c1e
x] +D[c2e

y] + (−c1ex)(−c2ey) = c1c2e
x+y.

Thus, D[c1e
x + c2e

y] = 0 only if c1 = 0 or c2 = 0.

1 Well-posed problems

A set of conditions was proposed by Hadamard (cf. [12]), who listed three requirements

that must be met when formulating an initial and /or boundary value problem. A problem

for which the PDE and the data lead to a solution is said to be well posed or correctly

posed if the following three conditions are satisfies:

Hadamard’s conditions for a well-posed problem are:

1. The solution must exist.

2. The solution should be unique.

3. The solution should depend continuously on the initial and/or boundary data.

If it fails to meet these requirements, it is incorrectly posed.

The conditions (1)-(2) require that the equation plus the data for the problem must

be such that one and only one solution exists. The third condition states that a small

variation of the data for the problem should cause small variation in the solution. As data

are generally obtained experimentally and may be subject to numerical approximations,

we require that the solution be stable under small variations in initial and/or boundary

values. That is, we cannot allow large variations to occur in the solution if the data are

altered slightly.

A simple example of a ill posed problem is given below.

EXAMPLE 5. Consider Cauchy’s problem for Laplace’s equation in y ≥ 0:

∂2u

∂x2
+
∂2u

∂y2
= 0, (3)

u(x, 0) = 0, (4)

uy(x, 0) =
1

n
sinnx, (5)

where n is a positive integer, is not well-posed.
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The solution is given by u(x, y) = 1
n2 sin(nx) sinh(ny). Now, as n → ∞, uy(x, 0) → 0

so that for large n the Cauchy data u(x, 0) and uy(x, 0) can be made arbitrarily small

in magnitude. However, the solution u(x, y) oscillates with an amplitude that grows

exponentially like eny as n→ ∞. Thus, arbitrarily small data can lead to arbitrarily large

variation in solutions and hence the solution is unstable. This violates the condition (3)

i.e., the continuous dependence of the solution on the data.

Boundary value problems are not well posed for hyperbolic and parabolic equations.

This follows because these are, in general, equations whose solutions evolve in time and

their behavior at later times is predicted by their previous states.

EXAMPLE 6. Consider the hyperbolic equation

uxy = 0 in 0 < x < 1, 0 < y < 1

with the boundary conditions

u(x, 0) = f1(x), u(x, 1) = f2(x) for 0 ≤ x ≤ 1,

u(0, y) = g1(y), u(1, y) = g2(y) for 0 ≤ y ≤ 1.

We shall show that this problem has no solution if the data are prescribed arbitrarily.

Since uxy = 0 implies that ux(x, y) = constant, we have

ux(x, 0) = ux(x, 1).

In view of the given BC, we have

ux(x, 0) = f ′1(x) and ux(x, 1) = f ′2(x).

Thus, unless f1(x) and f2(x) are prescribed such that f ′1(x) = f ′2(x), the BVP cannot be

solved. Therefore, it is incorrectly posed.

2 Method of factorization

There is no general methods are available for obtaining the general solutions of second-

order PDEs. Sometimes PDE of second-order can be factorized into two first-order equa-

tions. The equations

uξη = 0,

yuxx + (x+ y)uxy + xuyy = 0.
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are examples of such equation. It is often much easier to factorize an equation when

in its canonical form. But, we can often factorize equations with constant coefficients

directly. The method of factorization can be a useful method of solution for hyperbolic

and parabolic equations.

EXAMPLE 7. The equation

uxx − uyy + 4(ux + u) = 0

can be written as (
∂

∂x
+

∂

∂y
+ 2

)(
∂

∂x
− ∂

∂y
+ 2

)
u = 0.

It is equivalent to the pair of first order equations

ux − uy + 2u = v,

and

vx + vy + 2v = 0.

EXAMPLE 8. The hyperbolic equation

acuxy + aux + cuy + u = 0

can be written as (
a
∂

∂x
+ 1

)(
c
∂

∂y
+ 1

)
u = 0.

It is equivalent to

cuy + u = v,

avx + v = 0.

Note: Unlike the case when the coefficients are constant, the differential operators need

not commute.

Practice Problems

1. If u1(x, y) = x3 solves uxx + uyy = 2 and u2(x, y) = c3 + dy3 solves uxx + uyy =

6cx+ 6dy for real constants c and d then find a solution of uxx + uyy = ax+ by + c

for given real constants a, b and c.

2. Let u1(x, y) be the solution to the Cauchy problem

uxx + uyy = 0,

u(x, 0) = f(x),

uy(x, 0) = g(x),
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Lecture 1 Modeling the Heat Equation

We shall derive heat equation from the principle of conservation of energy and the fact

that heat flows from hot regions to cold regions.

Consider a wire or rod of length L which is made of some heat-conducting material

and is insulated on the outside, except possibly over the ends at x = 0 and x = L. Let

u(x, t) denote the temperature at x at time t. u(x, t) is assumed to be constant on each

cross section at each time. By the principle of conservation of energy (heat energy), the

Figure 5.1: A thin rod of length L

net change of heat inside the segment PQ (between x and x + ∆x) is equal to the net

heat flux across the boundaries and the total heat generated inside PQ. If c is thermal

capacity of the rod, ρ is the density of the rod, A is the cross-section area of the rod, k is

thermal conductivity of the rod and f(x, t) is the external heat source, then we calculate

these terms as follows:

Total amount of heat inside the segment PQ at time t =

∫ x+∆x

x
cρAu(τ, t)dτ .

Net change of heat inside PQ =
d

dt

∫ x+∆x

x
cρAu(τ, t)ds = cρA

∫ x+∆x

x
ut(τ, t)dτ .

Net flux of heat across the boundaries =kA[ux(x+∆x, t)− ux(x, t)].

Heat generated due to external heat source inside PQ = A

∫ x+∆x

x
f(τ, t)dτ.

By the principle of conservation of energy, we write

d

dt

∫ x+∆x

x
cρAu(τ, t)dτ = cρA

∫ x+∆x

x
ut(τ, t)dτ

= kA[ux(x+∆x, t)− ux(x, t)] +A

∫ x+∆x

x
f(τ, t)dτ. (1)

Unit 16Unit 16
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Applying Mean Value Theorem for integral1, we obtain

cρAut(ξ1, t)∆x = kA[ux(x+∆x, t)− ux(x, t)] +Af(ξ2, t)∆x,

where ξ1, ξ2 ∈ (x, x+∆x), and hence,

ut(ξ1, t) =
k

cρ

[
ux(x+∆x, t)− ux(x, t)

∆x

]
+

1

cρ
f(ξ2, t).

Now, letting ∆x→ 0, we arrive at

ut(x, t) = α2uxx(x, t) + F (x, t), (2)

where α2 = k/(cρ) is called the thermal diffusivity of the rod and F (x, t) = 1
cρf(x, t) is

called the heat source density.

REMARK 1.

• When the rod is not laterally insulated and we allow the heat to flow in and out

across the lateral boundary at a rate proportional to the difference between the

temperature u(x, t) and the surrounding medium, the conservation of heat principle

yields

ut = α2uxx − β(u− u0), β > 0.

The heat loss (u > u0) or gain (u < u0) is proportional to the difference between

the temperature u(x, t) of the rod and the surrounding medium u0. Here, β is the

constant of proportionality.

• If the material of the rod is uniform, then k is independent of x. For some materials,

the value of k depends on the temperature u and hence the resulting heat equation

ut =
1

cρ

∂

∂x

{
k(u)

∂u

∂x

}
is nonlinear.

• If the material is nonhomogeneous the diffusion within the rod depends on x. For

example, suppose the half of the rod is made of copper and other half is made of

steel, then the PDE that describes the heat flow is given by

ut = α2(x)uxx, 0 < x < L,

1If f(x) is continuous on [a, b], then there exists at least one number ξ in (a, b) such that∫ b

a

f(x)dx = f(ξ)(b− a).
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with

α(x) =

{
α1, 0 < x < L/2,

α2, L/2 < x < L,

where α1 and α2 are the thermal diffusivity coefficients of copper and steel, respec-

tively.

Types of BCs: There are three types of boundary conditions that can occur for heat

flow problems. They are

• Dirichlet boundary conditions (temperature is specified on the boundary):

Consider heat flow problem in a rod (0 ≤ x ≤ L). The specification of the tempera-

tures u(0, t) and u(L, t) at the ends are classified as Dirichlet type BC.

• Neumann boundary conditions ( heat flow across the boundary is specified):

The specification of the normal derivative (i.e., ∂u
∂n , where n is the outward normal

to the boundary) on the boundary is classified as Neumann type BCs. For instance,

if the end points of a rod is insulated (i.e., we do not allow any flow of heat across

the boundary), the BCs are

ux(0, t) = 0, ux(L, t) = 0, 0 < t <∞.

• Robin’s or Mixed boundary conditions:

If the condition on the boundary is a mixture of both Dirichlet and Neumann types

i.e.,
∂u

∂n
= −h(u− g(t))

then it is called Robin’s BCs or mixed BCs. Here, h is a constant and g(t) is given

function that can vary over the boundary. The mixed BCs may be interpreted

as the inward flux across the boundary is proportional to the difference between

the temperature u and some specified temperature g. If the temperature u on the

boundary is greater than the boundary temperature, then the flow of heat is outward.

If u is less than the specified boundary temperature g, then heat flows inward.
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Lecture 2 The Maximum and Minimum Principle

In this lecture, we shall prove the maximum and minimum properties of the heat equation.

These properties can be used to prove uniqueness and continuous dependence on data of

the solutions of these equations.

To begin with, we shall first prove the maximum principle for the inhomogeneous heat

equation (F ̸= 0).

THEOREM 1. (The maximum principle) Let R : 0 ≤ x ≤ L, 0 ≤ t ≤ T be a closed

region and let u(x, t) be a solution of

ut − α2uxx = F (x, t) (x, t) ∈ R, (1)

which is continuous in the closed region R. If F < 0 in R, then u(x, t) attains its maximum

values on t = 0, x = 0 or x = L and not in the interior of the region or at t = T . If

F > 0 in R, then u(x, t) attains its minimum values on t = 0, x = 0 or x = L and not in

the interior of the region or at t = T .

Proof. We shall show that if a maximum or minimum occurs at an interior point

0 < x0 < l and 0 < t0 ≤ T , then we will arrive at contradiction. Let us consider the

following cases.

Case I: First, consider the case with F < 0. Since u(x, t) is continuous in a closed and

bounded region in R, u(x, t) must attain its maximum in R. Let (x0, t0) be the interior

maximum point. Then, we must have

uxx(x0, t0) ≤ 0, ut(x0, t0) ≥ 0. (2)

Since ux(x0, t0) = 0 = ut(x0, t0), we have

ut(x0, t0) = 0 if t0 < T.

If t0 = T , the point (x0, t0) = (x0, T ) is on the boundary of R, then we claim that

ut(x0, t0) ≥ 0

as u may be increasing at (x0, t0). Substituting (2) in (1), we find that the left side of

the equation (1) is non-negative while the right side is strictly negative. This leads to

a contradiction and hence, the maximum must be assumed on the initial line or on the

boundary.
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Case II: Consider the case with F > 0. Let there be an interior minimum point

(x0, t0) in R such that

uxx(x0, t0) ≥ 0, ut(x0, t0) ≤ 0. (3)

Note that the inequalities (3) is same as (2) with the signs reversed. Again arguing as

before, this leads to a contradiction, hence the minimum must be assumed on the initial

line or on the boundary.

Note: When F = 0 i.e., for homogeneous equation, the inequalities (2) at a maximum or

(3) at a minimum do not leads to a contradiction when they are inserted into (1) as uxx

and ut may both vanish at (x0, t0).

Below, we present a proof of the maximum principle for the homogeneous heat equa-

tion.

THEOREM 2. (The maximum principle) Let u(x, t) be a solution of

ut = α2uxx 0 ≤ x ≤ L, 0 < t ≤ T, (4)

which is continuous in the closed region R : 0 ≤ x ≤ L and 0 ≤ t ≤ T . The maximum

and minimum values of u(x, t) are assumed on the initial line t = 0 or at the points on

the boundary x = 0 or x = L.

Proof. Let us introduce the auxiliary function

v(x, t) = u(x, t) + ϵx2, (5)

where ϵ > 0 is a constant and u satisfies (4). Note that v(x, t) is continuous in R and

hence it has a maximum at some point (x1, t1) in the region R.

Assume that (x1, t1) is an interior point with 0 < x1 < L and 0 < t1 ≤ T . Then we

find that

vt(x1, t1) ≥ 0, vxx(x1, t1) ≤ 0. (6)

Since u satisfies (4), we have

vt − α2vxx = ut − α2uxx − 2α2ϵ = −2α2ϵ < 0. (7)

Substituting (6) into (4) and using (7 ) now leads to

0 ≤ vt − α2vxx < 0,

which is a contradiction since the left side is non-negative and the right side is strictly

negative. Therefore, v(x, t) assumes its maximum on the initial line or on the boundary

since v satisfies (1) with F < 0.
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Let

M = max{u(x, t)} on t = 0, x = 0, and x = L,

i.e., M is the maximum value of u on the initial line and boundary lines. Then

v(x, t) = u(x, t) + ϵx2 ≤M + ϵL2, for 0 ≤ x ≤ L, 0 ≤ t ≤ T. (8)

Since v has its maximum on t = 0, x = 0, or x = L, we obtain

u(x, t) = v(x, t)− ϵx2 ≤ v(x, t) ≤M + ϵL2. (9)

Since ϵ is arbitrary, letting ϵ→ 0, we conclude that

u(x, t) ≤M for all (x, t) ∈ R, (10)

and this completes the proof.

REMARK 3.

• The minimum principle for the heat equation can be obtained by replacing the

function u(x, t) by −u(x, t), where u(x, t) is a solution of (4). Clearly, −u is also

a solution of (4) and the maximum values of u correspond to the minimum values

of u. Since u satisfies the maximum principle, we conclude that u assumes its min-

minimum values on the initial line or on the boundary lines. In particular, this

implies that if the initial and boundary data for the problem are non- negative, then

the solution must be non-negative.

• In geometrical term, the maximum principle states that if a solution of the problem

(4) is graphed in the xtu-space, then the surface u = u(x, t) achieves its maximum

height above one of the three sides x = 0, x = L, t = 0 of the rectangle 0 ≤ x ≤ L,

0 ≤ t ≤ T .

• From a physical perspective, the maximum principle states that the temperature, at

any point x inside the rod at any time t (0 ≤ t ≤ T ), is less than the maximum of

the initial temperature distribution or the maximum of the temperatures prescribed

at the ends during the time interval [0, T ].

1 Uniqueness and continuous dependence

As a consequence of the maximum principle, we can show that the heat flow problem has

a unique solution and depend continuously on the given initial and boundary data.
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THEOREM 4. (Uniqueness result) Let u1(x, t) and u2(x, t) be solutions of the following

problem

PDE: ut = α2uxx, 0 < x < L, t > 0,

BC: u(0, t) = g(t), u(L, t) = h(t), (11)

IC: u(x, 0) = f(x),

where f(x), g(t) and h(t) are given functions. Then u1(x, t) = u2(x, t), for all 0 ≤ x ≤ L

and t ≥ 0.

Proof. Let u1(x, t) and u2(x, t) be two solutions of (11). Set w(x, t) = u1(x, t) −
u2(x, t). Then w satisfies

wt = α2wxx 0 < x < L, t > 0,

w(0, t) = 0, w(L, t) = 0,

w(x, 0) = 0.

By the maximum principle (cf. Theorem 2), we must have

w(x, t) ≤ 0 =⇒ u1(x, t) ≤ u2(x, t), for all 0 ≤ x ≤ L, t ≥ 0.

A similar argument with w̄ = u2 − u1 yields

u2(x, t) ≤ u1(x, t) for all 0 ≤ x ≤ L, t ≥ 0.

Therefore, we have

u1(x, t) = u2(x, t) for all 0 ≤ x ≤ L, t ≥ 0,

and this completes the proof.

THEOREM 5. (Continuous Dependence on the IC and BC) Let u1(x, t) and u2(x, t),

respectively, be solutions of the problems

ut = α2uxx; ut = α2uxx

u(0, t) = g1(t) u(L, t) = h1(t); u(0, t) = g2(t) u(L, t) = h2(t) (12)

u(x, 0) = f1(x); u(x, 0) = f2(x),

in the region 0 ≤ x ≤ L, t ≥ 0. If

|f1(x)− f2(x)| ≤ ϵ for all x, 0 ≤ x ≤ L,

104



MODULE 5: HEAT EQUATION 9

and

|g1(t)− g2(t)| ≤ ϵ and |h1(t)− h2(t)| ≤ ϵ for all t, 0 ≤ t ≤ T,

for some ϵ ≥ 0, then we have

|u1(x, t)− u2(x, t)| ≤ ϵ for all x and t,where 0 ≤ x ≤ L, 0 ≤ t ≤ T.

Proof. Let v(x, t) = u1(x, t)− u2(x, t). Then vt = α2vxx and we obtain

|v(x, 0)| = |f1(x)− f2(x)| ≤ ϵ, 0 ≤ x ≤ L,

|v(0, t)| = |g1(t)− g2(t)| ≤ ϵ, 0 ≤ t ≤ T,

|v(L, t)| = |h1(t)− h2(t)| ≤ ϵ, 0 ≤ t ≤ T.

Note that the maximum of v on t = 0 (0 ≤ x ≤ L) and x = 0 and x = L (0 ≤ t ≤ T ) is

not greater than ϵ. The minimum of v on these boundary lines is not less than −ϵ. Hence,

the maximum/minimum principle yields

−ϵ ≤ v(x, t) ≤ ϵ =⇒ |u1(x, t)− u2(x, t)| = |v(x, t)| ≤ ϵ.

Note: (i) We observe that when ϵ = 0, the problems in (12) are identical. We conclude

that |u1(x, t)− u2(x, t)| ≤ 0 (i.e. u1 = u2). This proves the uniqueness result.

(ii) Suppose a certain initial/boundary value problem has a unique solutions. Then

a small change in the initial and/or boundary conditions yields a small change in the

solutions.

For the inhomogeneous equation (1), we have seen that the maximum or minimum

values must be attained either on the initial line or the boundary lines and that they

cannot be assumed in the interior. This result is known as a strong maximum or minimum

principle.

THEOREM 6. (Strong maximum principle) Let u(x, t) be a solution of the heat equa-

tion in the rectangle R : 0 ≤ x ≤ L, 0 ≤ t ≤ T . If u(x, t) achieves its maximum at

(x∗, T ), where 0 < x∗ < L, then u must be constant in R.

Practice Problems

1. Use the maximum/minimum principle to show that the solution u of the problem

ut = uxx, 0 < x < π, t > 0,

ux(0, t) = 0, ux(π, t) = 0, t > 0,

u(x, 0) = sin(x) +
1

2
sin(2x), 0 ≤ x ≤ π

satisfies 0 ≤ u(x, t) ≤ 3
√
3

4 , t ≥ 0.
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Lecture 3 Method of Separation of Variables

Separation of variables is one of the oldest technique for solving initial-boundary value

problems (IBVP) and applies to problems, where

• PDE is linear and homogeneous (not necessarily constant coefficients) and

• BC are linear and homogeneous.

Basic Idea: To seek a solution of the form

u(x, t) = X(x)T (t),

where X(x) is some function of x and T (t) in some function of t. The solutions are simple

because any temperature u(x, t) of this form will retain its basic “shape” for different

values of time t. The separation of variables reduced the problem of solving the PDE

to solving the two ODEs: One second order ODE involving the independent variable x

and one first order ODE involving t. These ODEs are then solved using given initial and

boundary conditions.

To illustrate this method, let us apply to a specific problem. Consider the following

IBVP:

PDE: ut = α2uxx, 0 ≤ x ≤ L, 0 < t <∞, (1)

BC: u(0, t) = 0 u(L, t) = 0, 0 < t <∞, (2)

IC: u(x, 0) = f(x), 0 ≤ x ≤ L. (3)

Step 1:(Reducing to the ODEs) Assume that equation (1) has solutions of the form

u(x, t) = X(x)T (t),

where X is a function of x alone and T is a function of t alone. Note that

ut = X(x)T ′(t) and uxx = X ′′(x)T (t).

Now, substituting these expression into ut = α2uxx and separating variables, we obtain

X(x)T ′(t) = α2X ′′(x)T (t)

⇒ T ′(t)

α2T (t)
=
X ′′(x)

X(x)
.

Unit 17
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Since a function of t can equal a function of x only when both functions are constant.

Thus,

T ′(t)

α2T (t)
=
X ′′(x)

X(x)
= c

for some constant c. This leads to the following two ODEs:

T ′(t)− α2cT (t) = 0, (4)

X ′′(x)− cX(x) = 0. (5)

Thus, the problem of solving the PDE (1) is now reduced to solving the two ODEs.

Step 2:(Applying BCs)

Since the product solutions u(x, t) = X(x)T (t) are to satisfy the BC (2), we have

u(0, t) = X(0)T (t) = 0 and X(L)T (t) = 0, t > 0.

Thus, either T (t) = 0 for all t > 0, which implies that u(x, t) = 0, or X(0) = X(L) = 0.

Ignoring the trivial solution u(x, t) = 0, we combine the boundary conditions X(0) =

X(L) = 0 with the differential equation for X in (5) to obtain the BVP:

X ′′(x)− cX(x) = 0, X(0) = X(L) = 0. (6)

There are three cases: c < 0, c > 0, c = 0 which will be discussed below. It is convenient

to set c = −λ2 when c < 0 and c = λ2 when c > 0, for some constant λ > 0.

Case 1. (c = λ2 > 0 for some λ > 0). In this case, a general solution to the differential

equation (5) is

X(x) = C1e
λx + C2e

−λx,

where C1 and C2 are arbitrary constants. To determine C1 and C2, we use the BC

X(0) = 0, X(L) = 0 to have

X(0) = C1 + C2 = 0, (7)

X(L) = C1e
λL + C2e

−λL = 0. (8)

From the first equation, it follows that C2 = −C1. The second equation leads to

C1(e
λL − e−λL) = 0,

⇒ C1(e
2λL − 1) = 0,

⇒ C1 = 0.
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since (e2λL−1) > 0 as λ > 0. Therefore, we have C1 = 0 and hence C2 = 0. Consequently

X(x) = 0 and this implies u(x, t) = 0 i.e., there is no nontrivial solution to (5) for the

case c > 0.

Case 2. (when c=0)

The general solution solution to (5) is given by

X(x) = C3 + C4x.

Applying BC yields C3 = C4 = 0 and hence X(x) = 0. Again, u(x, t) = X(x)T (t) = 0.

Thus, there is no nontrivial solution to (5) for c = 0.

Case 3. (When c = −λ2 < 0 for some λ > 0)

The general solution to (5) is

X(x) = C5 cos(λx) + C6 sin(λx).

This time the BC X(0) = 0, X(L) = 0 gives the system

C5 = 0,

C5 cos(λL) + C6 sin(λL) = 0.

As C5 = 0, the system reduces to solving C6 sin(λL) = 0. Hence, either sin(λL) = 0 or

C6 = 0. Now

sin(λL) = 0 =⇒ λL = nπ, n = 0,±1,±2, . . . .

Therefore, (5) has a nontrivial solution (C6 ̸= 0) when

λL = nπ or λ =
nπ

L
, n = 1, 2, 3, . . . .

Here, we exclude n = 0, since it makes c = 0. Therefore, the nontrivial solutions (eigen-

functions) Xn corresponding to the eigenvalue c = −λ2 are given by

Xn(x) = an sin(
nπx

L
), (9)

where an’s are arbitrary constants.

Step 3:(Applying IC)

Let us consider solving equation (4). The general solution to (4) with c = −λ2 = (nπL )2

is

Tn(t) = bne
−α2(nπ

L
)2t.
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Combing this with (9), the product solution u(x, t) = X(x)T (t) becomes

un(x, t) := Xn(x)Tn(t) = an sin(
nπx

L
)bne

−α2(nπ
L

)2t

= cne
−α2(nπ

L
)2t sin(

nπx

L
), n = 1, 2, 3, . . . ,

where cn is an arbitrary constant.

Since the problem (9) is linear and homogeneous, an application of superposition

principle gives

u(x, t) =
∞∑
n=1

un(x, t) =
∞∑
n=1

cne
−α2(nπ

L
)2t sin(

nπx

L
), (10)

which will be a solution to (1)-(3), provided the infinite series has the proper convergence

behavior.

Since the solution (10) is to satisfy IC (3), we must have

u(x, 0) =
∞∑
n=1

cn sin
(nπx
L

)
= f(x), 0 < x < L.

Thus, if f(x) has an expansion of the form

f(x) =
∞∑
n=1

cn sin
(nπx
L

)
, (11)

which is called a Fourier sine series (FSS) with cn’s are given by the formula

cn =
2

L

∫ L

0
f(x) sin(

nπx

L
)dx. (12)

Then the infinite series (10) with the coefficients cn given by (12) is a solution to the

problem (1)-(3).

EXAMPLE 1. Find the solution to the following IBVP:

ut = 3uxx 0 ≤ x ≤ π, 0 < t <∞, (13)

u(0, t) = u(π, t) = 0, 0 < t <∞, (14)

u(x, 0) = 3 sin 2x− 6 sin 5x, 0 ≤ x ≤ π. (15)

Solution. Comparing (13) with (1), we notice that α2 = 3 and L = π. Using formula

(10), we write a solution u(x, t) as

u(x, t) =

∞∑
n=1

cne
−3n2t sin(nx).
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To determine cn’s, we use IC (15) to have

u(x, 0) = 3 sin 2x− 6 sin 5x =
∞∑
n=1

cn sin(nx).

Comparing the coefficients of like terms, we obtain

c2 = 3 and c5 = −6,

and the remaining cn’s are zero. Hence, the solution to the problem (13)-(15) is

u(x, t) = c2e
−3(2)2t sin(2x) + c5e

−3(5)2t sin(5x)

= 3e−12t sin(2x)− 6e−75t sin(5x).

Practice Problems

1. Solve the following IBVP:

ut = 16uxx, 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, t > 0,

u(x, 0) = (1− x)x, 0 < x < 1.

2. Solve the following IBVP:

ut = uxx, 0 < x < π, t > 0,

ux(0, t) = ux(π, t) = 0, t > 0,

u(x, 0) = 1− sinx, 0 < x < π.
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Lecture 1 Mathematical Formulation and Uniqueness Result

We begin by studying the one-dimensional wave equation, which describe the transverse

vibrations of a string. Consider the small vibrations of a string that is fastened at each

end (see, Fig. 6.1). We now make the following assumptions:

• The string is made of a homogeneous material (i.e., the mass/unit length of the

string is constant).

• There is no effect of gravity and external forces.

• The vibration takes place in a plane.

The mathematical model equation under these assumptions describe small vibrations of

the string. Let the forces acting on a small portion PQ of the string. Since the string

Figure 6.1: Vibrations of a string problem

does not offer resistance to bending, the tension is tangential to the curve of the string at

each point. Let T1 and T2, respectively, be the tensions at the endpoints P and Q. Since

there is no motion in horizontal direction, the horizontal components of the tension must

be constant. From the Fig. 6.1, we obtain

T1 cos θ1 = T2 cos θ2 = T = constant. (1)

Let −T1 sin θ1 and T2 sin θ2 be two components of T1 and T2, respectively in the vertical

direction. The minus sign indicates that component at P is directed downward. By

Newton’s second law, the resultant of these two forces is equal to the mass ρ∆x of the

portion times the acceleration utt, evaluated at some point between x and x+∆x. If ρ is

the mass of the undeflected string per unit length and ∆x is length of the portion of the

undeflected string then we have

T2 sin θ2 − T1 sin θ1 = ρ∆xutt.

Unit 18
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In view of (1), we obtain

T2 sin θ2
T2 cos θ2

− T1 sin θ1
T1 cos θ1

= tan θ2 − tan θ1 =
ρ∆x

T
utt. (2)

Note that tan θ1 and tan θ2 are the slopes of the curve of the string at x and x+∆x, i,e.,

tan θ1 = (ux)P , tan θ2 = (ux)Q.

Here, partial derivatives are used because u also depends on t. Dividing (2) by ∆x, we

have
1

∆x
[ux(x+∆x, t)− ux(x, t)] =

ρ

T
utt.

Letting ∆x→ 0, we obtain

utt = c2uxx, (3)

where c2 = T
ρ .

NOTE: The notation c2 (instead of c) for the physical constant T/ρ has been chosen to

indicate that this constant is positive. The constant c2 depends on the density and tension

of the string.

As the problem is linear, it is enough to prove the uniqueness of solution. The unique-

ness result is proved in the following theorem.

THEOREM 1. Let u1(x, t) and u2(x, t) be two solutions of

PDE: utt = c2uxx, 0 ≤ x ≤ L, −∞ < t <∞,

BC: u(0, t) = a(t), u(L, t) = b(t),

IC: u(x, 0) = f(x), ut(x, 0) = g(x).

Then u1(x, t) = u2(x, t) for all 0 ≤ x ≤ L, −∞ < t <∞.

Proof. Let v(x, t) = u1(x, t)− u2(x, t). Note that v satisfies

vtt = c2vxx, 0 ≤ x ≤ L, −∞ < t <∞,

v(0, t) = 0, v(L, t) = 0,

v(x, 0) = 0, vt(x, 0) = 0.

with homogeneous BC and IC. Observe that v(x, 0) = 0 and vt(x, 0) = 0. We need to

show that v(x, t) = 0 for all t. We write

v(x, t) = v(x, t)− v(x, 0) =

∫ t

0
vt(x, t)dt. (4)
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We now claim that vt(x, t) = 0 for all x in [0, L] and for all t. Construct the function

H(t) =

∫ L

0
{c2v2x(x, t) + v2t (x, t)}dx. (5)

Differentiating with respect to t and using vtt = c2vxx, we obtain

H ′(t) =

∫ L

0
{c22vxvxt + 2vtvtt}dx

= 2c2
∫ L

0
{vxvxt + vtvxx}dx

= 2c2
∫ L

0

∂

∂x
(vxvt)dx

= 2c2{vx(x, t)vt(x, t)}
∣∣L
0

= 0,

where in the last step we have used vt(0, t) = d
dtv(0, t) = 0 and, similarly vt(L, t) = 0.

Thus,

H ′(t) = 0 =⇒ H(t) = C,

where C is an arbitrary constant. Since H(0) = 0, we have C = 0 and, hence H(t) = 0.

Thus, (5) becomes ∫ L

0
{c2v2x(x, t) + v2t (x, t)}dx = 0

=⇒ vt(x, t) = 0 ∀x ∈ [0, L], ∀t ∈ R.

In view of (4), we obtain

v(x, t) =

∫ t

0
vt(x, t)dt = 0 =⇒ u1(x, t) = u2(x, t).

This completes the proof.
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Lecture 2 The Infinite String Problem

In this lecture, we shall show that the solution of the wave equation

utt = c2uxx

can be immediately obtained with suitable transformation of the independent variables.

We shall derive D’Alembert formula for the solution of the wave equation for an infinite

string (−∞ < x <∞) with IC u(x, 0) = f(x) and ut(x, 0) = g(x).

Consider the following IVP:

PDE: utt = c2uxx, −∞ < x <∞, t ≥ 0, (1)

IC: u(x, 0) = f(x) (initial displacement), (2)

ut(x, 0) = g(x) (initial velocity).

Step 1.(Transforming to its canonical form): Introducing the transformation

ξ = x+ ct η = x− ct,

we note that

ux = uξξx + uηηx = uξ + uη.

uxx = (uξ + uη)x

= (uξ + uη)ξξx + (uξ + uη)ηηx

= uξξ + 2uξη + uηη.

Similarly,

utt = c2(uξξ − 2uξη + uηη).

Substituting the expression for uxx and utt in utt = c2uxx yields

uξη = 0, (3)

which is known as canonical form of (1).

Step 2. (Solving the transformed equation (3)): Integrate (3) with respect to ξ to have

uη(ξ, η) = Φ(η) + ψ(ξ),
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where Φ(η) is the antiderivative of ϕ(η), and ψ(ξ) is any function of ξ. Thus, the general

solution of uξη = 0 is

u(ξ, η) = ϕ(η) + ψ(ξ), (4)

where ϕ(η), ψ(ξ) are arbitrary functions of η and ξ, respectively.

Step 3. (Transforming back to the original variables x and t): Substituting ξ = x + ct

and η = x− ct in (4) we get

u(x, t) = ϕ(x− ct) + ψ(x+ ct). (5)

This is the general solution of the wave equation. We may interpret (5) as the sum of any

two moving waves, each moving in opposite directions with velocity c.

Step 4. (Applying IC to the general solution): In order to solve IVP (1)-(2), the general

solution u(x, t) is required to satisfy the two initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x).

These conditions lead to the following equations:

ϕ(x) + ψ(x) = f(x) (6)

−cϕ′(x) + cψ′(x) = g(x). (7)

Integrating (7) from x0 to x, we obtain

−cϕ(x) + cψ(x) =

∫ x

x0

g(τ) dτ +K. (8)

Solving for ϕ(x) and ψ(x) from (6) and (8), we obtain

ϕ(x) =
1

2
f(x)− 1

2c

∫ x

x0

g(τ) dτ (9)

ψ(x) =
1

2
f(x) +

1

2c

∫ x

x0

g(τ) dτ (10)

Thus, the solution to IVP (1)-(2) is given by

u(x, t) =
1

2
[f(x− ct) + f(x+ ct)] +

1

2c

∫ x+ct

x−ct
g(τ) dτ. (11)

The equation (11) is known as D’Alembert solution to the IVP (1)-(2). This formula is

of great interest in itself, and it avoids the problem of convergence of infinite series in the

Fourier series approach.
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REMARK 1. D’Alembert’s formula yields a number of properties of solutions of the wave

problem for the infinite string.

• Disturbances propagate with speed c.

The value u(x0, t0) depends only on the values of g in the interval [x0− ct0, x0+ ct0]
and on the values of f at the endpoints of this interval. Geometrically, this is the

interval cut out by the characteristic lines that pass through the point (x0, t0). The

interval [x0 − ct0, x0 + ct0] is called the interval of dependence for the point (x0, t0)

(since u(x0, t0) depends only on the values u(x, 0) and ut(x, 0) for x in this interval).

• Odd initial data yields odd solution and even initial data yields even solution.

If f(x) and g(x) are odd, then u(x, t) is odd in the x-variable, since

u(−x, t) =
1

2
[f(−x+ ct) + f(−x− ct)] +

1

2c

∫ −x+ct

−x−ct
g(r) dr

=
1

2
[−f(x− ct)− f(x+ ct)]− 1

2c

∫ x−ct

x+ct
g(−s)ds

= −1

2
[f(x− ct) + f(x+ ct)] +

1

2c

∫ x−ct

x+ct
g(s)ds

= −1

2
[f(x+ ct) + f(x− ct)]− 1

2a

∫ x+ct

x−ct
g(s)ds

= −u(x, t).

Similarly, we can show that if f(x) and g(x) are even then u(x, t) is even i.e.,

u(−x, t) = u(x, t).

• Periodic initial data yield periodic solutions.

If f(x+ 2L) = f(x) and g(x+ 2L) = g(x), then u(x+ 2L, t) = u(x, t). That is, if f

and g are periodic of period 2L then u(x, t) is also periodic of period 2L in x. This

follows easily from D’Alembert’s formula. This fact is useful in dealing with finite

strings.

It can be shown that if f(x) and g(x) are periodic of period 2L and∫ L

−L
g(x)dx = 0,

then u(x, t) is not only periodic in x of period 2L, but also periodic in t of period

2L/c.
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Special cases of D’Alembert’s formula:

CASE I. (Initial velocity zero). Suppose the string has IC

u(x, 0) = f(x)

ut(x, 0) = 0.

The D’Alembert solution is

u(x, t) =
1

2
[f(x− ct) + f(x+ ct)].

Thus, the solution u at a point (x0, t0) can be interpreted as the average of the initial

displacement f(x) at a point (x0 − ct0, 0) and (x0 + ct0, 0) found by backtracking the

characteristic curves x− ct = x0 − ct0 and x+ ct = x0 + ct0.

CASE 2. (Initial displacement zero) Suppose the string has the following IC:

u(x, 0) = 0

ut(x, 0) = g(x).

In this case, the solution is

u(x, t) =
1

2c

∫ x+ct

x−ct
g(τ) dτ.

The solution u at (x, t) may be interpreted as integrating the initial velocity between x−ct
and x+ ct on the initial line t = 0.

Let us consider the following examples.

EXAMPLE 2. (Zero initial velocity) Solve the IVP:

PDE: utt = c2uxx, −∞ < x, t <∞,

IC: u(x, 0) = sin(x),

ut(x, 0) = 0.

Solution: Applying D’Alembert’s formula (11) with f(x) = sin(x) and g(x) = 0, we

obtain

u(x, t) =
1

2
[sin(x− ct) + sin(x+ ct)] .

EXAMPLE 3. (Zero initial displacement) Consider the IVP:

PDE: utt = c2uxx, −∞ < x, t <∞

I.C. u(x, 0) = 0,

ut(x, 0) = sin(x).
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Solution: Here the string is initially straight (u(x, 0) = 0), but has a variable velocity

at t = 0 (ut(x, 0) = sin(x)). Thus, applying D’Alembert’s formula (11) with f(x) = 0 and

g(x) = sin(x), we obtain

u(x, t) =
1

2c

∫ x+ct

x−ct
sin(τ)dτ = − 1

2c
[cos(x+ ct)− cos(x− ct)] .

Practice Problems

1. Solve the following IVP:

utt = 9uxx, −∞ < x <∞, t > 0,

u(x, 0) = sinx, ut(x, 0) = cosx, −∞ < x <∞.

2. Solve the following IVP:

utt = c2uxx, −∞ < x <∞, t > 0,

u(x, 0) = 0, ut(x, 0) = sin2(x), −∞ < x <∞.

3. Let u(x, t) be the solution of

utt = c2uxx, 0 < x <∞, t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x), −∞ < x <∞.

Use D’Alembert’s formula to show that u is even in x.
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Lecture 3 The Semi-Infinite String Problem

Before we introduce the semi-infinite string problem, let us look at some special cases of

D’Alembert’s formula derived in the previous lecture.

EXAMPLE 1. Consider the problem for the semi-infinite string (0 ≤ x < ∞) with fixed

end at x = 0:

PDE: utt = c2uxx, 0 ≤ x <∞, −∞ < t <∞

BC: u(0, t) = 0

IC: u(x, 0) = f(x), ut(x, 0) = 0.

Solution. Note that f(x) is defined for x ≥ 0. Consider the odd extension f0(x),

−∞ < x <∞ as follows:

f0(x) =

{
f(x) for x ≥ 0,

−f(−x) for x ≤ 0.

The related extended problem is

PDE: utt = c2uxx, −∞ ≤ x, t <∞

I.C. u(x, 0) = f0(x), ut(x, 0) = 0.

By D’Alembert’s formula, the solution of this problem is

u(x, t) =
1

2
[f0(x+ ct) + f0(x0 − ct)].

Note that u(x, t) is odd in x, since f0(x) is odd. Thus, u(0, t) = 0 and so u(x, t) satisfies

the BC.

Moreover,

u(x, 0) =
1

2
[f0(x+ c · 0) + f0(x− c · 0)] = f0(x),

which is the same as f(x) when x ≥ 0.

Semi-infinite string problem: We shall find the solution of the following wave equation

whose left end fixed at zero and has given initial conditions:

PDE: utt = c2uxx, 0 < x <∞, 0 < t <∞

BC: u(0, t) = 0, 0 < t <∞,

IC: u(x, 0) = f(x), ut(x, 0) = 0, 0 < x <∞.
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Recall that the solution of the PDE (1) is given by (see (5), Lecture 2 of this module)

u(x, t) = ϕ(x− ct) + ϕ(x+ ct). (1)

Substitute the general solution into the initial conditions, we arrive at (cf. (9)-(10), Lecture

2 of this module)

ϕ(x− ct) =
1

2
f(x− ct)− 1

2c

∫ x−ct

x0

g(ξ) dξ. (2)

ψ(x+ ct) =
1

2
f(x+ ct) +

1

2c

∫ x+ct

x0

g(ξ) dξ. (3)

Since we are looking for the solution u(x, t) everywhere in the first quadrant (x > 0, t > 0)

of the xt-plane, we must find ϕ(x−ct) ∀ −∞ < x−ct <∞ and ψ(x+ct) ∀ 0 < x+ct <∞.

Using (1), (2) and (3), for x− ct ≥ 0, it follows that

u(x, t) = ϕ(x− ct) + ψ(x+ ct)

=
1

2
[f(x− ct) + f(x+ ct)] +

1

2c

∫ x+ct

x−ct
g(ξ)dξ.

When x < ct, use of BC u(0, t) = 0 leads to

ϕ(−ct) = −ψ(ct)

and hence,

ϕ(x− ct) = −1

2
f(ct− x)− 1

2c

∫ ct−x

x0

g(ξ) dξ +K.

Substituting this value of ϕ into the general solution

u(x, t) = ϕ(x− ct) + ψ(x+ ct).

yields

u(x, t) =
1

2
[f(x+ ct)− f(ct− x)] +

1

2c

∫ x+ct

ct−x
g(ξ) dξ, 0 < x < ct.

Thus, for x < ct and x > ct, we have

u(x, t) =

{
1
2 [f(x− ct) + f(x+ ct)] + 1

2c

∫ x+ct
x−ct g(ξ) dξ x ≥ ct

1
2 [f(x+ ct)− f(ct− x)] + 1

2c

∫ x+ct
ct−x g(ξ) dξ x < ct.

EXAMPLE 2. Find the solution of the following IBVP:

utt = uxx, 0 < x <∞, t > 0,

u(x, t) = 0, t > 0,

u(x, 0) = | sinx|, ut(x, 0) = 0, 0 < x <∞.
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Solution. For x > t,

u(x, t) =
1

2
(f(x+ t) + f(x− t))

=
1

2
(| sin(x+ t)|+ | sin(x− t)|).

For x < t,

u(x, t) =
1

2
(f(x+ t)− f(t− x))

=
1

2
(| sin(x+ t)| − | sin(t− x)|).

Observe that u(0, t) = 0 is satisfied by u(x, t) for x < t. Thus,

u(x, t) =

{
1
2(| sin(x+ t)|+ | sin(x− t)|) x > t
1
2(| sin(x+ t)| − | sin(t− x)|) x < t.

Practice Problems

1. Solve the following IBVP:

utt = uxx, 0 < x <∞, t > 0,

ux(0, t) = 0, t ≥ 0,

u(x, 0) = cosx, ut(x, 0) = 0, 0 ≤ x <∞.

2. Solve the following IBVP:

utt = c2uxx, 0 < x <∞, t > 0,

u(0, t) = 0, t ≥ 0,

u(x, 0) = x2, ut(x, 0) = 0, 0 ≤ x <∞.
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Lecture 4 The Finite Vibrating String Problem

In this lecture, we shall study the transverse vibrations of a finite string. If u(x, t) repre-

sents the displacement (deflection) of the string and the ends of the string are held fixed,

then the motion of the string is described by the following initial-boundary value problem

(IBVP):

PDE: utt = c2uxx, 0 < x < L, 0 < t <∞, (1)

BC: u(0, t) = 0; u(L, t) = 0, 0 < t <∞. (2)

IC: u(x, 0) = f(x); ut(x, 0) = g(x), 0 ≤ x ≤ L. (3)

While studying the wave equation in a bounded region of space 0 < x < L, it is to be

noted that the waves no longer appear to be moving due to their repeated interaction with

boundaries. These waves are known as standing waves (e.g., a guitar string fixed at both

ends). The boundary condition in (2) reflect the fact the string is held fixed at the two

end points x = 0 and x = L.

We shall apply the method of separation of variables to solve this problem.

Step 1. (Reducing to a system of ODEs): We seek solutions of the form

u(x, t) = X(x)T (t). (4)

Substituting (4) into utt = c2uxx and separating variables, we get

X(x)T ′′(t) = c2X ′′(x)T (t).

or

T ′′(t)

c2T (t)
=
X ′′(x)

X(x)
= k,

where the constant k can now be any number −∞ < k <∞. This leads to two ODEs:

T ′′(t)− c2kT (t) = 0,

X ′′(x)− kX(x) = 0.

(5)

(6)

The ODE X ′′ − kX = 0 is solved for X(x) in a manner similar to that of heat equation

(see, Lecture 3 of Module 5), but the solution of the ODE T ′′ − c2kT = 0 for T (t) are

different, because of the second-order time derivative.

Step 2. (Solving the ODEs): Investigating the solutions of these two ODEs for all different

values of k lead into the following cases.

Unit 19
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Case I : Let k > 0. Set k = λ2. The soultions are given by

T (t) = Ae(cλ)t +Be−(cλ)t,

X(x) = Ce(λ)x +De−(λ)x.

Application of BC yields u ≡ 0.

Case II : Let k = 0. In this case, the solutions are linear and given by

T (t) = At+B, X(x) = Cx+D.

This case is of no interest because use of BC yields trivial solution u ≡ 0. Hence, for

nontrival solution, we are left with the possibility of choosing k < 0.

Case III : Let k < 0. Set k = −λ2 for some λ ∈ R and λ ̸= 0.

The solutions of T ′′(t) + c2λT (t) = 0 is given by

T (t) = A sin(cλt) +B cos(cλt).

The solutions of X ′′(x) + λ2X(x) = 0 is

X(x) = C sin(λx) +D cos(λx),

where A,B,C and D are constants. Then

u(x, t) = [A sin(cλt) +B cos(cλt)][C sin(λx) +D cos(λx)].

Our goal is to find the constants A, B, C and D and the negative separation constant λ

so that the expression

u(x, t) = [C sin(λx) +D cos(λx)][A sin(cλt) +B cos(cλt)] (7)

satisfies the BC. As u(x, t) has to satisfy the BC (2), substituting (7) into u(0, t) =

u(L, t) = 0 gives

u(0, t) = X(0)T (t) = D[A sin(cλt) +B cos(cλt)] = 0

=⇒ D = 0.

u(L, t) = 0 =⇒ X(L)T (t) = 0

= C sin(λL)[A sin(cλt) +B cos(cλt)] = 0

=⇒ sin(λL) = 0

=⇒ λL = nπ, n = 0, 1, 2, . . .

or λn =
nπ

L
, n = 0, 1, 2, . . . .

123



MODULE 6: THE WAVE EQUATION 15

Note that the choice of C = 0 in (7) would lead to X(x)T (t) = 0. Thus, the sequence of

solutions given by

un(x, t) = Xn(x)Tn(t)

= sin(
nπx

L
)

[
an sin(

nπct

L
) + bn cos(

nπct

L
)

]
, n = 1, 2, 3, · · ·

As the PDE is linear, by superposition principle we write

u(x, t) =
∞∑
n=1

sin(
nπx

L
)

[
an sin(

nπct

L
) + bn cos(

nπct

L
)

]
. (8)

These solutions are called eigenfunctions and the values λn = nπ
L are called the eigenvalues

of the vibrating string.

Step 3. (Applying IC): Substituting (8) into IC u(x, 0) = f(x), ut(x, 0) = g(x) yields the

two equations:

∞∑
n=1

bn sin(
nπx

L
) = f(x),

∞∑
n=1

an(
nπc

L
) sin(

nπx

L
) = g(x),

which represent the Fourier sine expansion of f(x) and g(x), respectively. The coefficients

an and bn are given by

an =
2

nπc

∫ L

0
g(x) sin(

nπx

L
)dx, (9)

bn =
2

L

∫ L

0
f(x) sin(

nπx

L
)dx. (10)

Thus, the solution is

u(x, t) =
∞∑
n=1

sin(
nπx

L
)

[
an sin(

nπct

L
) + bn cos(

nπct

L
)

]
, (11)

where an and bn are given by (9) and (10), respectively.

REMARK 1. • The function u(x, t) given by (11) with coefficients (9) and (10), is a

solution of (1) that satisfies the conditions (2) and (3), provided that the series (11)

converges and also that the series obtained by differentiating (11) twice (term-wise)

with respect to x and t, converge and have the sums uxx and utt, respectively, which

are continuous.
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• Note that each un in (8) represents a harmonic motion having the frequency λn/2π =

cn/2L cycles per unit time. This motion is called the nth normal mode of the string.

The first normal mode is known as the fundamental mode (n = 1), and the others

are known as overtones.

Practice Problems

1. Solve the following IBVP:

utt = uxx, 0 < x < 1, t > 0,

u(0, t) = u(1, t) = 0, t > 0,

u(x, 0) = x(1− x), ut(x, 0) = 0, 0 ≤ x ≤ 1.

2. Solve the following IBVP:

utt = 4uxx, 0 < x < π, t > 0,

u(0, t) = u(π, t) = 0, t > 0,

u(x, 0) = 0, ut(x, 0) = sinx, 0 ≤ x ≤ π.

125



MODULE 6: THE WAVE EQUATION 17

Lecture 5 The Inhomogeneous Wave Equation

Recall the Duhamel’s principle for inhomogeneous heat equations that arises due to in-

ternal heat sources. We solve the inhomogeneous heat equation by solving a family of

related problems in which the sources appears in the initial conditions instead of the dif-

ferential equation. The same idea works for inhomogeneous wave equations. To illustrate

the procedure, let us consider the following infinite string problem:

PDE: utt = c2uxx + h(x, t), −∞ < x, t <∞, (1)

IC: u(x, 0) = 0, ut(x, 0) = 0. (2)

To motivate the method of Duhamel for the string problem, let the acceleration h(x, s) be

applied to the string at t = s −∆s and let the acceleration be turned off at t = s. The

string will then acquire a velocity of h(x, s)∆s, and its position change is h(x, s)(∆s)2/2.

Assuming ∆s to be small enough, the change in position can be neglected. The effect of

the imposed acceleration is v(x, t; s)∆s, where v(x, t; s) is the solution of

PDE: vtt = c2vxx, −∞ < x <∞, t ≥ s, (3)

IC: v(x, s; s) = 0, vt(x, s; s) = h(x, s). (4)

This problem has initial conditions given at the arbitrary time t = s, instead of t = 0. We

can write v(x, t; s) = ṽ(x, t− s; s), where ṽ(x, t; s) solves

PDE: ṽtt = c2ṽxx, −∞ < x <∞, t ≥ 0 (5)

IC: ṽ(x, s; s) = 0, ṽt(x, s; s) = h(x, s). (6)

By D’Alembert’s formula, the solution of (5) is given by

ṽ(x, t; s) =
1

2c

∫ x+ct

x−ct
h(r, s)dr, (7)

and hence, the solution of (3) is

v(x, t; s) = ṽ(x, t− s; s) =
1

2c

∫ x+c(t−s)

x−c(t−s)
h(r, s)dr.

THEOREM 1. (Duhamel’s principle for the wave equation[1]) Let h(x, t) be a C1

function, −∞ < x, t < ∞. Then the unique solution of the problem (1) satisfying the

conditions (2) is given by

u(x, t) =

∫ t

0
v(x, t; s)ds =

∫ t

0
ṽ(x, t− s; s)ds =

1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
h(r, s)drds. (8)
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Proof. By D’Alembert’s formula, we know

ṽ(s, t; s) =
1

2c

∫ x+ct

x−ct
h(r, s)ds.

Note that ṽ(s, t; s) is in C2 since h(x, t) is assumed to be in C1. Differentiate twice with

respect to t to obtain

ut(x, t) = ṽ(x, 0; s) +

∫ t

0
ṽt(x, t− s; s)ds =

∫ t

0
ṽt(x, t− s; s)ds, (9)

and

utt(x, t) = ṽt(x, 0; t) +

∫ t

0
ṽtt(x, t− s; s)ds

= h(x, t) +

∫ t

0
c2ṽxx(x, t− s; s)ds

= h(x, t) + c2uxx(x, t),

where we have used (5). This shows that u(x, t) is a C2 solution of (1). By (8), we have

u(x, 0) = 0. The equation (9) yields ut(x, 0) = 0.

To prove the uniqueness, let u1 and u2 be two solutions of (1)-(2). Now, the function

v = u1 − u2 satisfies vtt = c2vxx with IC v(x, 0) = 0 and vt(x, 0) = 0. Hence, v ≡ 0 =⇒
u1 = u2. This completes the proof.

EXAMPLE 2. Solve

PDE: utt − uxx = x− t, −∞ < x, t <∞, (10)

IC: u(x, 0) = x4, ut(x, 0) = sin(x).

Solution. Splitting the problem (10) into two problems with u1(x, t) and u2(x, t)

solve
(u1)tt − (u1)xx = 0,

u1(x, 0) = x4,

(u1)t(x, 0) = sin(x),

and
(u2)tt − (u2)xx = x− t,

u2(x, 0) = 0,

(u2)t(x, 0) = 0.

respectively. The solution of (8) is then u(x, t) = u1(x, t) + u2(x, t). By D’Alembert’s

formula

u1(x, t) =
1

2
[(x+ t)4 + (x− t)4]− 1

2
[cos(x+ t)− cos(x− t)].
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Applying Theorem 1 we compute u2(x, t) as follows:

u2(x, t) =
1

2

∫ t

0

∫ x+(t−s)

x−(t−s)
(r − s)drds =

1

2

∫ t

0

[
r2

2
− sr

]x+t−s

x−t+s

ds

=
1

2

∫ t

0

[
(x+ t− s)2

2
− (x+ s− t)2

2
− s(x+ t− s) + s(x+ s− t)

]
ds

=
1

2

∫ t

0

[
2s2 − 2s(x+ t) +

(x+ t)2

2
− (x− t)2

2

]
ds

=
t3

3
− t2(x+ t)

2
+ t2x = − t

3

6
+
t2x

2
.

The solution u(x, t) = u1(x, t) + u2(x, t) can easily be verified.

REMARK 3. Duhamel’s principle also applies in the case of a finite string. As in Example

2, one can handle the case where both the differential equation and BC are inhomogeneous.

This is done by splitting the problem into two parts and then adding the solutions of the

two parts to obtain the desired solution.

Practice Problems

1. Solve the following nonhomogeneous IBVP:

utt = uxx + x sin t, 0 < x < 1, t > 0,

u(x, 0) = x(1− x), ut(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0, t > 0.

2. Solve the following nonhomogeneous IBVP:

utt = uxx + 2, 0 < x < 1, t > 0,

u(x, 0) = x, ut(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = 0, ux(1, t) = t, t ≥ 0.
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Lecture 1 Basic Concepts and The Maximum/Minimum

Principle

Let Ω be an open region in R2. The Laplace equation in two dimension is of the form

∇2u(x, y) = 0, (x, y) ∈ Ω, (1)

where ∇2 := ∂2

∂x2 +
∂2

∂x2 is the Laplace operator or the Laplacian. The equation of the type

(1) plays an important role in a variety of physical contexts such as in Gravitation theory,

electrostatics, steady-state heat conduction problems and fluid flow problems.

Some examples of physical problems(cf. [10]):

EXAMPLE 1. (Gravitation theory) The force of attraction F , both inside and outside the

attracting matter, can be expressed in terms of a gravitational potential u by the equation

F = ∇u.

In empty space u satisfies Laplace’s equation

∇2u = 0.

EXAMPLE 2. (Steady-state heat flow problem) In the theory of heat conduction if the

temperature u does not vary with the time, then u satisfies the equation

∇ · (κ∇u) = 0,

where κ is the thermal conductivity. If κ is a constant throughout the medium then

∇2u = 0.

EXAMPLE 3. (Fluid flow problem) The velocity q of a perfect fluid in irrotational motion

can be expressed in terms of a velocity potential u by the equation

q = −∇u.

If there are no sources or sinks at all points of the fluid the function u satisfies Laplace’s

equation

∇2u = 0.

The inhomogeneous Laplace equation

∇2u(x, y) = f(x, y) in Ω,

where f is a given function is known as the Poisson equation.

Unit 20
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1 Types of BVP

Because these solutions do not depend on time, initial conditions are irreverent and only

boundary conditions are specified. There are three basic types of boundary conditions

that are usually associated Laplace’s equation. They are

• Dirichlet BVP: If the BC are of Dirichlet type i.e., if the solution u(x, y) to Laplace

equation in a domain Ω is specified on the boundary ∂Ω i.e.,

u(x, y) = f(x, y) on ∂Ω,

where f(x, y) is a given function. The Laplace equation together with Dirichlet BC

are called the Dirichlet problem / Dirichlet BVP. The Dirichlet problem for

Laplace equation is of the form

∇2u(x, y) = 0 in Ω; u(x, y) = f(x, y) on ∂Ω.

• Neumann BVP: We know the BC are of Neumann type if the directional derivative
∂u
∂n along the outward normal to the boundary is specified on ∂Ω i.e.,

∂u

∂n
(x, y) = g(x, y) for (x, y) ∈ ∂Ω.

In physical terms, the normal component of the solution gradient is known on the

boundary. In steady-state heat flow problem, Neumann BC means the rate of heat

loss or gain through the boundary points is prescribed.

The Laplace equation together with Neumann BC are called the Neumann BVP/

Neumann problem which is written as

∇2u = 0 in Ω;
∂u

∂n
(x, y) = g(x, y) for (x, y) ∈ ∂Ω.

The Neumann problem will have no solution unless we assume that the average

value of the function g on ∂Ω is zero. This assumption is known as the compatibility

condition ∫
∂Ω

∂u

∂n
=

∫
∂Ω
g = 0,

which will be discussed in the next lecture.

• Robin’s BVP. The boundary conditions are called Robin’s type or mixed type if

Dirichlet BC are specified on part of the boundary ∂Ω and Neumann type BC are

specified on the remaining part of the boundary ∂Ω. For example,

∂u

∂n
+ c(u− g) = 0,
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where c is a constant and g is a given function that can vary over the boundary. The

Laplace equation together with the Rabin’s/Mixed BC known as Rabin’s BVP /

Mixed BVP.

2 The maximum/minimum principle

The maximum/minimum principle for Laplace’s equation is stated in the following theo-

rem.

THEOREM 4. (The maximum/minimum principle for Laplace’s equation)

Let u(x, y) ∈ C2(Ω) ∩ C(Ω̄) be a solution of Laplace’s equation

∇2u(x, y) := uxx + uyy = 0 (2)

in a bounded region Ω with boundary ∂Ω. Then the maximum and minimum values of u

attain on ∂Ω. That is,

max
Ω̄

u(x, y) = max
∂Ω

u(x, y); and min
Ω̄
u(x, y) = min

∂Ω
u(x, y).

Proof. Since u is continuous in Ω̄ it attains its maximum either in Ω or on ∂Ω.

Suppose u achieves its maximum at some point (x0, y0) ∈ Ω. Let

u(x0, y0) = max
Ω

u(x, y) =M0 > Mb,

where Mb = max∂Ω u(x, y). Consider the function

v(x, y) = u(x, y) + ϵ[(x− x0)
2 + (y − y0)

2], (3)

for some ϵ > 0. Note that v(x0, y0) = u(x0, y0) =M0 and

max
∂Ω

v(x, y) ≤Mb + ϵd2,

where d is the diameter of Ω. For such ϵ (0 < ϵ < (M0 −Mb)/d
2), the maximum of v can

not occur on ∂Ω because

M0 = v(x0, y0) > max
∂Ω

v(x, y).

This implies there may be points in Ω where v > M0. Let

v(x1, y1) = max
Ω

v(x, y).

At (x1, y1), we must have

vxx ≤ 0 and vyy ≤ 0 =⇒ vxx + vyy ≤ 0. (4)
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From (3), we observe that

vxx + vyy = uxx + uyy + 2ϵ+ 2ϵ = 4ϵ > 0,

where we have used the fact that uxx + uyy = 0. This led to a contradiction to (4). Thus,

max
Ω̄

v(x, y) ̸= max
Ω

v(x, y).

So, the maximum of u attains on ∂Ω.

To prove that the minimum of u is also achieved on the boundary ∂Ω, replace u by

−u in the above argument to obtain

min
Ω̄
u = max

Ω̄
(−u) = max

∂Ω
(−u) = min

∂Ω
(u).

This completes the proof.

We now discuss the maximum and minimum principle for Poisson’s equation

∇2u(x, y) = f(x, y) in Ω. (5)

THEOREM 5. (The maximum/minimum principle for Poisson’s equation)

Let Ω be a bounded domain in R2 with boundary ∂Ω. Then the maximum values of a

solution u of (5) attain on ∂Ω if f(x, y) > 0 in Ω and the minimum values of u occur on

∂Ω if f(x, y) < 0 in Ω.

Proof. Since u is continuous in a closed and bounded domain, it must assume its

maximum in Ω or in ∂Ω. Suppose that the maximum is assumed at a point (x0, y0) in Ω,

i.e.,

u(x0, y0) = max
Ω̄

u(x, y).

Suppose that f(x, y) > 0 in Ω. Then at (x0, y0) ∈ Ω, we must have

uxx(x0, y0) ≤ 0, uyy(x0, y0) ≤ 0.

As f > 0, it follows from (5) that

uxx + uyy > 0,

which is a contradiction. Hence, the maximum of u(x, y) must occur on ∂Ω.

To show that the minimum of u(x, y) attains on ∂Ω if f(x, y) < 0 in Ω, replace u

by −u in the preceding argument. This is equivalent to replacing f by −f in (4). Since

f < 0, we obtain −f > 0 and conclude that −u assumes its maximum on ∂Ω. Therefore,

u assumes its minimum on ∂Ω and this completes the proof.

The maximum/minimum principle can be used to prove uniqueness and continuous

dependence of the solution for the Dirichlet’s problems.
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THEOREM 6. Let Ω be a bounded domain in R2 with boundary ∂Ω. The solution of the

Dirichlet’s problem

∇2u(x, y) = −f(x, y) in Ω, u(x, y) = g(x, y) on ∂Ω (6)

if it exists, is unique.

Proof. Let u1(x, y) and u2(x, y) be two solutions of (6). Set v(x, y) = u1(x, y) −
u2(x, y). Then v satisfies

∇2v = 0 in Ω, v = 0 on ∂Ω.

The maximum/minimum principle yields (cf. Theorem 4)

v = 0 in Ω =⇒ u1 − u2 = 0 in Ω.

Thus, we have

u1 = u2,

which proves the uniqueness.

Next, we shall prove the continuous dependence of the solution on the boundary data.

THEOREM 7. The solution of the Dirichlet problem depends continuously on the boundary

data.

Proof. Let ui, i = 1, 2 be the solutions of

∇2ui = F in Ω ⊂ R2, ui = fi on ∂Ω.

Then the function v = u1 − u2 solves

∇2v = 0 in Ω with v = f1 − f2 on ∂Ω.

By the maximum/minimum principle v attains its maximum/minimum on ∂Ω. Thus, for

all (x, y) ∈ Ω̄, we have

−max
∂Ω

(|f1 − f2|) ≤ min
∂Ω

(f1 − f2) ≤ v(x, y) ≤ max
∂Ω

(f1 − f2) ≤ max
∂Ω

(|f1 − f2|).

If |f1 − f2| < ϵ then

−ϵ < min
Ω̄
v(x, y) ≤ v(x, y) ≤ max

Ω̄
v(x, y) < ϵ.

Therefore,

|f1 − f1| < ϵ =⇒ |v(x, y)| < ϵ

for all (x, y) ∈ Ω̄. This completes the proof.
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Practice Problems

1. Let u satisfy the Laplace equation in a disk Ω = {(x, y) | x2+y2 < 1} and continuous

on Ω̄. If u(cos θ, sin θ) ≤ sin θ + cos(2θ), then show that

u(x, y) ≤ y + x2 − y2, ∀ (x, y) ∈ Ω̄.

2. Consider the elliptic equation

∇ · (α∇u) = −F, α > 0,

in a bounded region Ω ⊂ R2 with the boundary ∂Ω. Show that if F < 0 in Ω, the

solution u assumes its maximum on ∂Ω and if F > 0 in Ω, the solution u assumes

its minimum on ∂Ω.

3. Let Ω be a bounded region R2. Use the maximum principle to prove continuous

dependence on the data for the Dirichlet problem for the elliptic equation

∇ · (α∇u) = −F in Ω

with α > 0.
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Lecture 2 Green’s Identity and Fundamental Solutions

In this lecture, we shall learn about some important identities known as Green’s identities

and its special forms. As a consequence of these identities we can prove the uniqueness of

the solution to the Dirichlet problem and the compatibility conditions for the Neumann

problems. The fundamental solutions for the Laplace equation will be discussed.

Let Ω be bounded domain in R2 with smooth boundary ∂Ω. Recall the following

Gauss divergence theorem: For u, v ∈ C1(Ω)∫
Ω
v
∂u

∂xk
dx =

∫
∂Ω
vu · nds−

∫
Ω
u
∂v

∂xk
dx, (1)

where n is the outward unit normal the boundary ∂Ω and ds is the element of arc length.

As a consequence of Gauss divergence theorem, the following identity known as Green’s

identity hold true: ∫
Ω
v∇2udx =

∫
∂Ω
v
∂u

∂n
ds−

∫
Ω
∇u · ∇vdx. (2)

Integrating the second term of the right hand side once more by parts we obtain∫
Ω
v∇2udx =

∫
Ω
u∇2vdx+

∫
∂Ω

(
v
∂u

∂n
− u

∂v

∂n

)
ds. (3)

Here, ∂
∂n indicates differentiation in the direction of the exterior normal to ∂Ω.

From the identity (2), the special case v = 1 yields∫
Ω
∇2udx =

∫
∂Ω

∂u

∂n
ds. (4)

Another special case of interest by choosing v = u. In this case, the equation (2) yields

the energy identity ∫
Ω
|∇u|2dx+

∫
Ω
u∇2udx =

∫
∂Ω
u
∂u

∂n
ds. (5)

If ∇2u = 0 in Ω then for u ∈ C2(Ω̄), it follows that∫
Ω
|∇u|2dx = 0

=⇒ ∇u = 0

=⇒ u = constant.

This observation leads to uniqueness theorems for the Dirichlet problem and the Neumann

problem.
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REMARK 1. Using Green’s identity (2), one can easily prove that:

(i) A solution u ∈ C2(Ω̄) of the Dirichlet problem is determined uniquely.

(ii) A solution u ∈ C2(Ω̄) of the Neumann problem is determined uniquely within an

additive constant.

Observe that the solution of the Neumann problem can only exist if the data satisfy

the condition known as compatibility condition. For example, the compatibility condition

for the Neumann problem:

∇2u = 0 in Ω,
∂u

∂n
= g on ∂Ω

is ∫
∂Ω
gds = 0,

which immediately follows from the identity (4).

Fundamental Solutions: One of the principal features of the Laplace equation

∇2u = 0 (6)

is its spherical symmetry. The Laplace equation is preserved under rotations about a point

ξ. Therefore, it is reasonable to assume that there exist special solutions v(x) of (6) that

are invariant under rotations about ξ. Such solutions would be of the form

v = ψ(r), (7)

where

r = |x− ξ| =

√√√√ n∑
i=1

(xi − ξi)2

represents the Euclidean distance between x and ξ. By the chain rule of differentiation

we find that

dr

dxi
=

1

2

(
n∑

i=1

(xi − ξi)
2

)−1/2

× 2xi =
xi
r
.

Further, we note that

vxi = ψ′(r)
dr

dxi
= ψ′(r)(

xi
r
), vxixi = ψ′′(r)

x2i
r2

+

(
1

r
− x2i
r3

)
.

Hence,

∇2v =
n∑

i=1

vxixi = ψ′′(r) +
n− 1

r
ψ′(r) = 0.
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If ψ′(r) ̸= 0, we have
ψ′′(r)

ψ′(r)
=

1− n

r
.

On solving we arrive at ψ′(r) = Cr1−n and hence,

ψ(r) =

{
C log r + C1 n = 2,
Cr2−n

2−n + C1 n > 2,

where C and C1 are constants.

The function v(x) = ψ(r) satisfies (6) for r > 0, that is for x ̸= ξ, but becomes infinite

for x = ξ. The function v for a suitable choice of the constant C, is a fundamental solution

for the operator ∇2, satisfying the equation,

∇2v = δ(x− ξ),

where δ is the Dirac delta function. The function

ψ(r) =
1

2π
log r, r > 0

is a fundamental solution to two dimensional Laplace’s equation (6). For a proof, see [5].

The Poisson Integral Formula. We know the function u ∈ C2(Ω) satisfying the Laplace

equation ∇2u = 0 is harmonic. The following result express the solution of the Dirichlet

problem in terms of an integral known as The Poisson integral formula.

THEOREM 2. (The Poisson integral formula) Let f(θ) be a continuous function and

f(θ + 2π) = f(θ). Define

u(r, θ) =
1

2π

∫ π

−π

(r20 − r2)f(s)

r20 − 2rr0 cos(θ − s) + r2
ds, r < r0,

u(r0, θ) = f(θ), r = r0.

Then u(r, θ) solves the following Dirichlet problem:

∇2u(x, y) = 0, (x2 + y2)1/2 < r0,

u(r0, θ) = f(θ), f(θ + 2π) = f(θ),

where u(r, θ) = u(x, y) = u(r cos θ, r sin θ). That is, u(r, θ) is harmonic on the open disk

D = {(x, y) | (x2 + y2)1/2 < r0}.

Some consequences of the Poisson integral formula are given below.

THEOREM 3. Let u be a harmonic function on some region Ω. The value of u at the

center of any disk D with D ⊂ Ω is the average (or mean) of the values of u on the

circular boundary ∂D of D.
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Note: The mean value property can be used to prove the maximum and minimum prin-

ciple for solutions for Laplace’s equation. It can be used to show that whenever the

maximum or minimum is attained in the interior of the region, the solution u must be

identically constant. This is the strong maximum and minimum principle for Laplace’s

equation.

THEOREM 4. (The strong maximum/minimum principle) Let u be a harmonic

function on an open connected set Ω. Suppose that the maximum or minimum of u is

attained at some point in Ω. Then u must be constant throughout Ω.

We know by definition a harmonic function u on an open region Ω is only required to

be C2(Ω). But, u actually C∞(Ω) (infinitely differentiable function). Thus, we have the

following result.

THEOREM 5. (Regularity result) If u is harmonic on an open region Ω, then u ∈
C∞(Ω).

Practice Problems

1. Prove that a solution of the Neumann problem

∇2u = f in Ω, u = g on ∂Ω

differs from another solution by a constant.

2. Prove that u1(x, y) = 1+ log(x2 + y2) and u2(x, y) = 1− log(x2 + y2) are harmonic,

where defined. Note that u1 = u2 on the circle x2 + y2 = 1, but unequal inside

the circle. Why does this not contradict the uniqueness theorem for the Dirichlet

problem.

3. Let u be harmonic in the disk x2 + y2 < r20. If u achieves its maximum at the point

(0, 0), then show that u must be constant throughout this disk.
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Lecture 3 The Dirichlet BVP for a Rectangle

In this lecture we shall discuss the solution of the Laplace equation with Dirichlet type

BC in cartesian coordinates.

Consider the following Dirichlet problem in a rectangle:

PDE: uxx + uyy = 0, 0 < x < a, 0 < y < b, (1)

BC: u(x, 0) = f1(x), u(x, b) = f2(x), 0 ≤ x ≤ a, (2)

u(0, y) = g1(y), u(a, y) = g2(y) 0 ≤ y ≤ b.

We shall study how the method of separation of variables is still applicable for the BVP.

Since the BC are nonhomogeneous, we are required to do some preliminary work.

By the principle of superposition, we seek the solution of the above BVP (1)-(2) as

u(x, y) = u1(x, y) + u2(x, y) + u3(x, y) + u4(x, y),

where each of u1, u2, u3 and u4 satisfies the PDE with one of the original nonhomogeneous

BC, and the homogeneous versions of the remaining three BC. These problems are then

solved by the method of separation of variables.

Let us consider solving the following example problem:

EXAMPLE 1. Solve the Dirichlet BVP:

PDE: uxx + uyy = 0, 0 < x < a, 0 < y < b, (3)

BC: u(x, 0) = f(x), u(x, b) = 0, 0 ≤ x ≤ a, (4)

u(0, y) = 0, u(a, y) = 0, 0 ≤ y ≤ b.

Apply the method of separation of variables to solve this problem. The step-wise

solution procedure is given below.

Step 1: (Reducing to ODEs)

Separating variables, we seek for a solution of the form

u(x, y) = X(x)Y (x).

Substituting this into (3), we obtain

X ′′Y (y) +X(x)Y ′′(y) = 0
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and hence,
X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
= k,

for some constant k, which is called the separation constant. This leads two ODEs

X ′′(x)− kX(x) = 0, (5)

Y ′′(y) + kY (y) = 0. (6)

Step 2: (Solving the resulting ODEs)

Case 1 : When k > 0, set k = λ2, where λ ̸= 0. In this case, the solutions of ODEs are

X(x) = [Aeλx +Be−λx],

Y (y) = [C cos(λy) +D sin(λy)].

Therefore, the solutions of PDE u(x, y) are given by

u(x, y) = [Aeλx +Be−λx][C cos(λy) +D sin(λy)].

Case 2 : When k = 0, the solutions of ODEs are linear are given by

X(x) = (A+Bx), Y (y) = (C +Dy).

Therefore,

u(x, y) = (A+Bx)(C +Dy).

Case 3 : Suppose k < 0, set k = −λ2, where λ > 0.

The solutions of ODEs are given by

X(x) = [A cos(λx) +B sin(λx)]

Y (x) = [Ceλy +De−λy].

Thus , the solution of PDE is

u(x, t) = [A cos(λx) +B sin(λx)][Ceλy +De−λy].

Step 3: (Applying the BC)

Using the boundary conditions u(0, y) = 0 and u(a, y) = 0 for the product solution

obtained for the case k > 0 leads to the equations

A+B = 0, Aeλa +Be−λa = 0,
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which has a trivial solution A = 0 and B = 0. Thus, only the trivial solution u(x, y) = 0

is possible. Similarly, use of boundary conditions u(0, y) = 0 and u(a, y) = 0 also leads

to a trivial solution u(x, y) = 0 for the case k = 0. Let us examine the product solution

obtained in Case 3 (for k < 0) i.e.,

u(x, y) = [A cos(λx) +B sin(λx)][Ceλy +De−λy].

Using the boundary condition u(0, y) = 0 yields A = 0. The condition u(a, y) = 0 gives

B sin(λa)][Ceλy +De−λy] = 0.

For a non-trivial solution,

B ̸= 0 =⇒ sinλa = 0

=⇒ λa = nπ or λ =
nπ

a
, n = 1, 2, 3, . . . .

Therefore, the sequence of non-trivial is given by

un(x, y) = sin(
nπx

a
)[Cne

nπy
a +Dne

−nπy
a ]

Applying the BC u(x, b) = 0, we obtain

sin(
nπx

a
)[Cne

nπb
a +Dne

−nπb
a ] = 0

=⇒ Cne
nπb
a +Dne

−nπb
a = 0

=⇒ Dn = −Cn
e

nπb
a

e
−nπb

a

, n = 1, 2, . . . , .

Therefore, the solution now takes the form

un(x, y) = sin(
nπx

a
)
2Cn

e
−nπb

a

{
e

nπ(y−b)
a − e

−nπ(y−b)
a

}
/2

=
2Cn

e
−nπb

a

sin(
nπx

a
) sinh(

nπ(y − b)

a
).

Setting cn = 2Cn

e
−nπb

a
and using superposition principle, we obtain

u(x, y) =

∞∑
n=1

cn sin(
nπx

a
) sinh(

nπ(y − b)

a
).

To satisfy the remaining nonhomogeneous BC, we must have

u(x, 0) = f(x) =

∞∑
n=1

cn sin(
nπx

a
) sinh(

−nπb
a

),
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which is a half-range Fourier series. Therefore,

cn sinh(
−nπb
a

) =
2

a

∫ a

0
f(x) sin(

nπx

a
)dx,

and this implies

cn =
2

a sinh(−nπb
a )

∫ a

0
f(x) sin(

nπx

a
)dx. (7)

Therefore, the required solution to the problem (3)-(4) is

u(x, y) =
∞∑
n=1

cn sin(
nπx

a
) sinh(

nπ(y − b)

a
)

with the coefficients cn computed from (7).

As a consequence of the superposition principle we obtain the following result.

THEOREM 2. Let an, bn, cn and dn be the Fourier coefficients of f(x), g(x), h(y) and

k(y). Then solution of the Dirichlet problem

PDE: uxx + uyy = 0, 0 < x < a, 0 < y < b,

BC: u(x, 0) = f(x), u(x, b) = g(x) 0 ≤ x ≤ a,

u(0, y) = h(y), u(a, y) = k(y), 0 ≤ y ≤ b,

is

u(x, y) =

∞∑
n=1

[
An sin(

nπx

a
) sinh[

nπ(b− y)

a
]

+Bn sin(
nπx

a
) sinh(

nπy

a
)

+Cn sin(
nπy

b
) sinh[

nπ(a− x)

b
]

+ Dn sin(
nπy

b
) sinh(

nπx

b
)
]
,

where

An = an/ sinh(
nπb

a
) Bn = bn/ sinh(

nπb

a
)

Cn = cn/ sinh(
nπa

b
) Dn = dn/ sinh(

nπa

b
).

Practice Problems

1. Solve the following BVP:

uxx + uyy = 0, 0 < x < 1, 0 < y < 1,

u(x, 0) = x(x− 1), u(x, 1) = 0, 0 ≤ x ≤ 1,

u(0, y) = 0, u(1, y) = 0, 0 ≤ y ≤ 1,
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2. Solve the following BVP:

uxx + uyy = 0, 0 < x < π, 0 < y < π,

u(x, 0) = sinx, u(x, 1) = sinx, 0 ≤ x ≤ π,

u(0, y) = sin y, u(1, y) = sin y, 0 ≤ y ≤ π,
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Lecture 4 The Mixed BVP for a Rectangle

In this lecture we shall consider solving the mixed BVP for the Laplace equation. To

begin with, let us consider the following the Neumann problem for a rectangle:

PDE: uxx + uyy = 0, 0 < x < a, 0 < y < b (1)

BC: uy(x, 0) = f(x), uy(x, b) = g(x), 0 ≤ x ≤ a (2)

ux(0, y) = h(y), ux(a, y) = k(y), 0 ≤ y ≤ b.

This problem has no solution, unless the following compatibility condition holds:∫ a

0
g(x)dx−

∫ a

0
f(x)dx+

∫ b

0
k(y)dy −

∫ b

0
h(y)dy = 0.

Solution. If u(x, y) is a solution of (1), then

0 =

∫ b

0

∫ a

0
(uxx + uyy)dxdy =

∫ b

0

∫ a

0
uxxdxdy +

∫ a

0

∫ b

0
uyydydx

=

∫ b

0
[ux(a, y)− ux(0, y)]dy +

∫ a

0
uy(x, b)− uy(x, 0)]dx

=

∫ b

0
k(y)dy −

∫ b

0
h(y)dy +

∫ a

0
g(x)dx−

∫ a

0
f(x)dx,

where we have used the fundamental theorem of calculus, and the Fubini’s theorem.

REMARK 1. • The compatibility condition is an immediate consequence of the follow-

ing special case of Green’s theorem∫
C
∇u · nds =

∫
C
uxdy − uydx =

∫ ∫
R
(uxx + uyy)dxdy,

i.e., the flux of the gradient of u through the boundary is the integral of ∆u in the

interior.

• Note that we only require that ux and uy be continuous on the closed rectangle.

Further, we do not demand that the second partial of u extend continuously to the

closed rectangle.

We now consider solving Laplace equation with mixed type of boundary conditions.

EXAMPLE 2. Solve the following BVP:

PDE: uxx + uyy = 0, 0 < x < a, 0 < y < b, (3)

BC: u(x, 0) = 0, u(x, b) = 0, 0 ≤ x ≤ a, (4)

u(0, y) = g(y), ux(a, y) = h(y), 0 ≤ y ≤ b.
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Solution. The solution of this problem has a form

u(x, y) = u1(x, y) + u2(x, y),

where u1 and u2 satisfy (3) with the BC

(BC)1 :

{
u1(x, 0) = u1(x, b) = 0, 0 ≤ x ≤ a,

u1(0, y) = g(y), u1x(a, y) = 0, 0 ≤ y ≤ b,

and

(BC)2 :

{
u2(x, 0) = u2(x, b) = 0, 0 ≤ x ≤ a,

u2(0, y) = 0, u2x(a, y) = h(y), 0 ≤ y ≤ b.

We shall determine each one of u1 and u2 by the method of separation of variables.

Step 1.(Solving for u1): Separating variables for u1(x, y) = X(x)Y (y) and substitut-

ing in (3) we obtain
X ′′(x)

X(x)
+
Y ′′(y)

Y (y)
= 0.

This leads to the following ODEs:

X ′′(x) + λX(x) = 0, 0 < x < a, (5)

Y ′′(y)− λY (y) = 0, 0 < y < b, (6)

for a constant λ. Since u1 satisfies (BC)1, we must have

Y (0) = Y (b) = 0, (7)

X ′(a) = 0. (8)

Nontrivial solutions of (6) with BC (7) are

Yn(y) = sin
nπy

b

corresponding to

λ = λn = −
(nπ
b

)2
, n ∈ N.

The differential equation for X(x)

X ′′(x)−
(nπ
b

)2
X(x) = 0

has solution of the form

X(x) = C1 cosh
nπx

b
+ C2 sinh

nπx

b
.
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The condition (8) yields C2/C1 = tanh nπa
b . Thus, a sequence of solutions X(x) is given

by

Xn(x) = an

(
cosh

nπx

b
− tanh

nπa

b
sinh

nπx

b

)
.

By superposition principle the product solution u1 is expressed by

u1(x, y) =
∞∑
n=1

an

(
cosh

nπx

b
− tanh

nπa

b
sinh

nπx

b

)
sin

nπy

b
. (9)

The boundary condition u1(0, y) = g(y), 0 ≤ y ≤ b yields

u1(0, y) =

∞∑
n=1

an sin
nπy

b
= g(y), 0 ≤ y ≤ b,

with an’s given by

an =
2

b

∫ b

0
g(y) sin

nπy

b
dy. (10)

Step 2.(Solving for u2): Suppose u2(x, y) = X(x)Y (y) satisfies (3) and (BC)2. Arguing

as before, we have the ODEs (5) and (6) for X(x) and Y (y) with the boundary conditions

Y (0) = Y (b) = 0; X(0) = 0.

The non-trivial solutions corresponding to

λ = λn = −
(nπ
n

)2
, n ∈ N,

are

Yn(y) = sin
nπy

b
.

For X(x), we have the ODE:

X ′′(x)−
(nπ
b

)2
X(x) = 0,

X(0) = 0.

It has solutions of the form

Xn(x) = bn sinh
nπx

b
, n ∈ N.

Thus, u2(x, y) is given by

u2(x, y) =

∞∑
n=1

bn sinh
nπx

b
sin

nπy

b
(11)
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which satisfies the boundary condition u2x(a, y) = h(y). This leads to

bn =
2

nπ

1

cosh nπa
b

∫ b

0
h(y) sin

nπy

b
dy. (12)

Step 3.(Writing the solution): The solution of (3)-(4) is obtained as

u(x, y) = u1(x, y) + u2(x, y),

where an and bn are determined by (10) and (12), respectively.

Practice Problems

1. Solve the following Neumann BVP:

uxx + uyy = 0, 0 < x < a, 0 < y < b,

uy(x, 0) = 0, uy(x, b) = h(x), 0 ≤ x ≤ a,

ux(0, y) = 0, ux(a, y) = 0, 0 ≤ y ≤ b.

given that g(x) is continuous and
∫ a
0 h(x)dx = 0.Why the assumption

∫ a
0 h(x)dx = 0

is needed?

2. Find a solution of the Neumann BVP:

uxx + uyy = 0, 0 < x < π, 0 < y < π,

uy(x, 0) = cosx, uy(x, b) = 0, 0 ≤ x ≤ π,

ux(0, y) = 0, ux(a, y) = 0, 0 ≤ y ≤ π.

By adding a constant, find a solution such that u(0, 0) = 0.

3. Solve the following mixed BVP:

uxx + uyy = 0, 0 < x < a, 0 < y < b,

u(x, 0) = 2x, u(x, b) = x2, 0 ≤ x ≤ a,

ux(0, y) = 0, ux(a, y) = 0, 0 ≤ y ≤ b.
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Lecture 6 The Dirichlet Problem for the Disk

The Dirichlet problem in a disk of radius r0 and center at (0, 0) can be expressed as

PDE: Urr +
Ur

r
+
Uθθ

r2
= 0, 0 < r < r0, −π ≤ θ ≤ π, (1)

BC: U(r0, θ) = f(θ), −π ≤ θ ≤ π,

where f(θ) is a given periodic, continuous function of period 2π (f(θ + 2π) = f(θ)). To

solve the above problem, we use the method of separation of variables.

Step 1.(Writing the ODEs): Seek solutions of the form

U(r, θ) = R(r)T (θ),

where 0 ≤ r ≤ r0 and −π ≤ θ ≤ π. Substituting into (1) and separating variables yield

R′′(r)T (θ) + r−1R′(r)T (θ) + r−2R(r)T ′′(θ) = 0.

=⇒ r2R′′(r) + rR′(r)

R(r)
= −T

′′(θ)

T (θ)
= k.

Which leads to the following two ODEs:

T ′′(θ) + kT (θ) = 0, (2)

r2R′′(r) + rR′(r)− kR(r) = 0. (3)

Step 2.(Solving the ODEs):

Case (a): When k < 0, the general solution to (2) is the sum of two exponentials.

Hence we have only trivial 2π-periodic solutions (see, Lecture 5).

Case (b): When k = 0, we find that T (θ) = Aθ+B is the solution to (2). This linear

function is periodic only when A = 0, that is, T0(θ) = B is the only 2π-periodic solution

corresponding to k = 0.

Case (c): When k > 0, the general solution to (2) is

T (θ) = A cos(
√
kθ) +B sin(

√
kθ).

In this case we get a nontrivial 2π-periodic solution only when
√
k = n, n = 1, 2, . . ..

Hence, we obtain the nontrivial 2π-periodic solutions

Tn(θ) = An cos(nθ) +Bn sin(nθ) (4)
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corresponding to
√
k = n, n = 1, 2, . . . .

Now for k = n2, n = 0, 1, 2, . . ., equation (3) is the Cauchy-Euler equation

r2R′′(r) + rR′(r)− n2R(r) = 0. (5)

When n = 0, the general solution is

R0(r) = C +D ln r.

Since ln r → ∞ as r → 0+, this solution is unbounded near r = 0 when D ̸= 0. Therefore,

we must choose D = 0 if U(r, θ) is to be continuous at r = 0. We now have R0(r) = C

and so U0(r, θ) = R0(r)T0(θ) = CB. For convenience, we write U0(r, θ) in the form

U0(r, θ) =
A0

2
, (6)

where A0 is an arbitrary constant.

When k = n2, n = 1, 2, . . . , the general solution of (3) is given by

Rn(r) = Cnr
n +Dnr

−n.

Since r−n → ∞ as r → 0+, we must set Dn = 0 in order for u(r, θ) to be bounded at

r = 0. Thus

Rn(r) = Cnr
n

Now for each n = 1, 2, . . . , we have the solutions

U(r, θ) = Rn(r)Tn(θ) = Cnr
n[An cos(nθ) +Bn sin(nθ)].

By superposition principle, we write

U(r, θ) =
A0

2
+

∞∑
n=1

Cnr
n[An cos(nθ) +Bn sin(nθ)].

This series may be written in the equivalent form

U(r, θ) =
A0

2
+

∞∑
n=1

(
r

r0

)n

[An cos(nθ) +Bn sin(nθ)], (7)

where the An’s and bn’s are constants. These constants can be determined from the

boundary condition. With r = r0 in (7), we have

f(θ) =
A0

2
+

∞∑
n=1

[An cos(nθ) +Bn sin(nθ)].
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Since f(θ) is 2π-periodic, we recognize that An, Bn are Fourier coefficients. Thus

An =
1

π

∫ π

−π
f(θ) cos(nθ)dθ, n = 0, 1, . . . , (8)

Bn =
1

π

∫ π

−π
f(θ) sin(nθ)dθ, n = 1, . . . , (9)

We now summarize the Dirichlet problem for a disk as follows.

In the Dirichlet problem(1), if

f(θ) =
A0

2
+

∞∑
n=1

[An cos(nθ) +Bn sin(nθ)],

then the solution is given by

U(r, θ) =
A0

2
+

∞∑
n=1

(
r

r0

)n

[An cos(nθ) +Bn sin(nθ)],

where An and Bn are given by (8) and (9), respectively.

EXAMPLE 1. Solve the following BVP

PDE: Urr +
Ur

r
+
Uθθ

r2
= 0, 0 ≤ r < 1,

BC: U(1, θ) = f(θ),

where f(θ) = 1 + r sin θ + r3

2 sin(3θ) + r4 cos(4θ).

Solution. Here r0 = 1. Note that f(θ) is already in the form of Fourier series, with

An =

{
2 for n = 0 and 1 for n = 4

0 for other n
Bn =


1 n = 1
1
2 n = 3

0 for other n

The solution of the BVP is

U(r, θ) =
A0

2
+

∞∑
n=1

(
r

r0

)n

[An cos(nθ) +Bn sin(nθ)]

= 1 + r sin θ +
r3

2
sin(3θ) + r4 cos(4θ).

Exterior Dirichlet Problem: We shall discuss the exterior Dirichlet problem i.e., the

Dirichlet problem outside the circle. The exterior Dirichlet problem is given by

PDE: Urr +
Ur

r
+
Uθθ

r2
= 0, 1 ≤ r <∞,

BC: U(1, θ) = f(θ), 0 ≤ θ ≤ 2π.
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This problem is solved exactly in a manner similar to the interior Dirichlet problem. We

assume that the solutions are bounded as r → ∞. Basically, we throw out the solutions

rn cos(nθ), rn sin(nθ), ln r

that are unbounded as r → ∞.

The solution is given by

U(r, θ) =

∞∑
n=0

r−n[An cos(nθ) +Bn sin(nθ)], (10)

where An and Bn are given by

A0 =
1

2π

∫ 2π

0
f(θ)dθ,

An =
1

π

∫ 2π

0
f(θ) cos(nθ)dθ,

Bn =
1

π

∫ 2π

0
f(θ) sin(nθ)dθ.

The detail procedure is thus left as an exercise.

Practice Problems

1. Solve the Dirichlet problem

Uxx + Uyy = 0, (x2 + y2 < 1), (11)

u(1, θ) = sin2 θ, −π ≤ θ ≤ π,

for the disk r ≤ 1.

2. Solve the BVP

Urr +
Ur

r
+
Uθθ

r2
= 0 0 ≤ r < 2, −π < θ < π,

U(2, θ) = 1 + 8 sin θ − 32 cos(4θ) − π < θ < π.

3. Show that the exterior Dirichlet problem

Urr +
Ur

r
+
Uθθ

r2
= 0 1 ≤ r <∞,

U(1, θ) = 1 + sin θ + cos(3θ) 0 < θ < 2π,

has the solution

U(r, θ) = 1 +
1

r
sin θ +

1

r3
sin(3θ).
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Unit 1
Course structure

1. Newtonian Law of Gravitation

1 Introduction

This unit deals mainly with the Newtonian Law of Gravitation.

It resembles Coulomb’s law of electrical forces, which is used to calculate

the magnitude of the electrical force arising between two charged bodies.

Both are inverse-square laws, where force is inversely proportional to the

square of the distance between the bodies. Coulomb’s law has the product

of two charges in place of the product of the masses, and the electrostatic

constant in place of the gravitational constant.

Newton’s law has since been superseded by Albert Einstein’s theory of

general relativity, but it continues to be used as an excellent approximation

of the effects of gravity in most applications. Relativity is required only

when there is a need for extreme precision, or when dealing with very strong

gravitational fields, such as those found near extremely massive and dense

objects, or at very close distances (such as Mercury’s orbit around the Sun).

We will now state the main statement of the law in the coming section.

1.1 Newtonian Law of Gravitation

Two concentrated masses m1,m2 located at the Point p1, p2 exert on each

other, a force of attraction proportional to the product of their masses and
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inversely proportional to the square of the distance between them. The

direction of the forces is along the line joining a masses, we can write,

F = G.
m1m2

r2

Or,

F =
m1m2

r2
[ Considering G = 1].

Field of force :- The force which act on a unit mass field at any point in

space is called the value of the field of force.

F = m× 1r2

=
m

r2

Let, a mass m be Concentrated at a point Q(ξ, η, ξ) and Consider the force

which this exerts on a unit mass at P (x, y, z). Let, PQ = r, then the force

acting on the unit mass at P in the direction P to Q.

So, the magnitude of the force,

F =
m

r2

Where,

r2 = (ξ − x)2 + (η − y)2 + (ξz)2

The direction Cosine of the line of action PQ is

ξx
r

=
η − y
r

=
ζ − z
r

Therefore, the force has the components

X =
m(ξ − x)

r3

Y =
m(η − y)

r3

Z =
m(ζ − z)

r3

10
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For several masses m1,m2, . . . ,mk located at the points Qi(ξi, ηi, ζi)(I =

1, 2, . . . , K).

F =
K∑

i=−1

mi

r2i

Now, the components of forces are,

X =
K∑
i=1

mi(ξ − x)

r3i

Y =
K∑
i=1

mi(η − y)

r3i

Z =
K∑
i=1

mi(ζ − z)

r3i

We now consider a continuous distribution of mass occupied bounded region

V . Let, the volume, δV = δx.δy.δz at the point Q(ξ, η, ζ) of V containing

the mass dm = χdv [χ = density χ(ξ, η, ζ)].

The Components of attraction due to dm at P (x, y, z) out side volume V

are

X =
∫ ∫ ∫

V

(ξ − x)

r3

Y =
∫ ∫ ∫

V

(η − y)

r3

Z =
∫ ∫ ∫

V

(ζ − z)

r3

If the mass is distributed over a surface S. With density δ then,

x =
∫ ∫
S

ξ − x
r3

δ ds

Y =
∫ ∫
S

η − x
r3

δ ds

Z =
∫ ∫
S

ζ − x
r3

δ ds

11
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If the mass is distributed over a line (curve) then,

X =
∫
s

ξ − x
r3

ν ds

Y =
∫
s

η − y
r3

ν ds

Z =
∫
s

ζ − z
r3

ν ds

Exercises

1. Compute the mass of the earth ,knowing the force with which it attracts

a given mass on its surface, taking its radius to be 3956 miles.Hence show

that the earth’s mean density is about 5.5 times that of water.

2.Find the attraction of a wire of constant density having the form of an arc

of a circle.

3.Find the attraction of a straight homogeneous piece of wire , at any point

P of space ,not on the wire.

4.Find the attraction of a homogeneous circular wire at a point P on the axis

of the wire.

Summary

In this section, we have learnt about the Newtonian Law of Gravitation and

related theorems and applications.

12
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Unit 2
Course structure

• Potential of an attracted particle

Potential of an attracted particle :- Let, a massm is situated at Z(ξ, η, ζ).

Let, P (x, y, z) be any point on the curve C. We can calculate the work done

by the attraction of the mass m when a particle of unit mass is brought from

a point P0 to a point P1 along any regular curve C joining P0 and P1. If

we displaced the particle from P to a neighbouring point P ′ on the curve C.

The work done by the attraction of mass m in this displacement is,

Xdx+ Y dy + Zdz

=
m

r3
[(ξ − x)dx+ (η − y)dy + (ζ − z)dz]

= −m
r2
dr
[
r2 = (ξ − z)2 + (η − y)2 + (ζ − z)2 on differentiating

]
hence, the total work done by the attraction of mass m as the particle unit

mas moves from P0 to P1.

= −
∫
c

m

r2
dr =

m

r
|c=

m

r1
− m

r0

where

r21 = (ξ − x1)2 + (η − y1)2 + (ζ − z1)2

r20 = (ξ − x0)2 + (η − y0)2 + (ζ − z0)2

Let, the point P0 is taken at infinity and replacing r1 by r we get,

m

r

13
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Therefore,

U =
m

r

We can say that, the potential is the work done when a particle of unit

mass is brought from infinity to a finite distance in the field of attraction of

mass m situated at θ when, r →∞, U → 0.

Similarly, for several masses mi situated at Qi(ξi, ηi, ζi) the potential at

point P (x, y, z) is

U =
n∑
i=1

mi

ri

where,

r2i = (ξ − x)2 + (η − y)2 + (ζ − z)2.

In a similar way, we can deduce the above formula for a volume distribution.

U =
∫ ∫ ∫

V

χdv

r

For a surface distribution,

U =
∫ ∫ σds

r

For a line distribution

U =
∫
s

γds

r
.

Theorem. The potential U due a volume distribution of matter of bounded

density χ contained in a region of bounded volume V has partial derivatives

of all orders and the following relation hold at any point outside V .

∂U

∂x
= X,

∂u

∂y
= Y,

∂u

∂z
= Z,

∇2U = 0

14
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Proof. We know that the potential due to a volume distribution of matter

at a point P (x, y, z) outside the distribution,

U =
∫ ∫ ∫

v

χdv

r
r = PQ (1)

since, P lies outside V .

1

r
and

∂

∂x

(
1

r

)
= − 1

r2
.
∂r

∂x

=
ξ − x
r3

exists

= − 1

r2
× [−2(ξ − x)] /2r =

(ξ − x
r3

and they are continuous functions in all the six variables x, y, z, ξ, η, ζ, also

χ is bounded integrable in V . Hence, differentiation under the sign of inte-

gration is permissible. Therefore, Differentiating (1) w.r.t. x we get,

∂U

∂x
=
∫ ∫ ∫

V

χ
∂

∂x

(
1

r

)
dV =

∫ ∫ ∫
V

x
(ξ − x)

r3
dV = X

similarly,
∂U

∂y
= Y

and
∂U

∂z
= Z

Again,
∂

∂x

(
ξ − x
r3

)
= − 1

r3
+

3(ξ − x)2

r5
,

which is a continuous function of x, y, z, ξ, η, ζ, since P lies outside V . Dif-

ferentiating under the sign of integration is permissible.

Diff. (2), w.r.t. x, we get,

∂2U

∂x2
=
∫ ∫ ∫

v

χ

(
− 1

r3
+ 3

(ξ − x)2

r5

)
dV.
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similarly,
∂2U

∂y2
=

∫ ∫ ∫
V

X

(
− 1

r3
+

3(η − y)2

r5

)
dV

∂2U

∂z2
=

∫ ∫ ∫
V

X

(
− 1

r3
+

3(ζ − z)2

r5

)
dV.

Adding, we get,

∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
=

∫ ∫ ∫
V

χ
[
− 3

r3
+

3

r5
× r2

]
dv

=
∫ ∫ ∫

V

χ
[
− 3

r3
+

3

r3

]
dv

= 0

⇒ ∇2U = 0→ Laplace’s equation.

Theorem : The potential U and the components of force X, Y, Z due to a vol-

ume distribution of matter of piecewise continuous density χ in the bounded

volume V exists at point of

Proof. We know that

U =
∫ ∫ ∫

V

χdV

r
,

Z =
∫ ∫ ∫

V

χ(ζ − z)

r3
dV.

let, V be a small region containing where r = PQ P in its interior. We shall

show that

U ′ =
∫ ∫ ∫
V−ν

χdν

r
and Z ′ =

∫ ∫ ∫
ν−v

χ(ζ − z)

r3
dv

approach limits as ν shrink down on p. Now, Cauchy’s test of convergence

of the integral states that a necessary and sufficient condition that U ′ and
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Z ′ approach limits is that corresponding to small positive number ε, T a

positive number δ such that if v and v′ containing the point P and contains

in a sphere
∑

of radius δ about P , then,∣∣∣∣∣∣∣
∫ ∫ ∫
v−ν

χdv

r
−
∫ ∫ ∫
V−ν′

χdv

r

∣∣∣∣∣∣∣ < ε

and ∣∣∣∣∣∣∣
∫ ∫ ∫
v−ν

χ(ζ − z)

r3
dv −

∫ ∫ ∫
V−ν′

χ(ζ − z)

r3
dv

∣∣∣∣∣∣∣ < ε

Existence of Potential :-

We have ∣∣∣∣∣∣∣
∫ ∫ ∫
v−ν

χdv

r
−
∫ ∫ ∫
V−ν′

χdv

r

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫ ∫ ∫
v−ε

χdv

r
+
∫ ∫ ∫
ε−v

χdv

r
−
∫ ∫ ∫
v−ε

χdv

r
−
∫ ∫ ∫
ε−ν′

χdv

r

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫ ∫ ∫
ε−v

χdv

r
−
∫ ∫ ∫
ε−v′

χdv

r2

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ ∫ ∫
ε−v

χdv

r

∣∣∣∣∣∣+
∣∣∣∣∣∣∣
∫ ∫ ∫
ε−v′

χdv

r

∣∣∣∣∣∣∣
< B

∫ ∫ ∫
ε−V

dv

r
+B

∫ ∫ ∫
ε−v′

dv

r
.

where B is the upper bound of χ.

< 2B
∫ ∫ ∫

ε

dv

r
.

∣∣∣∣∣∣∣
∫ ∫ ∫
v−ν

χdv

r
−
∫ ∫ ∫
v−ν′

χdv

r′

∣∣∣∣∣∣∣ < 2B
∫ ∫ ∫

ε

dv

r

17
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We now, 
x = rsinθ cosφ

y = rsinθ sinφ

z = r cos θ.

= αB
∫ δ

r=0

∫ π

θ0

∫ 2π

φ=0

r0 sin θdrdθ

r

= πBδ2 if δ <

√
ε

2
√
πB

= 2B
∫ δ

r=0

∫ π

θ=0

∫ 2π

φ=0
r sin θdrdθdφ

= 2B
∫ δ

r=0
rdr

∫ π

θ=0
sin θdθ

∫ 2π

φ=0
dφ

= 2B × δ2

2
× [− cos θ]π0 × [θ]2π0

= Bδ2 × [cos π + cos 0]× 2π

= Bδ2, 2× 2π

= 4πBδ2 < ε if δ <

√
ε

2
√
π

Therefore, v′ approaches to v i.e., U exists at all points inside the attracting

mass.

Exercises

1.Find the potential of a homogeneous straight wire.

2.Show that at a point of its axis, a homogeneous circular wire has a potential

U =
M

d

,where d is the distance of P from a point of the wire.

3.Find the potential of a homogeneous plane rectangular lamina at a point

of the normal to the lamina through one corner.

18
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a point 2 units from the center in the plane of the wire.

For the existence of force component Z at all points inside V , we find that∣∣∣∣∣∣∣
∫ ∫ ∫
V−ν

χ(ζ − z)

r3
dv −

∫ ∫ ∫
V−v′

χ(ζ − z)

r3
dv

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫ ∫ ∫
ε−v

χ(ζ − z)

r3
dv −

∫ ∫ ∫
ε−v′

χ(ζ − z)

r3
dθv

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ ∫ ∫
ε−v

χ(ζ − z)

r3
dv

∣∣∣∣∣∣+
∣∣∣∣∣∣∣
∫ ∫ ∫
ε−v′

χ(ζ − z)

r3
dv

∣∣∣∣∣∣∣
≤ B

∫ ∫ ∫
ε−v

|ζ − z|
r3

dv +B
∫ ∫ ∫
ε−v′

|ζ − z|
r3

dv

< 2B
∫ ∫ ∫

ε

|ζ − z|
r3

dv.
∣∣∣r2 = (ε− x)2 + (η − y)2 +( ζ − z)2|ζ − z| ≤ r

< 2B
∫ ∫ ∫

ε

r

r3
dv

= 2B
∫ δ

r=0
δπθ=0

∫ 2π

φ=0

r2 sin θdrdθdφ

r2

= 2B
∫ δ

r=0
δπθ=0

∫ 2π

φ=0
sin θ.drdθdφ

= 2B
∫ δ

r=0
dr.

∫ π

θ=0
sin θdθ.

∫ 2π

φ=0
dφ

= 2B × δ2× 2π

= 8Bπδ < ε if δ <
ε

8Bπ
.

Hence, z′ approaches z, i.e., z exists at all point inside the attracting mass.

Similarly, the force components X and Y exists at all points with in V .

Theorem : The potential U and the force components X, Y, Z of a volume

distribution of matter of piecerise continuous density χ in the bounded volume

V are continuous through out the space :

19
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Unit 3

Course structure

• Continuity of Potential

Continuity of Potential Let, P (x, y, z) be any point in the interior of

Vi and P ′(x′, y′, z′) is a neighbouring point. Let, ε be a sphere of radius δ

small enough so that ε lies entirely with in V . Then,∣∣∣∣∣
∫ ∫ ∫

ε

χdv

r

∣∣∣∣∣ ≤
∫ ∫ ∫

ε

|x|
r
dv

< B
∫ ∫ ∫

ε

dv

r

= B.
∫ δ

r=0

∫ π

θ=0

∫ 2π

φ=0

r2 sin θdrdθdφ

r

= B × 2πδ2 → 0 as δ → 0

Therefore corresponding a small positive ε, T a positive number δ1 such that∣∣∣∣∣
∫ ∫ ∫

ε

χdv

r

∣∣∣∣∣ < ε

3
whenever δ < δ1

Similarly, ∣∣∣∣∣
∫ ∫ ∫

ε′

χdv

r

∣∣∣∣∣ ≤ B
∫ ∫ ∫

ε′

dv

r′

where ε′ is the sphere of radius 2δ about p′ and enclosing ε

= B
∫ 2π

φ−0

∫ π

θ=0

∫ 2δ

r≤0

dv

r′
= 8Bπδ2 → 0 as δ → 0

Therefore, corresponding to positive number εT a number δ2 such that,∣∣∣∣∣
∫ ∫ ∫

v

χdv

x′

∣∣∣∣∣ < ε

3
whenever δ < δ2

20
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Again, the function 1
r

is continuous if P and P ′ lie with in ε and Q lies outside

ε i.e., inside V − ε. Therefore,(
1

r
− 1

r′

)
<

ε

3BV

whenever PP ′ < δ3. Therefore,

| U(ρ)− U(ρ′) | =

∣∣∣∣∣
∫ ∫ ∫

V

χdv

r
−
∫ ∫ ∫

V

χdv

r′

∣∣∣∣∣
=

∣∣∣∣∣
∫ ∫ ∫

V−ε

χdv

r
+
∫ ∫ ∫

ε

χdv

r
−
∫ ∫ ∫

v−ε

χdv

r′
−
∫ ∫ ∫

ε

χdv

r′

∣∣∣∣∣
≤

∣∣∣∣∣
∫ ∫ ∫

ε

χdv

r

∣∣∣∣∣+
∣∣∣∣∣
∫ ∫ ∫

ε

χdv

r′

∣∣∣∣∣+
∣∣∣∣∫ ∫ ∫

v−ε
χ
(

1

r
− 1

r′

)
dv

∣∣∣∣
<

ε

3
+
ε

3
+
∫ ∫ ∫

v−ε

Bε

3BV
.dv

<
2ε

3
+

ε

3V
.V = ε.

Therefore, |U(ρ) − U(ρ′)| < ε whenever ρρ′ < δ. Therefore, U is continu-

ous at P and therefore it is continuous at any point in V . Continuity of

attraction Component :∣∣∣∣∣
∫ ∫ ∫

ε

χ(ζ − z)

r3
dv

∣∣∣∣∣ =
∫ ∫ ∫

ε

|X||ζ − z|
r3

dv

< B
∫ ∫ ∫

ε

r

r3
dv

= B
∫ ∫ ∫

ε

dv

r2
.

= B
∫ δ

r=0

∫ π

θ=0

∫ 2π

φ=0

r2 sin θdrdθdφ

r2

= B4πδ → 0 as δ → 0.

Therefore, corresponding to arbitrary positive no ε there exists a +ve no. δ1

such that ∣∣∣∣∣
∫ ∫ ∫

ε

χ(ζ − z)

r3
dv

∣∣∣∣∣ < ε

3
whenever δ < δ1

21
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We now choose the radius δ of the sphere ε in such that the inequality. δ < δ1

is satisfied. Also, we have∣∣∣∣∣
∫ ∫ ∫

ε′

χ(ζ − z′)
r′3

dv

∣∣∣∣∣ ≤
∫ ∫ ∫

ε′

|x||ζ − z′|
r′3

dv

< B
∫ ∫ ∫

epsilon′

r′

r′3
dv

= B
∫ ∫ ∫

epsilon′

dv

r′2

= B
∫ 2δ

0

∫ π

θ=0

∫ 2π

φ=0

dvr′
2

sin θdr′dθdφ

r′2

= 8πBδ → 0 as δ → 0.

Corresponding ε > 0, there exists a positive number δ2 such that,∣∣∣∣∣
∫ ∫ ∫

ε′

χ(ζ − z′)
r′3

dv

∣∣∣∣∣ < ε

3
, whenever δ < δ2.

Again, ζ−z
r3

is a continuous function as long as P is inside ε and Q is in V − ε.

Now ∣∣∣∣∣ζ − zr3
− ζ − z′

r′3

∣∣∣∣∣ < ε

3Bv
whenever PP ′ < δ3

where v is the volume of the region let, δ′ be the smallest of δ1, δ2, δ3, then

whenever PP ′ < δ′ we have

|Z(p)− Z(p′)| =∣
(

=
∣∣∫ ∫ ∫ χ ζ − z) χ(ζ z)

dv +
r3ε

∫ ∫ ∫ −
dv

v−ε r3
−
∫ ∫ ∫ χ(ζ − z′)∣∣ ε r′3

dv

−
∫ ∫ ∫ χ(ζ − z′)

3 dv
v r′−ε

∣∣∣∣∣
≤

∣∣∣∣∣
∫ ∫ ∫

ε

χ(ζ − z)

r3
dv

∣∣∣∣∣+
∣∣∣∣∣
∫ ∫ ∫

ε

χ(ζ − z′)
r′3

dv

∣∣∣∣∣+
∫ ∫ ∫

v−ε

∣∣∣∣∣χ(ζ − z)

r3
− χ(ζ − z′)

r′3
dv

∣∣∣∣∣
<

ε

3
+
∈
3

+
∫ ∫ ∫

v−ε
|X|

∣∣∣∣∣ζ − zr3
− ζ − z′

r′3

∣∣∣∣∣ dv
<

2 ∈
3

+B
∫ ∫ ∫

v−ε

∈
3BV

.dv

=
2 ∈
3

+
∈
3

=∈
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Therefore, |Z(ρ)− Z(ρ′)| < ε whenever|ρ− ρ′1 < δ Z is continuous similarly

we can prove that the other force components X and Y are continuous at

any point in V .

Holder’s Condition : A function f(Q) of the coordinates of Q is said to

satisfy Holder’s condition at P if there are three positive constants C,A, α(<

1) such that,

|f(Q)− f(P )| < Arα, r = PQ

for all points Q for which r ≤ C.

Poisson’s equation : Let, U be the potential of a volume distribution of

matter with piecewise continuous density χ in a regular region V , then at any

interior point P of V at which χ satisfies Holder’s Condition, the derivatives

of second order of U exists and satisfies Poisson’s equation ∇2U = −4πχ(p).

Potential of Double Layer : Let, a mass (−m) be placed at Q and a

mass (+m) be placed at Q′ where QQ′ is very small and m is very larch such

that, mδl is finite and is equal to µ. Then, such a pair forms a dipole and

the direction of the vector QQ′ is called the axis of the dipole. We now want

to find the potential at any point P due to this dipole.

U = lim
δl→0

[
m

r + δr
− m

r

]
= lim

δl→0

mδl

δl

[
1

r + δr
− 1

r

]
= lim

δl→0

mδl

δl

[
1

r
+

(
δξ.

∂

∂ξ
+ δη.

∂

∂η
+ δζ

∂

∂ζ

)(
1

r
+ . . .+−1

r

)]

= lim
δl→0

mδl

χ

[
∆ξ

δl
.
∂

∂ξ
+
δη

δl
.
∂

∂η
+
δζ

δl
.
∂

∂ζ

] (
1

r

)
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U = µ. ∂
∂γ

(
1
r

)
where

∂

∂γ
= cosα

∂

∂ξ
+ cos β

∂

∂η
+ cos γ

∂

∂
ζ.

cosα, cos β, cos γ be the direction cosines of the axes of the doublet (dipole)

and µ is called moment of the dipole.

Deduce Potential of a double layer for a surface distribution :

Let us consider two surfaces S and S ′ at a small distance δl apart. Let,

the elements be distributed there in such a way that the negative masses

on S ′. The axes of a element being every where normal to each other and

is directed from negative masses to positive masses. We obtain the double

layers a combination of two single layer with opposite density at a small

distance from one another. We consider such a double layer with QQ′ as a

typical element when δl → 0. Then, corresponding to the elementary area

ds, element of strength −dm at Q is ∂ds and +dm at Q′ is +∂ds, where ∂ is

the surface density. Therefore, the potential U of all such element distributed

on the double layer at an external P (x, y) is given by

U =
∫ ∫

S

(
1

r + δr
− 1

r

)
∂ds

or

δl → 0PQ = r

and

PQ′ = r + δr

=
∫ ∫

S

1

∆l

(
1

r + ∆r
− 1

r

)
∂δlds or δl → 0

=
∫ ∫

S
µ.
∂

∂γ

(
1

r

)
ds as δl → 0.∂δl→ µ.

24
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where µ is the moment of double layer and it is assumed that to be bounded

and integrable and also it can be shown that the integral on the right hand

side converges if P is a point on S.

Theorem : If the moment µ of a double layer on any surface S is continu-

ous a any point P on S, then the potential U due to the double layer at any

Point P ′ on the normal to S at P approaches limit as P ′ → P from either

side of surface, this limit suffers a discontinuity across ‘S’ and the value of

discontinuity is +4πµ(P ).

Proof : The potential U at any point P (x, y, z) is given by U =
∫ ∫

Sµ.
∂
∂γ

(
1
r

)
dS

=
∫ ∫

S
µ

(
cosα

∂

∂ξ
+ cos β

∂

∂η
+ cos γ

∂

∂ζ

)(
1

r

)
ds

where cosα, cos β, cos γ be the direction cosines of the normal to S atQ(ξ, η, s)

r = PQ =
√

(ξ − x)2 + (η − y)2 + (ζ − z)2.

∂

∂x

(
1

r

)
= − 1

r2
.
∂r

dx

= − 1

r2

(
x− ξ
r

)

= −
(
x− ξ
r3

)
.

∂

∂ξ

(
1

r

)
= − 1

r2
.
∂r

∂ξ

= − 1

r2

(
ζ − x
r

)
=

x− ξ
r3

∂

∂x

(
1

r

)
= − ∂

∂ξ

(
1

r

)
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and (
∂U2

∂y

)
+

=

(
∂U2

∂y

)

where U1 and U2 are the potential at P (0, 0, ξ) due to a surface distribution

of matter on S with density µ cosα, µ cos β respectively. On the other hand

at this point the normal derivative ∂U3

∂z
approaches P ′ to p from either side

of S and this limit suffers a discontinuity and the amount of discontinuity is(
∂U3

∂z

)
+

−
(
∂U3

∂z

)
−

= −4πµ(P )

Therefore,

U+ − U− =

[
−∂U1

∂x
− ∂U2

∂y
− ∂U3

∂z

]
+

−
[
−∂U1

∂x
− ∂U2

∂y
− ∂U3

∂z

]
−

= 4πµ(P )

Exercises

1.Find the potential at interior and exterior points of a closed magnetic shell

of constant moment density.

2. Find the potential of a double distribution of constant moment on an open

surface.

3. Compare the potential of a homogeneous double distribution on a plane

area with the component, normal to the plane, of the force due to a homo-

geneous plane lamina occupying the same area.
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Unit 4

Course structure

• Green’s Identities

Green’s Identities

Green’s 1st Identity : Let V be a closed regular region of space enclosed by

a closed surface S. Let, φ and ψ be two functions of x, y, z defined in V and

continuous in V + S together with their 1‘st order partial derivatives. Let,

ψ has continuous second order derivatives in V + S. Putting

P = φ
∂ψ

∂x

Q = φ
∂ψ

∂y

R = φ
∂ψ

∂z

in Gauss divergence theorem

∫ ∫ ∫
V
divF→dV =

∫ ∫
S
V →.nds

we get, where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

⇒
∫ ∫ ∫

V
φ∇2ψdv +

∫ ∫ ∫
V

(
→
∇φ.∇→ψ)dv =

∫ ∫
S
φ
∂

∂ν
ψds (1)

and
∂

∂γ
= l

∂

∂x
+m

∂

∂y
+ η

∂

∂z

28
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where δν is an element of outward directed normal to the surface ds of S.

The equation (1) is known as Green’s 1st identity. Again, let φ&ψ be both

continuously differentiable in V and possess continuous second order partial

derivatives in V + S. Then interchanging φ and ψ in (1), we get,

∫ ∫ ∫
V
ψ∇2φdv +

∫ ∫ ∫
V

(
→
∇φ.

→
∇ψ)dv =

∫ ∫
S
φ
∂φ

∂γ
ds (2)

Subtracting 92) from (1)

∫ ∫ ∫
V

(
φ∇2ψ − ψ∇2φ

)
dv =

∫ ∫
S

(
φ
∂ψ

∂γ
− ψ∂φ

∂γ

)
ds (3)

Equation (3) is known as, Green’s 2nd identity (second) Har-

monic Function : A function f(x, y, z) is said to be harmonic at a point

ρ(x, y, z) if its second order derivatives exists and satisfies Laplace’s equation

throughout some neighbourhood of the point P . A function ρ(x, y, z) is said

to be regular at infinity if ρf, ρ2 ∂f
∂x
, ρ2 ∂f

∂y
, ρ2 ∂f

∂z
are bounded for sufficiently

large value of ρ, where ρ2 = (x2 + y2 + z2).

Exercises

1.Given a point source of fluid in the presence of an infinite plane barrier,

determine the potential of the flow, assumed to be both irrotational and

solenoidal.

2.Find the distribution of the charge induced on the walls of a cuboid by a

point charge in its interior.

Theorem’s on Harmonic functions :

Theorem 1 : The integral of the normal derivatives of a function U(x, y, z)

29
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vanishes when extended over the boundary S of any closed regular region V

in which the function U is Harmonic and continuously differentiable. We can

write
∫ ∫

S
∂U
∂γ
ds = 0 Theorem : Show that every regular Harmonic function

can be represented as the sum of Potentials due to a surface distribution and

due to a double layer on the surface. Proof : Let, V be a closed region

bounded by a surface S and P (x, y, z) be an interior point of V . Then by

Green’s second identity

= −
∫ ∫ ∫

V

(
φ∇2ψ − ψ∇2φ

)
dv =

∫ ∫
S

(
φ
∂ψ

∂γ
− ψ∂φ

∂
γ

)
ds (1)

let us put φ = U , and φ = 1
r
, then. where r = PQ,Q = (ξ, η, ζ). Since P lies

inside V , we surround P by a small space Σ having P has centre and radius

ε. Let,

V ′ = V − Σ

For the region V ′, we have 1
r

is harmonic therefore, from (1),

∫ ∫ ∫
V

(
U∇2(

1

r
)− 1

r
∇2U

)
dV =

∫ ∫
S

(
U
∂

∂ν

(
1

r

)
− 1

r

∂

∂ν
(U)

)
ds

⇒ −
∫ ∫ ∫

V

1

r
∇2UdV

( )

1
=

∫ ∫ (
∂ 1 1 ∂ ∂ ∂ 1 ∂

U ( ) U dS + U U ( )
S ∂ν r

−
r ∂ν

) ∫ ∫
ε

(
∂ν

(
∂ν r

−
r ∂ν

(2)

U

))
dε

∂
=

∫ ∫ 1 1 ∂
U ( )

S ∂ν r
− (u) ds.
r ∂ν

−−
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Now,

∫ ∫ ∂
U =
ε ∂

(
1

r

)
dε

ν
−
∫ ∫

U

[
∂ ∂ ∂ 1

l +m + η dε.∫ ∫ ε ∂ξ ∂η ∂ζ

)(
r

)
1 ∂γ 1 ∂γ 1 ∂r

= − U +∫ ε

[
l. +m. n. dε∫ [ r2 ∂ξ r2 ∂η r2 ∂ζ

]
ξ

= U
− x 1 ξ

. .
2

− x η 1 η
+
− y

.
− y ζ

. +
2

− z 1 ζ
. .

ε r r r r r r r r2
− z

]
dε

=
∫ ∫ r

1
U. dε

=
∫ ∫ 2ε r

Udω where dω is the solid angle subtended by dε at P ]
ε

= U(P ′)
∫ ∫

dω
ε

= 4πU(P ′) where P ′ is a point on ε]

As ε→ 0, P ′ → P U(ρ′)→ U(P ).

∫ ∫
ε
U
∂

∂γ

(
1

r

)
dε→ 4πU(P )

Again ∣∣∣∣∣
∫ ∫

ε

1

r

∂

∂γ
dε

∣∣∣∣∣ ≤
∫ ∫

ε

1

r

∣∣∣∣∣∂U∂ν
∣∣∣∣∣ dε

≤ B
∫ ∫

ε

1

r
dε

= B.
1

ε

∫ ∫
S
dε

[Total surface area]

Therefore, from (2) we get,

−
∫ ∫ ∫

V

1

r
∇2Udv −

∫ ∫
S

(
U
∂

∂γ

(
1

r

)
− 1

r

(
∂U

∂ν

))
ds+ 4πU(P )

(Proceeding to the limit ε→ 0).

U(P ) = +
∫ ∫ ∫

V

− 1
4π
∇2U

r
dV +

∫ ∫
S
− U

4π

∂

∂ν

(
1

r

)
ds+

∫ ∫
S

1
4π

∂U
∂ν

r
ds (3)

31

23



Equation 93) is known as Green’s 3rd identity. Now, if U is harmonic in V ,

the h∇2U = 0, then

U(P ) =
∫ ∫

S

∂U
∂ν

4π

r
ds+

∫ ∫
S
−
(
U

4π

)
∂

∂ν

(
1

r

)
ds (4)

The first term on the right hand side of (4) represents the potential of a

surface distribution with density 1
4π

∂U
∂ν

. The second term represents the po-

tential of a double layer with moment
(
− U

4π

)
. Gauss integral theorem

Theorem : The integral of the outward drawn normal derivative of potential

U across any surface S bounding region V is equal to −4πM , where M is

the mass of the region V . Proof : From Green’s second identity,

∫ ∫ ∫
V

(φ∇2ψ − ψ∇2φ)dv =
∫ ∫

S

(
φ
dψ

dν
− ψ∂φ

∂ν

)
ds (1)

where ∂ν is an element of the outward drawn normal to an element ds of the

surface S. We put φ = 1 and ψ = U

∫ ∫ ∫
V
∇2Udv =

∫ ∫
S

∂

∂ν
ds (2)

But we know that for every point inside the attracting mass ∇2U = −4πχ,

χ is the density, therefore∫ ∫
S

∂U

∂ν
ds = = −4π

∫ ∫
V
χdV

= −4πM. Proved).

Gauss’s Average value Theorem :

Statement : The average value over the surface of a sphere of potential U

of masses lying entirely inside the sphere is independent of their distributions

with in the sphere and is equal to their mass divided by the radius of the
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sphere. Proof : Let, S be the sphere of radius ‘a’ and centre at P (x, y, z).

Then the potential U is harmonic outside S and regular at infinity. We

describe a large sphere
∑

of radius ρ concentric with S and let V ′ is the

region bounded by S and Σ. Let, Q(ξ, η, ζ) be any point and PQ = r.

Putting φ = U and ψ = 1
r

in Green’s second identity, we get,

∫ ∫ ∫
V ′

(
φ∇2ψ − ψ∇2φ

)
dv =

∫ ∫
S

(
φ
∂ψ

∂ν
− ψ∂φ

∂ν

)
ds+

∫ ∫
ε

(
φ
∂ψ

∂ν
− ψ∂φ

∂ν

)
dε

(1)

⇒
∫ ∫ ∫

V ′

(
U∇2

(
1

r

)
− 1

r
∇2U

)
dv =

∫ ∫
ε
U
∂

∂ν
(
1

r

∂

∂ν
U)dε

1
r
, U are harmonic in V ′,∇2(1

r
= ∇2U = 0∣∣∣∣∣

∫ ∫
ε
U
∂

∂ν
(
1

r
)dε

∣∣∣∣∣ =

∣∣∣∣∣
∫ ∫

ε
U
∂

∂r

(
1

r

)
dε

∣∣∣∣∣
=

∣∣∣∣−∫ ∫
ε
− U 1

r2
dε
∣∣∣∣

≤
∣∣∣∣∣− 1

ρ2

∫ ∫
ε
Udε

∣∣∣∣∣
≤ 1

ρ2

∫ ∫ A

ρ
dε

=
A

ρ3

∫ ∫
ε
dε

=
A

ρ3
× 4πρ2

=
4πA

ρ
→ 0 ρ→∞.

∫ ∫
ε
U
∂

∂ν

(
1

r

)
dε→ 0 as ρ→∞.

33

25



Again, ∣∣∣∣∣
∫ ∫

ε

1

r

∂U

∂ν
dε

∣∣∣∣∣ =

∣∣∣∣∣1ρ
∫ ∫

ε

∂U

∂ν
dε

∣∣∣∣∣
=

1

ρ

∣∣∣∣∣
∫ ∫

ε

(
l
∂U

∂ξ
+m

∂U

∂η
+ n

∂U

∂ζ

)
dε

∣∣∣∣∣
≤ 1

ρ

∫ ∫
ε

{
|l|
∣∣∣∣∣∂U∂ξ

∣∣∣∣∣+ |m|
∣∣∣∣∣∂U∂η

∣∣∣∣∣ |n|
∣∣∣∣∣∂U∂ζ

∣∣∣∣∣
}

≤ 1

ρ3
3B
∫ ∫

ε
dε.

=
3B

ρ3
× 4πρ2.

=
12πB

ρ
→ 0

Therefore, ∫ ∫
ε

1

r

∂U

∂ν
dε→ 0 as ρ→∞.

Also, ∫ ∫
S
U
∂

∂ν
(
1

r
)ds = U

∂

∂r
(
1

r
)ds

=
∫ ∫

S

U

r2
ds =

1

a2

∫ ∫
s
UdS

Also,∫ ∫
S

1

r

∂U

∂ν
ds = −

∫ ∫
S

1

r

∂U

∂r
ds = −1

a

∫ ∫
s

∂U

∂r
ds =

1

a
4πM (By Gauss’s Integral theorem)

where M is the mass of the distribution. Now, making ρ→∞, we have∫ ∫ ∫
V ′

{
U∇2(

1

r
− 1

r
∇2U)

}
dv =

∫ ∫
ε

{
U
∂

∂ν
(
1

r
)− 1

r

∂

∂ν
(U)

}
dε (1)

Now, making ρ→∞ in (1).

1

a2

∫ ∫
S
Uds =

4πM

a

or,
1

4πa2

∫ ∫
s
udS =

M

a
.
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Unit 5

Course structure

• Boundary value problem of potential theory

Boundary value problems of Potential theory :

First boundary value problem or Dirichlet problem : Let, Vi be a fi-

nite region enclosed by the surface S with continuously turning normal. Let,

f(x, y, z) be a function defined and continuous at all points of S. Dirich-

let problem states that ”to determine a solution U of Laplace’s equation

∇2U = 0 in Vi which has a continuous derivative upto second order in Vi

and is continuous in Vi +S and takes on prescribed values f on S.” Second

boundary value problem or Neumann Problem : The Neumann prob-

lem states that - ”to determine a solution U of Laplace’s equation ∇2U = 0

in Vi bounded by a cloud surface s such that U has continuous derivatives

upto 2nd order in Vi and is continuous derivatives upto 2nd order in Vi and is

continuous in vi + s and its normal derivative approaches the given function

f on S. [
∂U

∂ν
= f on S

]
[U = f on S] (1)

Dirichlet Principle : The 1st boundary value problem is very closely con-
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nected with Dirichlet variational principle i.e., Dirichlet integral

D = D(w) =
∫ ∫ ∫

V

(∂W
∂x

)2

+

(
∂w

∂y

)2

+

(
∂W

∂z

)2
 dv

=
∫ ∫ ∫

V

(∇W )2dv

(1)

to make a minimum. More precisely, what function among all w which has

continuous derivatives in V + s and takes on prescribed value ζ on S, give

the smallest value for the integral D. Let, the Dirichlet variational problem

has a solution U , then for all admissible function w which satisfy the above

continuity and boundary condition we must have

D(W ) > D(U) (2)

If, F also satisfies the continuity conditions and vanishes on S, then

W = U + λF, where λ is an D(W ) = D(U + λF )

arbitrary constant. Now,

=
∫ ∫ ∫

V

(
∂U

∂x
+ λ

∂F

∂x

)2

+

(
∂U

∂y
+ λ

∂F

∂y

)2

+

(
∂U

∂z
+ λ

∂F

∂z

)2
 dv

=
∫ ∫ ∫

V


(
∂U

∂x

)2

+

(
∂u

∂y

)2

+

(
∂U

∂z

)2
+ λ2


(
∂F

∂y

)2

+

(
2F

∂y

)2

+

(
∂F

∂z

)4


+2λ

{
∂U

∂x
.
∂F

∂x
+
∂U

∂y
.
∂F

∂y
+
∂U

∂z
.
∂F

∂z

}]
dv

= D(U) + λ2D(F ) + 2λD(U, F )

(4)

where

D(U, F ) =
∫ ∫ ∫

V

(
∂U

∂x
.
∂F

∂x
+
∂U

∂y
.
∂F

∂y
+
∂U

∂z
.
∂F

∂z

)
dv
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Evidently,

D(U,U) = D(U)

The expression 2λD(U, F ) is known as : The first variation of D(U). Now, for

every function F of the form described D(U, F ) = 0. Since, if D(U, F ) 6= 0,

we can choose the absolute value of λ in such a manner (so small) that the

value of

2λD(U, F ) + λ2D(F )

could have the same sign as the first term and then choose the value of λ

show that λD(U, F ) < 0, then we have

D(U, λF ) < D(U)

This is a contradiction to our hypothesis that D(U) is minimum. Now,

putting φ = F and ψ = U in Green’s first identity,

∫ ∫ ∫
V

φ∇2ψdv +
∫ ∫ ∫

V

→
∇ψdv =

∫ ∫ ∫
S
φ
∂ψ

∂ν
ds,

we get,

∫ ∫ ∫
V

F∇2Udv +
∫ ∫ ∫

V

[
∂F

∂x
.
∂U

∂x
+
∂F

∂y
.
∂U

∂y
+
∂F

∂z
.
∂U

∂z

]
dv =

∫ ∫
S
F
∂U

∂ν
ds

∫ ∫ ∫
V

F∇2Udv +D(U, F ) =
∫ ∫

S
F
∂U

γν
ds

D(U, F ) = 0, F = 0 on S,

we have, ∫ ∫ ∫
V

F.∇2UdV = 0
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From which we conclude, ∇2U = 0, throughout V . Green’s function :

According to Dirichlet problem a harmonic function can be completely de-

termined with in any region if its values on the boundary of the region are

given. We now express harmonic function at any point of the region in terms

of boundary values by means of a function known as Green’s function.

Green’s function for the interior region : We know that if a poten-

tial function U is harmonic in a region bounded by a closed surface S with

continuously fering normal and if the values of U and its normal derivative

∂U
∂n

∂U
∂ν

are given on S, then the value of U at any point P (x, y, z) is given by

Green’s third identity

U(P ) =
1

4π

∫ ∫ {
1

r

∂U

∂ν
− U ∂

∂ν

(
1

r

)}
ds 91)

where r = PQ and Q(ξ, η, ζ) is a point on S. let, H be a continuously

differentiable function harmonic in V . Then putting φ = H and ψ = U in

Green’s second identity

∫ ∫ ∫
V

(φ∇2ψ − ψ∇2φ)dv =
∫ ∫

S

(
φ
∂

∂ν
ψ − ψ ∂

∂ν
φ

)
ds (2)

⇒
∫ ∫ ∫

V

(
H∇2U − UU∇2H

)
dv =

∫ ∫
S

(
H
∂U

∂ν
− U ∂H

∂ν

)
ds

Since,

∇2U = ∇2H = 0

Then,

O =
1

4π

∫ ∫
S

(
H
∂U

∂ν
− U ∂H

∂ν

)
ds (3)
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adding (1) and (3), we get,

U(P ) =
1

4π

∫ ∫
S

{(
H +

1

r

)
∂U

∂ν
− U ∂

∂ν

(
H +

1

r

)}
ds (4)

Now, let, H be harmonic, such that it takes the value −1
r

at all points on S

that is (i.e.), H + 1
r

= 0, at all points Q on S. Now putting

G(Q,P ) =
1

r
+H(Q, p) in (4), (5)

U(P ) =
1

4π

∫ ∫
S

(
G
∂U

∂ν
− U ∂

∂ν
G

)
ds

= − 1

4π

∫ ∫
S
U
∂

∂ν
G(Q,P )ds

(6)

The function G(Q,P ) satisfying the relation (6), is called is Green’s function

for the region V .

Exercises

1.Show that any function, harmonic in the region bounded by two concentric

spheres is the sum of a function which is harmonic in the interior of the outer

sphere, and a function which is harmonic outside the inner sphere.

2. Show that the density of the charge induced on the surface of a sphere by

a point charge is inversely proportional to the cube of the distance from the

point charge.
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Block II

Abstract Algebra



 

Unit 6 

 

   Course Structure                                 

1. Review Of earlier concepts 

2. Groups and their simple Properties 

 

 

   Introduction to Groups

 

Introduction 

In this unit, we will recapitulate the preliminaries of Group theory which we studied in 

our undergraduate courses. 

 

Definition A group is an ordered pair (G. *) where G is a non-empty set and * is a binary 

operation on G such that the following properties hold:  

(G1) for all a, b, c ϵ G; a * (b*c) = (a*b) *c (Associative) 

(G2) there exists a ϵ G such that for any 𝑎𝜖𝐺 , a*c =a=c*a (existence of an identity) 

(G3) for each 𝑎𝜖𝐺 , there exists 𝑏𝜖𝐺 such that a*b = c =b*a (existence of an inverse).  

Thus a group is a mathematical system (G,*) satisfying axioms G1 to G3. 

Definition Let (G,*) be a group and H be a nonempty subset of G. Then H is called a 

subgroup of (G,*) if H is closed under the binary operation * and (H,*) is a group.  

Note- that every group G has at least two subgroups, viƶ {e} and G itself. These two are 

called trivial sub groups. If H is a subgroup of a group G such that H≠{e} and H= G, 

then H is called a non-trivial subgroup of G. 

Example (Q, t) is a group ƶ is a non–empty subset of Q and (ƶ, t) is a group. Therefore (ƶ, 

+) is a subgroup of (Q,+).  

Cosets  

Left cosets: Let G be a group and H be a subgroup of G Let 𝑎 be an element of G. The 

subset {ah | hϵH} is called a left coset of H in G and is denoted by aH.  

33
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Right cosets: The subgroup {ha | h ϵH} is called a right coset of H in G and is denoted 

by Ha.  

Let us first state Lagrange’s theorem on the order of a group: 

Theorem (Lagrange): Let H be a subgroup of a finite group G. Then the order of H 

divides the order of G. Then the order of H divides the order of G. In particular |G| = 
[𝐺:𝐻]

|𝐻|
. 

 

Summary 
In this unit we have mainly recapitulated the following: 

 Definition of groups with example 

 Subgroups with example 

 Cosets 

 Lagrange’s Theorem 
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Unit 7 

 

Course Structure 

1. Conjugacy Class Equations 

2. Cauchy’s Theorem 

3. Sylow’s theorem and their applications 

4. Simple Groups 

 

 
Class equation, Cauchy and Sylow’s theorems 
Let G be a group. On the set G, define the following relation: 

𝑃 =  {(𝑎, 𝑏) 𝜖 𝐺𝑋𝐺 |𝑏 = 𝑥𝑎𝑥−1 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥𝜖𝐺}. 

 It can be shown easily that P is an equivalence relation. This relation is called the 

conjugacy relation and the equivalence class for an element 𝑎𝜖𝐺  with respect to this 

relation P is called conjugacy class of a, which is denoted by cl(a). So 𝑐𝑙(𝑎)  =  {𝑏 ∈

𝐺|𝑏𝑃𝑎}  =  {𝑏𝜖𝐺|𝑏 = 𝑥𝑎𝑥−1 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥𝜖𝐺}  = {𝑥𝑎𝑥−1|𝑥𝜖𝐺 } Suppose, G is a finite 

group. Then the number of conjugacy classes are finite. If a1, a2,….,ak are representatives 

from each of the distinct conjugacy classes, then 

G = cl(a1)  ∪  cl(a2)  ∪ . . .∪  cl (ak).  

 Let 𝑎  be an element of G such that 𝑎𝜖ƶ , the centre of G. Then 𝑐𝑙(𝑎)  =

 {𝑥𝑎𝑥−1 | 𝑥 ∈ 𝐺}  =  {𝑎}.  In this case, the conjugacy class is said to be trivial. 

Conversely, if 𝑐𝑙(𝑎) = {𝑎}, 𝑡ℎ𝑒𝑛 𝑥𝑎𝑥−1  = 𝑎 for all 𝑥 ∈ 𝐺, which implies 𝑋𝑎 = 𝑎𝑋  for 

all 𝑥 ∈ 𝐺 and so a∈ƶ (G0. Thus we find that if 𝑎 ∉ Ƶ (𝐺), then 𝑐𝑙(𝑎)  ∩ Ƶ(𝐺)  = 𝜑  and 

𝑎 ∉ Ƶ (𝐺), if and only if 𝑐𝑙(𝑎)  =  {𝑎}. Hence we can partition G as follows 𝐺 = Ƶ(𝐺)  ∪

 𝑐𝑙(𝑥1)  ∪ 𝑐𝑙(𝑥2) ∪ … ∪ 𝑐𝑙 (𝑥𝑡) 

where 𝑥1, 𝑥2, … 𝑥𝑡 are representatives from each of the distinct conjugacy classes 𝑐𝑙(𝑥𝑖), 

such that 𝑐𝑙(𝑥𝑖)  ∩  Ƶ(𝐺)  = 𝜑, ie, 𝑐𝑙(𝑥𝑖) are those conjugacy classes which contain more 

than one element. Hence,  

|𝐺|  =  |Ƶ(𝐺)|  + ∑|𝑐𝑙(𝑥𝑖)|.

𝑡

𝑖=1

 

where 𝑥1, 𝑥2, … 𝑥𝑡, are representatives for each of the non trivial conjugacy classes. This 

equation is called the class equation of a finite group G.  

 

Example Consider the group S3. The elements of S3 are  

𝑒, (1 2), (1 3), (2 3) (1 2 3) 𝑎𝑛𝑑 (1 3 2). 
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Now 𝑐𝑙(𝑒)  = {𝑒}, and we have  

𝐶𝑙((1 2)) = {𝑥(12)𝑥−1|𝑥 𝜖 𝑆3} 

= {𝑒(1 2) 𝑒−1, (1 2 (1 2) (1 2)−1, (1 3)(1 2)( 1 3)−1 (2 3)(1 2)(2 3)−1,  

(1 2 3)(1 2)( 1 2 3)−1, (1 3 2)(1 2)( 1 3 2)−1} 

              = {(1 2), (1 3), (2 3)} 

 

Similarly, 𝑐𝑙((1 2 3))  =  {(1 2 3), (1 3 2)} 

Hence,𝑆3  = {𝑒}  ∪  {(12), (13), (123)}  ∪  {(123), (132)} 

And so,  

6 + |S3| = |{𝑒}|  +  |{(12), (13), (23)}|  +  |{(123), (132)} |  = 1 + 3 + 2 

is the class equation of 𝑆3 

Definition: Let G be a group and 𝑎𝜖𝐺. Then the centralizer of a is the subset 𝐶(𝑎) =

{𝑥𝜖𝐺|𝑥𝑎 = 𝑎𝑥} 

Clearly, 𝑒, 𝑎 𝜖 𝐶(𝑎) and it can easily be shown that 𝐶(𝑎) is a subgroup of G such that 

Ƶ(𝐺)  ⊆ 𝐶(𝑎) 

Theorem:  Let G be a finite group and 𝑎 𝜖 𝐺. Then [𝐺: 𝐶(𝑎))] = |𝑐𝑙(𝑎)|. 

Proof. Let 𝒵 be the set of all left cosets of 𝐶(𝑎)in G, Now, 𝒵 =  {𝑥𝜖𝐺} and 𝑐𝑙(𝑎) =

{𝑥𝑎𝑥−1|𝑥𝜖𝐺}, Now the function  𝑓: 𝒵 → 𝑐𝑙(𝑎) defined by 𝑓(𝑥𝑐(𝑎) =  𝑥𝑎𝑥−1 is a well 

defened bijective function. Indeed, 𝑥𝐶(𝑎) = 𝑦𝐶(𝑎) 

 ⟺  𝑥−1𝑦𝑎 = 𝑎𝑥 −1𝑦 

⟺ 𝑥𝑎𝑥−1 =  𝑦𝑎𝑦−1.  

Thus it follows that |𝒵| = |𝑐𝑙(𝑎)| and hence, [ 𝐺: 𝐶(𝑎)] =  |𝑐𝑙(𝑎)|. 

Note that in the previous example, {𝐶((1 2))  =  {𝑒, (1 2)}. 

Hence [𝑆3 ∶  𝐶((1 2))]  = 3 = |𝑐𝑙(1 2)| = |{(1 2), (1 3), (2 3)}|, 𝑎𝑔𝑎𝑖𝑛 𝐶((1 2 3)) =

{𝑒, (1 2 3), (1 3 2)}, 𝑆𝑜, [𝑆3: 𝐶((1 2 3 0)]  = 2 = |𝑐𝑙(1 2 3)|  =  |{(1 2 3), (1 3 2)}|. 

By virtue of the above theorem, the class equation of a finite group can be written as.  

|𝐺|  =  |Ƶ(𝐺)|  + ∑[𝐺: 𝐶(𝑥𝑖)].

𝑡

𝑖=1

 

|𝐺| =  |Ƶ(𝐺)| + ∑
|𝐺|

|𝐶(𝑥𝑖)|
,

𝑡

𝑖=1

 

where 𝑥1, 𝑥2, … 𝑥𝑡 are class representatives from each of the distinct non-trivial conjugacy 

classes. 
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We point out that the class equation is an important tool to study finite groups.  

Theorem If G is a group of order 𝑃𝑤(𝑛 > 0) then Ƶ(G) ≠  {𝑒}.  

Proof. Consider the class equation of the group G,  

|𝐺| = |Ƶ(𝐺)| + ∑
|𝐺|

|𝑐(𝑥𝑖)|

𝑡

𝑖=1

 

Where 𝑥1, 𝑥2, … 𝑥𝑡 are representatives from each conjugacy classes 𝑐𝑙(𝑥) such that 𝑥𝑖 ∉

 Ƶ(𝐺).  

If 𝑥𝑖 ∉ Ƶ(𝐺), then 𝐶(𝑥𝑖)  ≠ 𝐺 𝑎𝑛𝑑 |𝐶(𝑥𝑖)| =  𝑝𝑟𝑖 whre 0 < 𝑟𝑖 < 𝑛, (𝑟𝑖  𝜖 𝑁). Hence,  
|𝐺|

|𝑐(𝑥𝑖)|
= 𝑝𝑟𝑖  , which is divisible by 𝑝 divides |G| consequently, 𝑝divides |Ƶ(𝐺 )|. Since 

|Ƶ(𝐺)| ≥ 1, it follows that |Ƶ(𝐺)| ≥ 𝑝 and hence Ƶ(𝐺)  ≠  {𝑒}. 

 

Lemma If G is a finite commutative group of order w such that n is divisible by a prime. 

𝑝, then G contains an element of order 𝑝 (whence a subgroup of order 𝑝) 

Theorem (Cauchy) Let G be a finite group of order 𝑛 such that 𝑛 is divisible by a prime 

𝑝. Then G contains an element of order 𝑝 and hence a subgroup of order 𝑝.  

 

Proof. The proof is by induction on 𝑛. If 𝑛 = 2, then G is commutative and the result 

follows by the above lemma. Make the induction hypothesis that the result is true for all 

groups of order m such that 2 ≤  𝑚 < 𝑛. Consider the class equation.  

|𝐺|  = |Ƶ(𝐺)|  +  ∑ [𝐺 ∶

𝑎∉𝑍(𝐺)

𝐶(𝑎)] 𝑓𝑜𝑟 𝐺 

If 𝐺 = Ƶ (𝐺), then G is cumulative and the result follows by the above lemma. If G ≠ 

Ƶ(G), Then there exists 𝑎𝜖G such that 𝑎 ∉  Ƶ (𝐺). For such an element 𝑎, 𝐺 ≠ 𝐶(𝑎) and  

So [𝐺: 𝐶(𝑎)]  > 1, where by Lagrange’s  theorem |𝐺| = [𝐺: 𝐶(𝑎)]. |𝐶(𝑎)| > |𝐶(𝑎)| 

If 𝑝 divides |𝐶(𝑎)|, then by the induction hypothesis, 𝐶(𝑎) and thus G has an element of 

order 𝑝. If 𝑝 does not divide |𝐶(𝑎)| for all 𝑎 ∉ Ƶ(𝐺) then 𝑝 must divide [𝐺: 𝐶(𝑎)] for all 

𝑎 ∉ Ƶ(𝐺). But in the class equation, 𝑝 divides |Ƶ(𝐺)|. Since Ƶ(𝐺) is commutative, we 

have again by the above lemma that there exists 𝑎 ∉ Ƶ(𝐺) and hence 𝑎 ∉ Ƶ(𝐺) order 𝑝. 

 Next we apply Cauchy’s theorem to prove that the converse Lagrange’s theorem 

holds for finite commutative groups. 

Theorem: Let G be a finite commutative group of order 𝑛. If 𝑚 is a positive integer such 

that 𝑚|𝑛, the G has a subgroup of order 𝑚.  

 (We now apply Cauchy’s theorem to obtain some interesting properties of 𝑝 

groups) 
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Definition: Let 𝑝 be a prime. A group G is said to be a 𝑝 -group if the order of each 

element of G is a power of 𝑝. A subgroup H of a group G is called a 𝑝 subgroup if H is a 

𝑝 group.  

Example: The Klein 4-group is a 𝑝 -group. In fact, any group of order 𝑝𝑛(𝑝 a ϸrime) is a 

𝑝 - group since the order of each element must divide the order of the group.  

The following theorem gives a necessary and sufficient condition for a finite 

group to be a  𝑝 —group. 

Theorem H: Let G be a non trivial group. Then G is a finite 𝑝 - group if and only 

if |𝐺| = 𝑝𝑘  for some positive integer 𝑘. 

Proof: Suppose G is a finite p-group. If 𝑞 divides |G| for some prime 𝑞 ≠  𝑝, then by 

Cauchy’s theorem H has an element of order 𝑞, contradicting the fact that G is a 𝑝-group. 

Thus, 𝑝 is the only prime divisor of |G|. Hence, |𝐺|  =  𝑝𝑘  for some positive integer 𝑘.  

Conversely, suppose  |𝐺|  = 𝑝𝑘 . Then by Lagrange’s theorem, the order of each 

element of G is a power of  𝑝.  

In the next theorem, we prove that the Centre of a 𝑝 -group is non-trivial.  

Theorem If G is a finite 𝑝 -group with |𝐺|>1, then Ƶ (𝐺), the centre of G, has more than 

one element, i.e., if |𝐺| =  𝑝𝑘  with 𝑘 ≥ 1 𝑡ℎ𝑒𝑛 |Ƶ(𝐺)| >1. 

             Proof. Consider the class equation 

|𝐺|  = |Ƶ(𝐺)|  +  ∑ [𝐺 ∶

𝑎∉𝑍(𝐺)

𝐶(𝑎)] 𝑓𝑜𝑟 𝐺 

If 𝐺 = Ƶ(𝐺), then the theorem is immediate. Suppose 𝐺 ⊃ Ƶ (𝐺) and consider 𝑎𝜖𝐺  such 

that 𝑎 ∉ Ƶ(𝐺. Then 𝐶(𝑎) is proper subgroup of G so that by the above theorem and by the 

fact that 𝐶(𝑎) is a subgroup of a 𝑝-group, 𝑝|[𝐺: 𝑐(𝑎)] 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∉ Ƶ(𝐺). This implies that 

𝑝  divides  ∑ [𝐺 ∶𝑎∉𝑍(𝐺)  𝐶(𝑎)] . Since 𝑝  also divides |𝐺| , 𝑝  divides  |Ƶ(𝐺)| . Hence 

|Ƶ(𝐺)|  > 1. 

Corollary   Let G be a group of order 𝑝2, where 𝑝 is a prime. Then G is commutative.  

Proof. By the above theorem, |Ƶ(𝐺)|  > 1. By Lagrange’s theorem, |Ƶ(𝐺)| divides 𝑝2 . 

Hence, |Ƶ(𝐺)|  =  𝑝 𝑜𝑟 𝑝2 . Suppose |Ƶ(G)| = 𝑝. Then Ƶ(𝐺) ≠ 𝐺 and so there exists 𝑎 ∉ 𝐺 

such that 𝑎 ∉ Ƶ(𝐺). Now 𝐶(𝑎) is a subgroup of G and 𝑎 ∈ 𝐶(𝑎). 
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Hence, Ƶ(𝐺) ⊂ 𝐶(𝑎). This implies that |𝐶(𝑎)| =  𝑝2 and so 𝐺 = 𝐶(𝑎). However, 

this shows that 𝑎 ∉ Ƶ(𝐺), a contradiction. Therefore, |Ƶ(𝐺)|  =  𝑝2  and so 𝐺 = Ƶ(𝐺). 

Thus, G is commutative.  

 Result. Let G be a non-commutative group of order 𝑝3, 𝑝 a prime. Prove that |Ƶ(𝐺)| =

𝑝. 

Solution: We write Ƶ = Ƶ(𝐺). Since |𝐺| =  𝑝3  , |Ƶ| > 1  by the above theorem, Thus, 

|Ƶ| = 𝑝, 𝑝2or𝑝3 . If |Ƶ| = 𝑝3 , then 𝐺 = Ƶ  and so G is commutative, which is a 

contradiction. If |Ƶ| = 𝑝2, then |𝐺|Ƶ| = 𝑝.  

Hence, 𝐺|Ƶ is cyclic. But then G is commutative again a contradiction. Thus |Ƶ| =

𝑝. 

Result. Let G be a group of order 𝑝2= 𝑝 a prime, and 𝑤 ∉ Ƶ, 𝑛 ≥ 1. Prove 

that any subgroup of G of order 𝑝𝑛−1 is normal in G.  

Definition  Let H and K be subgroups of a group G. Let Nk(H) denote the set  

NK(H) =  {KϵK | KHK−1 = H} 

            Nk(H) is called the normalize of H in K  

            If follows that NK(H)  =  NG(H) ∩ 𝐾.  

Theorem (Cayley):  A finite group G of order 𝑛 is isomorphic to a subgroup of 𝑆𝑛. 

Sylow’s Theorems.  

M. L. Sylow did work of fundamental importance in determining the structure of finite 

groups. We can use his results to answer the problem now posed.  

If G is a finite group of order n and if H is a subgroup of G, then we Know by Lagrange’s 

theorem that the order of H divides 𝑛. In this section, we give some answers to The 

question, “If 𝑚 is a opositive integer, which divides 𝑛, does G contain a subgroup of 

order 𝑚?” 

It is interesting to note that sylow’s theorem was proved by sylow for permutation 

groups. George Frobenius established the theorem in the general setting the was 

influenced to do so by Cauchy’s theorem.  

Theorem  (Sylow’s First, Theorem) 
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Let G be a finite group of order 𝑝𝑟m, where 𝑝 is a prime, 𝑟 and 𝑚 are 

positive integers, and  𝑝, 𝑚 are relatively prime. Then G has a subgroup of 

order 𝑝𝑘  for all 𝑘, 0 ≤  𝑘 ≤ 𝑟. 

Corollary Let G be a finite group and 𝑝  a prime. If 𝑝𝑤  divides |𝐺| , then G has a 

subgroup of order 𝑝𝑤  

Definition Let G be a finite group and 𝑝 a prime. A subgroup P of G  is called a sylow 𝑝-

subgroup if P is a 𝑝 – subgroup and is not property contained in any other 𝑝 –subgroup of 

G, i,e. P is a maximal 𝑝 –subgrop of G.  

Example The symmetric group S3 has three sylow 2-subgroups, namely 

H1 = {(
123
123

), (
123
213

)},  

 

H2 = {(
123
123

), (
123
321

)} and 

 

H3 = {(
123
123

), (
123
132

)}. 

 

Thus, a Sylow 𝑝-subgroup of a given group need not be unique.  

The following theorem shows the existence of Sylow p- subgroups in a finite 

group. 

Theorem For each prime 𝑝, a finite group G has a sylow 𝑝-subgroup. 

Proof  If |𝐺| = 1 or 𝑝 does not divide |𝐺|, then {e} is the required sylow 𝑝-subgroup of 

G. If 𝑝 divides |𝐺|, then by Cauchy’s theorem, there is at least one subgroup H of G of 

order 𝑝. Since G is finite, there are a finite number of subgroups of G, which contain H. 

Hence, one of these subgroups is a sylow 𝑝- subgroup of G.  

Theorem Let G be a finite group of order 𝑝𝑟𝑚 where 𝑝 is a prime, 𝑟 and 𝑚 are positive 

integers and 𝑝, 𝑚 are relatively prime and 𝑃 be a subgroup of G. Then 

(i) If P is a 𝑝 group, then any conjugate of P is a 𝑝-group.  

(ii) If P is a Sylow 𝑝 -subgroup, then any conjugate of P is a Sylow 𝑝 -

subgroup.  

(iii) If P is the only Sylow 𝑝-subgroup of G then P is a normal subgroup of G.  
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            The proof is omitted. 

Result Let H be a normal subgroup of a group G. If H and G/H are both 𝑝-groups, then G 

is a 𝑝-group.  

Proof Let 𝑎 𝜖 𝐺. Then aH ϵ G/H and so aH has order some power of 𝑝, say 𝑝𝐾  . Thus, 

(aH)𝑝𝐾 = 𝐻 and so 𝑎𝑝𝐾ϵ H. Now every element of H has order a power of 𝑝. 

Let us say 𝑎𝑝𝑘  has order 𝑝𝑚 . Thus, (𝑎𝑝𝐾) 𝑝𝑚  =  𝑒   or   𝑎𝑝𝑚+𝑘  = 𝑒. Thyis implies that 

 𝑜(𝑎) has order some power of 𝑝. Since 𝑎 is arbitrary in G, G is a 𝑝 – group. This 

proves the result.  

Now we state sylow’s second and third theorem without proof.  

 

Sylow’s second theorem: 

Let G be a finite group of order 𝑝𝑟 𝑚, where 𝑝 is a prime, 𝑟 and 𝑚 are positive integers and 𝑝, 𝑚 

are relatibely prime. Then any two sylow 𝑝 -subgroups of G are conjugate and therefore 

isomorphic.  

Sylow’s third theorem:  

Let G be a finite group of order 𝑝𝑟 𝑚 where 𝑝 is a prime, 𝑟 and 𝑚 are positive integers and 𝑝, 𝑚 

are relatively prime. Then the number 𝑛𝑝 of sylow 𝑝-subgroups of G is 1 + 𝑘𝑝  for some non 

negative integer 𝑘 and 𝑛𝑝| 𝑝𝑟𝑚. 

Some problems: 

Example: Show that every group of order 45 has a normal subgroup of order 9. 

Solution: Let G be a group of order 45 =325 and 𝑛3 denote the number of sylow 3-subgroups of 

G. Then 𝑛3 = 3𝑘 + 1 for some integer 𝑘 ≥ 0 and 𝑛3/45. If 𝑘 = 0, then 𝑛3 = 1, which divides 

45. But for any 𝑘 ≥ 1, 𝑛3 does not divide 45. Hence, G contains a unique Sylow 3-subgroup H 

of order 9. Consequently that G is simple iff G is prime order. 

 If this section, we apply the sylow theorems to determine some finite groups which are 

not simple.  
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Example: Let G be a group of order 10. Now 10=5.2 Let 𝑛5 denote the number of sylow 5 

subgroups of G from sylow’s third theorem, 𝑛5 = 5𝑘 + 1 for some integer 𝑘 ≥ 0 and 𝑛5 divides 

|𝐺| = 10. Thus, 𝑛5 = 1 and so there exists only one sylow 5-subgroup, Say H in G. Since H is a 

unique sylow 5-subgroup, H is a normal subgroup of G by the following corollary, proving that 

G is not simple.  

The following corollary is an immediate consequence of sylow’s second theorem:  

Corollary:  Let G be a finite group and H be a sylow 𝑝-subgroup of G. Then H is a unique 

sylow 𝑝-subgroup of G if and only if H is a normal subgroup of G.]  

Thus no group of order 10 is simple.  

Example: Let G be a group of order 9. Then G is a p-group, where 𝑝 = 3, from a previous 

theorm we finid that Ƶ(𝐺) ≠  {𝑒}.  If 𝐺 = Ƶ(𝐺) , then G is a commutative group. But 

commutative simple group are precisely groups of prime order. Hence, in this case G is not 

simple. Suppose Ƶ(𝐺)  ≠ 𝐺. Then Ƶ (𝐺) is a now trivial normal subgroup of G. thus, we find that 

a group of order 9 is not a simple group.  

In the above example, we showed that a group of order 9=32 is not simple. In the next theorem, 

we prove that in general, if G is a p-group of order 𝑝𝑛, 𝑛 > 1 then G is not simple.  

Theorem: Let p be a prime integer and n>1 be any integer. Then no group of order ϸ𝑛 is simple.  

Proof: Let G be a group of order 𝑝𝑛. Consider the centre Ƶ(G) of G. From a previous theorem, it 

follows that Ƶ(𝐺) ≠  {𝑒}. If 𝐺 = Ƶ(𝐺), then G is a commutative group. If G is simple, then |𝐺| is 

prime, which is a contradiction. Thus, in this case G is not simple. Suppose Ƶ(𝐺)  ≠ 𝐺. Then 

Ƶ(G) is a non trivial normal subgroup of G, proving that G is not a simple group.  

Theorem: Let 𝑝 and 𝑞 be two prime integers. Then no group of order 𝑝𝑞 is simple.  

Proof: Le G be a group of order 𝑝𝑞. If 𝑝 = 𝑞 then |𝐺|  =  𝑝2 and so by a previous theorem, G is 

not simple. Suppose now  𝑝 ≠ 𝑞. Let 𝑝 > 𝑞. Let 𝑛𝑝 denote the number of sylow p-sub groups of 

G. Then 𝑛𝑝  =  𝑝𝑘 + 1 for some interger 𝑘 ≥0 and 𝑛𝑝 divides 𝑝𝑞. Since 𝑐𝑑 (1 + 𝑘𝑝, 𝑝)  = 1, 𝑛𝑝 

does not divide 𝑝. Hence,𝑛𝑝divides 𝑞.  
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Thus, 1 + 𝑘𝑝 ≤ 𝑞. But 𝑝 > 𝑞 . Therefore, 1 + 𝑘𝑝 ≤ 𝑞 holds only if 𝑘 =  0 . This implies that 

𝑛𝑝  = 1 and so G contains a unique sylow 𝑝-sub-group of order 𝑝, which must be normal by a 

previous corollary. Hence G is not simple.  

 We now state the following two results:  

Result: Let G be a finite group and H be a proper subgroup of G of index 𝑛 such that |𝐺| doest 

not divide 𝑛. Then G contains a non-trivial normal subgroup.  

Result: Any group of order 2𝑛, where 𝑛 is an odd integer, contains a normal subgroup of order 

𝑛.  

Using this result, we find that no groups of order 6 (=2.3), 18(=2.9), 50 = (2.25), 54( = 

2.27) are simple.  

Theorem: Let n be an integer such that. 1 ≤  𝑛 < 6 and 𝑛 is not prime. The no group of order 𝑛 

is simple.  

 Let us now concentrate our discussion on 𝑛 =  60. Sinc 60 is not prime, no commutative 

group of order 60 is simple. Now what is the answer if G is a non commutative group of order 

60? Recall that A5 is a simple group of order 60. Hence, we find that there exists a non 

commutative simple group of order 60. Next, let us ask the following question. Is A5 the only (up 

to isomorphism) non commutative simple group of order 60? To answer this question, we first 

prove state the following result.  

Result: Let G be a simple group of order 60. Then G contains a subgroup of order 12.  

Result: Any simple group of order 60 is isomorphic to A5. 

From above, it follows that A5 is the smallest non commutative simple group.  

Let us now apply the sylow theorems to classify some groups of small order.  

Example: Let G be a group of order 15 = 5.3. By Sylow’s third theorem G has a sylow 5 - 

subgroup A and a Sylow 3 – subgroup B. It is easy to check that A is a unique Sylow 5 –

subgroup and B is a unique sylow 3 – subgroups of G. Hence, A is a normal subgroup of order 5 

and B is a normal subgroup or order 3. Now A∩B = {e}. Thus, |AB|  
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= 
|A|B|

A∩B|
= 15. Hence, G = AB, 𝐴 ∩ 𝐵 =  {𝑒} and A, B are normal subgroups of G. Thus, 𝐺 =

𝐴 × 𝐵 ≃ Z5 ×≃ Z15 since  𝑔𝑐𝑑 (3,5)  =  1. Hence, G is a cyclic group.  

In the next theorem, we classify all groups of order 𝑝q. where 𝑝 and 𝑞 are distinct primes.  

Theorem: Let G be a group and 𝑝, q be primes with 𝑝 > 𝑞. If |𝐺|  =  𝑝𝑞, then G is either cyclie 

or generated by two elements 𝑎 and 𝑏 satisfying the following properties: 𝑏𝑝  =  𝑒, and 𝑎𝑞  =  𝑒 

and 𝑎−1𝑏𝑎 = 𝑏𝑟, where 𝑝 does not divide (𝑟 −1), but 𝑝|(𝑟𝑞 − 1). The second possibility can 

occur only if 𝑞|(𝑝 − 1).  

Further we can use the sylow theorems to test the simplicity of finite groups. For example we 

prove the following:  

Example: No group of order 175 is simple.  

Proof: Let G be a group of order 175. Now 175 = 52.7. Hence G has sylow 5-subgroups. Let n5 

be the number of sylow 5 – subgroups. Then by sylow’s third theorem, n5 = 5k + 1, 𝑘 ≥ 0 and 

n5| 175. Hence n5 = 1. So there exists only one sylow 5 –subgroup, say H of order 52 in G. Hence 

by Sylow’s second theorem, H is a normal subgroup of order 25 in G. Thus it follows that G is 

not a simple group.  

Example: Show that no group of order 70 is a simple group.  

Solution: Let G be a group of order 70. Now 70 = 2.35. Hence by a previous proposition (any 

group of order 2n where n is an odd integer, contains a normal subgroup of order n), we find that 

G contains a normal subgroup of order 35. Hence G is not a simple group.  

Example: Let AG be a group of order 30. Since 30 = 2∙15, G contains a normal subgroup of 

order 15. Hence G is not a simple group.  

Test by Extended Cayley’s Theorem: 

We propose to give the statement of this theorem without proof. Then we shall discuss its 

application to test the simplicity of groups.  

Theorem: Let G be a finite group and let H be a subgroup of G of index n. Then there exists a 

homomorphism 𝑓: 𝐺 →Sn such that 𝐾𝑒𝑟𝑓 ⊆ 𝐻. 
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Corollary: Let G be a finite group and let H be a subgroup of a G of index  𝑚 ≠ 1. If |𝐺| does 

not divide  𝑚 then (show that) G has a nontrivial normal subgroup.  

Example: There does not exist a simple group of order 12. 

Solution: Let G be a group of order 36. Now 36 = 32 ∙ 32 Hence by sylow’s first theorem, G has 

a subgroup H of order 32. Now [𝐺: 𝐻]  =  4. 

Hence by the Extended Cayley’s theorem, there exists homomorphism 𝑓: G →S4 such that 

𝐾𝑒𝑟 𝑓 ⊆  𝐻 . If 𝐾𝑒𝑟 𝑓 =  {𝑒} , then 𝑓  is a homomorphism and hence G is isomorphic to a 

subgroup K of S4. In that case, |𝐾|  =  |𝐺|  =  36 implies that S4 contains a subgroup of order 36 

which is impossible, since |S4| = 24. Hence 1 < |𝐾𝑒𝑟𝑓| ≤ |𝐻|  =  9. Therefore G has a non 

trivial subgroup 𝐾𝑒𝑟𝑓. Thus, we find that G is not a simple group.  

Example: Show that no group of order 108 is a simple group.  

Solution: Let G be a group of order 108. Now 108 = 33 ∙ 22. Hence G has sylow 3 – subgroups 

as well as sylow 2 subgroups. Let n3 be the number of sylow 3-subgroups. Then by sylow’s third 

theorem n3 =1 or 4. If n3=  3𝑘 +1, 𝑘 ≥ 0 and n3 |108. Hence n3 = 1 or 4. If n3=1, then G has a 

unique sylow 3 subgroup H of order 33, which must be then normal, whence G is not simple.  

Suppose n3=4. Let A and B be two distinct sylow 3-subgroups of G. Now |𝐴 ∩ 𝐵|  ≠  27. If |𝐴 ∩

𝐵| ≤ 3, then 

|AB| = 
|A||B|

|A∩B|
≥

27.27

3
= 243 > 108. 

Hence |A∩B| = 9 and |AB| = 81. 

Now |𝐴 ∩ 𝐵|  =  32 and |𝐴|  =  33. Hence 𝐴 ∩ 𝐵 is a normal subgroup in A. Similarly, 𝐴 ∩ 𝐵 is 

a normal subgroup in B. Hence 𝐴 ⊆ 𝑁 (𝐴 ∩ 𝐵 ), Where 𝑁(𝐴 ∩ 𝐵) =  {𝑔 є 𝐺|𝑔(𝐴 ∩ 𝐵)𝑔−1 ⊆

𝐴 ∩ 𝐵}, is a subgroup of G. 

Hence 𝐴𝐵 ⊆  𝑁(𝐴 ∩ 𝐵). Now 81 =  |𝐴𝐵| ≤ |𝑁(𝐴 ∩ 𝐵)| and |𝑁(𝐴 ∩ 𝐵)| divides 108. 

Hence |𝑁(𝐴 ∩ 𝐵)|  =  108. This implies that |𝑁(𝐴 ∩ 𝐵)|  = 𝐺 and so 𝐴 ∩ 𝐵 is a normal 

subgroup of order 9. Therefore G is not simple. 
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Unit 8 

 
Course Structure 

1. Direct Product Of groups: Definitions 

2. Applications 

 

 

Direct Product of Groups 

 

Introduction 

In this unit, we will learn about the direct product of groups. This is an important 

tool to construct new groups from pre-existing groups by using the operation of 

cross product of sets. We now formally state the definition as follows: 

Definition: Let H and K be two groups. Let us consider the set G = H×K. On G we define a 

binary operation as follows:  

(h1, k1) o (h2, k2) = (h1 h2, k1, k2) 

It can be easily verified (verify!) that the associative law under o holds in G. Now, (eH, eK) є H X 

K such that for any (h, k) є G we have (eH, eK)o (h, k) =(𝑒𝐻 ℎ, 𝑒𝐾𝑘) = (ℎ, 𝑘)  and (ℎ, 𝑘) ∘

(𝑒𝐻, 𝑒𝐾) = (ℎ𝑒𝐻 , 𝑘𝑒𝐾) = (ℎ, 𝑘). So (eH, eK) is the identity in G=H×K. 

Let (h, k) є G so that h є H and k є K. This implies h-1 є H and k-1 є K. Hence (h-1, k-1) є G such 

that (h, k) o (h-1, k-1) = (hh-1, kk-1) = (eH, eK) and (h-1, k-1) o (h, k) = (h-1h, k-1k) = (eH, eK). 

Therefore, (h-1, k-1) is the inverse of (h, k) in G = H × K and we denote (h-1, k-1) by (h, k)-1. 

Thus, under the above define binary operation G = H × K is a group. This group G = H× K is 

called external direct product (or simply direct product) of H and K.  

Definition A Group G is said to be an internal direct product of two subgroups H and K of G if 

(i) H and K are normal subgroups, (ii) G = HK and (iii) H∩K = {e}. 
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Definition A Group G is said to be an internal direct product of finite number of subgroups H1
, 

H2, ....., Hn, of G if (i) H1, H2, ...., Hn are normal subgroups,  

 (ii) G = H1 H2, ...., Hn  and 

(iii) H1∩(H1 H2, ....Hi-1 H-+1, ...., Hn) = {e} for all i = 1,2, ... ,n. 

Theorem Let G be a group. H and K be two subgroups of G. Then G is an internal direct product 

of H and K if and only if  

(i) G = HK,  

(ii) ab = ba for all a є H, b єK 

(iii) H∩K = {e}.  

Proof: Let G be an internal direct product of H and K. Then H and K are normal subgroups of G, 

G = HK and H∩K = {e}. 

Now, let aєH and b є K. Then  𝑎𝑏𝑎−1𝑏−1 ∈ 𝑎𝐾𝑎−1𝑏−1 ⊆ 𝐾𝐾 ⊆ 𝐾, as 𝑎𝐾𝑎−1 ⊆ 𝐾 &𝑏−1 ∈ 𝐾.  

Conversely, assume that the given conditions are satisfied. It remains to show that H K are 

normal subgroups of G.  

Let h є H and g є G = HK. Hence g = h1 k1 є K. 

 ghg-1 = h1k1hk1
-1h1

-1 

  = h1k1k1
-1hh1

-1 [since hk1
-1 =k1

-1h] 

  = h1hh1
-1 є H.  

Therefore gHg-1⊆ 𝐻for all gє G, 𝑖. 𝑒., H is a normal subgroup G. Consequently, G is an internal 

direct product of H and K.∎ 

 

Theorem Let H and K be two normal subgroups of a group G. Then G is an internal direct 

product of H and K if and only if every element g є G can be expressed uniquely as g = hk where 

h є H &k є K. 
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Proof: Let G be an internal direct product of H and K. So G = HK. Let g є G. So g = hk for some 

h є H, k є K. If possible let g = h1k1 for some h1 є H, K1 є k. Therefore, h1k1 = hk. This implies h-

1h1 = kk1
-1 є H ∩ K = {e}. 

This leads to h = h1 and k =k1. Hence every element g є G can be expressed as g = hk for unique 

h є H & kє K. Therefore, G ⊆ HK. Again, H ⊆ G & K ⊆ G. So HK ⊆ G. Hence, G = HK.  

Now, let x є H ∩ K. Therefore, x є H and x є K. Now, x = ex = xe. Form unique representation 

of elements we have x = e. Therefore, H∩K = {e}.  

Consequently, G is an internal direct product of H and K.  

In general external direct product of two cyclic groups may not be cyclic. For this we consider 

the cyclic𝕫2 and 𝕫4. But their direct product G = 𝕫2 x 𝕫4 is not cyclic, because G is a group or 

order 8 but there is no element of order 8 in G. In fact each non identity element of G is order 2 

or 4. The following theorem establishes the necessary and sufficient condition such that the 

external direct product of two finite cyclic groups will again be a cyclic group.   

Theorem Let A and B be two cyclic groups of order m & n respectively. Then A × B is cyclic if 

and only if gcd(m, n) =1  

Proof: At first, we assume that gcd(m, n) = 1. Now, |A × B| = mn. Let (a, b) є A × B. Then (a, 

b)mn = (amn
, bmn) = (am)n, (bn)m = (eA, eB), where A = < a>& B = < b>. 

Let t be any other positive integer such that (a, b) t = (eA, eB), i.e., (at, bt) = (eA, eB). Then at = eA 

and bt = eB, i.e., m| t and n| t. Also gcd (m, n) = 1. So mn| t, i.e., mn ≤ t. Hence o((a, b)) = mn. 

Consequently, A×B is cyclic.  

Conversely, let A×B be a cyclic group, where A = <a> and B = <b> are two cyclic groups or 

order m and respectively. Let gcd(m, n) = d. Suppose d > 1.  

Now, 
𝑚𝑛

𝑑
=

𝑚

𝑑
𝑛 =

𝑛

𝑑
𝑚 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟. Then for any (x, y) є A × B, we have  

(𝑥, 𝑦)
𝑚𝑛

𝑑 = ((𝑥𝑚)
𝑛

𝑑 , (𝑦𝑛)
𝑚

𝑑 = (𝑒𝐴 , 𝑒𝐵). 
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This shows that 𝑜((𝑥, 𝑦))  ≤  
𝑚𝑛

𝑑
< 𝑚𝑛 (𝑠𝑖𝑛𝑐𝑒 𝑑 > 1).Hence AxB has no element of order mn. 

Therefore, the group A x B is not a cyclic group → a contradiction. Hence d = 1 and 

consequently, gcd (m, n) = 1.  

The following theorem shows the connection between internal direct product and external direct 

product of subgroups of a given group.  

Theorem Let G be a group. Let A and B be two subgroups of G. If G is an internal direct 

product of A and B then G ≅ A X B.  

Proof: Since, G is an internal direct product of A and B, so every element of G can be expressed 

uniquely as a product of elements of A and B. Let x є G. Then there exist unique a є A and 

unique b є B such that x = ab.  

We define f: G → A ×B by (x) = (a, b) where x = ab є G unique a є A and unique b є B. 

Suppose x1= a1b1& x1 = a2b2 be two elements of where a1, a2 є A &  b1, b2 є B, such that f (x1) = f 

(x2), i.e., (a1, b1) = (a2, b2), i.e., a1 = a2, b1 = b2, i.e., x1 = x2. Consequently, f is injective.  

Clearly, f is surjective.  

Let x1 = a1b1& x2 = a2b2 be two elements of G. Since G is internal direct product of A and B so 

b1a2 = a2b1. 

Now, f (x1x2) = f (a1b1a2b2) = f (a1a2b1b2) = (a1a2, b1b2) = (a1,b1)(a2,b2) = f (x1) f ((x2). Hence, f 

is a homomorphism.  

Consequently, f is an isomorphism and hence G ≅ A × B. 

Exercise If a group, G is the internal direct product of its subgroups H and K; then H  ≅ G/K and 

G/H ≅ K. 

Solution: Since G is an internal direct product of its two subgroups H and K so every element g 

є G can be expressed as g = hk for unique h є H and unique k є K.  

We now define a mapping f : G → K by f(g) = k where g = hk є G for unique h є H and unique k 

є K.  
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Let g1, g2 be two elements of G. Then g1 = h1k1 and g2 = h2k2 for unique h1, h2 є H and unique k1, 

k2 є K. Now,  

 f(𝑔1 , 𝑔2) = 𝑓((ℎ1𝑘1)(ℎ2𝑘2)) 

  = 𝑓(ℎ1(𝑘1ℎ2)𝑘2) 

  =f(h1h2k1k2) [since k1h2 = h2k1] 

  = k1k2  

  = f (g1) f (g2) 

Hence, f is homomorphism.  

Clearly, f is surjective. Thus, f is an epimorphism. Hence, by First isomorphism theorem we have 

𝐺/𝑘𝑒𝑟 𝑓 ≅ 𝐾. 

Now  

𝑘𝑒𝑟𝑓 = {𝑔 ∈ 𝐺: 𝑓(𝑔) = 𝑒} 

                  = {𝑔(= ℎ𝑘) ∈ 𝐺:  𝑘 = 𝑒} 

                      = {𝑔 ∈ 𝐺: 𝑔 = ℎ ∈ 𝐻} = 𝐻 

Hence 𝐺/𝐻 ≅ 𝐾. Similarly we can show that 𝐺/𝐾 ≅ 𝐻. 

For a group G, 𝐴𝑢𝑡 𝐺 denotes the set of all automorphisms of G.  

Exercise Find 𝐴𝑢𝑡 (𝕫2 × 𝕫2) 

Solution: Now 𝕫2 × 𝕫2 = {([0], [0]), ([0], [1], [0]), ([1], [1])}. Let e =([0], [0]), a = ([0], [1], b = 

([1], [0]), c = ([1], [1]). Now 2a = 2b = 2c = ([0], [0]). Also, a + b = c, b + c = a & c + a = b. 

Therefore, 𝕫2 x 𝕫2 ≅ K4. 

Let f є 𝐴𝑢𝑡(𝕫2 x 𝕫2). Then for any x є 𝕫2 x 𝕫2, o (𝑓(𝑥)) =  𝑜 (𝑥). Then f {a, b, c} = {a, b, c}. 

Hence, f is a permutation on the set of three elements a, b, c. So we find that |𝐴𝑢𝑡(𝕫2 x 𝕫2)| ≤ 6. 

Let o be any permutation on {a, b, c}. Then we define f:𝕫2 x 𝕫2 → 𝕫2 x 𝕫2 by 𝑓 (𝑒) = 𝑒, 𝑓 (𝑎) =

𝑎(𝑎), 𝑓(𝑏) = 𝑜(𝑏), 𝑓(𝑐) = 𝑜(𝑐). Then, early f is bijective. Moreover, one can prove (prove!) 
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that f is a homomorphism and hence f is an automorphism. Similarly, we can show that each 

permutation on {a, b, c} will produce an automorphism of the group 𝕫2 x 𝕫2. Hence, | 𝐴𝑢𝑡 

(𝕫2 x 𝕫2)| = 6. 

 

Exercises  

1. If a ≅ B and C ≅ D then prove that A ×C ≅ B × D. 

2. Prove that 𝕫8 ≇ 𝕫4 × 𝕫2. 

3. Prove that S3 is not isomorphic to a direct product of two non-trivial groups.  

4. Prove that 𝕫4 ≇ 𝕫2 × 𝕫2. 

5. Prove that 𝐴𝑢𝑡(𝕫2 × 𝕫2) ≅S3
. 

Let G be a group such that G = H1× H2× ... × H Where Hi is a subgroup of G for i = 1, 2, ... , n. 
For each i = 1, 2, ... ,n let Ki, be a normal subgroup of G such that Ki⊆ Hi. Let K = K1× K2× 

.....× Kn. Show that G/K≅ H1/K1× H2/K2× ... × Hn/Kn. 

 

Summary 
In this unit, we have mainly dealt with Direct product of groups and relevant 

theorems and applications. 
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Unit 9 

 
Course Structure 

1. Solvable Groups: definitions and characterization theorems 

2. Nilpotent groups 

 

Solvable and Nilpotent Groups 

 

Introduction 

Ascending central series and descending central series play an important role in the literature of 

group theory. In this chapter we study ascending central series and descending central series in a 

group. Moreover we study other series of subgroups of a group. Solvability plays a vital role for 

solving algebraic equations over a field. We prove in this section that n ≥ 5, Sn is not solvable. 

Also, in this chapter we study properties of nilpotent group. 

Definition: Let G be a group and G = H0⊇ H1⊇ H2⊇...............⊇Hn = {e} be a chain of subgroup of 

G. Then this chain is said to be a subnormal series (subnormal chain) if each H i+1 is normal in Hi 

for i = 0, 1, ........,n-1. This chain is called a normal series if each Hi is normal in G for i = 1, 2, 

......, n. 

 For a subnormal series G = H0⊇ H1⊇ H2⊇...............⊇Hn = {e} the groups Hi / Hi+1 (for i = 0, 

1,........, n-1) are called factors of te subnormal series. 

Remark: Every group G contains a subnormal series as well as a normal series, viz., G⊇ {e}. 

Also, from definition it follows that every normal series is a subnormal series. 

Definition: Let G be a group and G = H0⊇ H1⊇ H2⊇...............⊇Hn = {e} be a subnormal series. 

Then this subnormal series is called a solvable series if each factor H i / Hi+1 is commutative. A 

group G is said to be a solvable group if it has a solvable series. 

Example: Consider the group S3. Now A3 is a normal subgroup of S3 and {e} is a normal 

subgroup of A3. Hence S3⊇  A3 {e} is a subnormal series. Also each factor S3/A3 and A3/{e} is 

commutative. Hence, S3 is a solvable group. 

Remark: Every commutative group is solvable. But the converse is not true in general. For 

example, S3 is a solvable group which is not commutative. 

Example: Consider the group S4. Now A4 is a normal subgroup of S4. We consider the subgroup  
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K = {e,(1 2)(3 4),(1 4)(2 3), (1 3) (2 4)} of  A4. Since K is the only one subgroup of A4 of order 

4, so K is normal in A4. Again, T = {e,(1 2)(3 4)} is a subgroup of K such that [K : T] = 2. So T 

is normal in K. Hence S4⊇A4⊇K⊇ 𝑇 ⊇{e} is a subnormal scrics. Now, | S4 / A4| = 2, | A4 / K| = 

3, |K/T| = 2 and |T/{e}| = 2. Hence each factor of the subnormal series is commutative. 

Consequently, S4 is a solvable group. 

Example: We consider the group S5. Now S5  has only two subnormal series, viz., S5⊇ {e} and 

S5⊇A5⊇{e}. In each case, all the corresponding factors are not commutative, since S5 and A5 are 

not commutative. Hence, S5 is not solvable. 

Note: A simple group is solvable if and only if it is commutative. 

Theorem: Every subgroup of a solvable group is solvable. 

Proof: Let G be a solvable group and K be a subgroup of G. Since G is solvable so it has a 

solvable series  

G = H0⊇ H1⊇ H2⊇...............⊇Hn = {e}. 

 Set Ki = K∩Hi for i = 0,1,2,......,n. Now to show K is solvable, it is sufficient to show that 

the chain  

K = K0⊇ K1⊇ K2⊇...............⊇Kn = {e}. is a solvable series for the group K. 

 Now each Ki is a subgroup of K. Since each Hi+1 is normal in Hi(i =0,1,2,.......,n-1), we 

find that each Ki+1 is normal in Ki(i =0,1,2,.......,n-1). 

 Also, by second isomorphism theorem, we have Ki / Ki+1= Ki / Ki∩ Hi+1≅ Ki / Hi+1/Hi+1 . 

Now Ki / Hi+1/Hi+1 is a subgroup of Hi/Hi+1.  Since Hi/Hi+1 is commutative for i= 0,1, 2,.....,n-1, so 

its subgroup Ki Hi+1/ Hi+1 is commutative for i= 0,1, 2,.....,n-1. Hence Ki / Ki+1 is commutative. 

Therefore,  

K = K0⊇ K1⊇ K2⊇...........⊇Kn = {e} is a solvable series for K. Consequently, K is solvable. Hence 

the theorem. ∎ 

Theorem: Every homomorphic image of a solvable group is solvable. 

Proof: Let G = H0⊇ H1⊇ H2⊇...............⊇Hn = {eG} be a solvable series of a solvable group G and 

let f : G →�̅� be an epimorphism from G onto another group �̅�. We shall now show that �̅�is also 

solvable. Set 𝐻𝑖
̅̅ ̅ = f(Hi) for i= 0,1, 2,.....,n. Since Hi+1 is normal in Hi and f is an epimorphism, so 

𝐻𝑖+1
̅̅ ̅̅ ̅̅  = f(Hi+1) is normal in 𝐻𝑖

̅̅ ̅= f(Hi). Also, Hi⊇Hi+1 for i=0,1, 2,.....,n-1implies 𝐻𝑖
̅̅ ̅ = f(Hi) ⊇ 

f(Hi+1) = 𝐻𝑖+1
̅̅ ̅̅ ̅̅ . Hence, �̅� = 𝐻0

̅̅̅̅ ⊇ 𝐻1
̅̅̅̅ ⊇ 𝐻2

̅̅̅̅ ⊇ ⋯ ⊇ 𝐻𝑛
̅̅ ̅̅  = {𝑒�̅�} is a solvable series.  

Now, we define g : Hi → 𝐻1
̅̅̅̅ /𝐻𝑖+1

̅̅ ̅̅ ̅̅  by g(hi) = f(hi) 𝐻𝑖+1
̅̅ ̅̅ ̅̅ , for all hi∈Hi . Since, f is an epimorphism 

so it follows that g is an epimorphism of H i onto 𝐻1
̅̅̅̅ /𝐻𝑖+1

̅̅ ̅̅ ̅̅ . Let hi+1∈Hi+1 ⊆Hi. Then g (hi+1) = 

g(hi+1) 𝐻𝑖+1
̅̅ ̅̅ ̅̅  =𝐻𝑖+1

̅̅ ̅̅ ̅̅ . Hence 𝐻𝑖+1
̅̅ ̅̅ ̅̅ ⊆  kerg. So by Fundamental theorem, we have g induces an 

epimorphism from Hi /Hi+1 onto 𝐻1
̅̅̅̅ /𝐻𝑖+1

̅̅ ̅̅ ̅̅ . Since, Hi /Hi+1 is commutative, it follows that 𝐻1
̅̅̅̅ /𝐻𝑖+1

̅̅ ̅̅ ̅̅  

is also commutative. Consequently, the subnormal series �̅� = 𝐻0
̅̅̅̅ ⊇ 𝐻1

̅̅̅̅ ⊇ 𝐻2
̅̅̅̅ ⊇ ⋯ ⊇ 𝐻𝑛

̅̅ ̅̅  = {𝑒�̅�} 

is a solvable series. Thus �̅� is a solvable group. Hence the theorem. ∎ 
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Corollary: Let G be a group and H be a normal subgroup of G. If G is solvable then H and G /H 

are both solvable. 

Proof. Since every subgroup of a solvable group is solvable, it follows that H is solvable. Also 

there is a natural epimorphism from G onto G/H. Thus, G/H is a homomorphic image of G. 

Hence, G/H is solvable. ∎ 

Theorem: Let H be a normal subgroup of a group G. If both H and G/H are solvable then G is 

also solvable. 

Proof. Now G/H is solvable. Let G/H = T0⊇ T1⊇ T2⊇...............⊇Tn = {H} be a solvable series of 

G/H. Since each  

Ti(i =0,1,2,.......,n) is a subgroup of G/H, so each T i is of the form Gi/H where each Gi is a 

subgroup of G such that  

H ⊆Gi  for i =0,1,2,.......,n. So G/H = G0/H ⊇ Gi/H ⊇G2/H ⊇.......⊇Gn/H= {H} is a solvable series 

for G/H →(1). 

Since, series (1) is solvable, so Gi+1/H is normal in Gi/H for i= 0,1, 2,.....,n-1. Hence, each Gi+1 is 

normal in Gi /H for i= 0,1, 2,.....,n-1. 

 Again, since H is solvable so let H = H0⊇ H1⊇ H2⊇...............⊇Hs = {e} be a solvable series 

for H. So each Hi+1 is normal in Hi for i= 0,1, 2,.....,s-1 and each factor Hi / Hi+1 is commutative 

for i= 0,1, 2,.....,s-1. 

 Let gn∈ Gn. Then gn H∈ Gn/H = {H}. So GnH = H. Hence gn∈ H. This implies Gn ⊆H and 

thus Gn = H. 

Now, we consider a subnormal series G = G0 ⊇  G1 ⊇  G2 ⊇ ............... ⊇ Gn = H = H0 ⊇  H1 ⊇ 

H2⊇...............⊇Hs = {e} → (2). 

 We show that series (2) is a solvable series for the group G. To prove this it remains so 

show that each factor Gi/Gi+1  is commutative for i= 0,1, 2,.....,n-1. 

 Now , by third isomorphism theorem, we have (Gi/H) / (Gi+1/H)≅ Gi/ Gi+1 

Since series (1) is a solvable series, so  (G i/H) / (Gi+1/H) is commutative. Thus, Gi/ Gi+1 is 

commutative. Hence (2) is a solvable series and consequently, G is a solvable group. Hence the 

theorem. ∎ 

Corollary: A group G is solvable if and only if G/Z(G) is solvable. 

Theorem: Prove that direct product of two solvable groups is solvable. 

Proof. Let H and K be two solvable groups. Let G = HxK. It is easy to verify that G/H ≅ K. 

Since K is solvable so G/H is solvable. Again, H is solvable. Hence, G = H x K is solvable. ∎ 

Exercise: Show that the group D4 is solvable. 

Solution: Now D4 is non commutative group of order 8 – 23. Therefore, |Z(D4)| =2. We now 

consider the group D4 /Z(D4). The order of the group D4 /Z(D4) is 4. So D4 /Z(D4)is commutative 

and hence solvable. So by Corollary 4.12 we have D4 is solvable. ∎ 
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Exercise: Show that every group of order p2q is solvable where p and q are primes. 

Solution: Let G be a group of order p2q . Let p>q. Now G has sylow p – subgroup. Let np denote 

the number of Sylow p – subgroup of G. Then np| |G| and np = kp + 1 for some non negative 

integer k. From this it follows that np = 1 or q. If np = q then kp + 1=q, i.e, p |(q-1), a 

contradiction since p > q. Hence np = 1 and thus the Sylow p – subgroup is normal. Let H denote 

the Sylow p- subgroup of G. Then H is a normal subgroup of G. We now consider the subnormal 

series G⊇ H ⊇ {e}. Now since |G/H| = q so G/H is cyclic and hence commutative. Therefore, the 

factors of the subnormal series G⊇ H ⊇ {e}are commutative. 

 If q>p then we consider the Sylow q – subgroup of G. Let nq denote the number of Sylow 

q – subgroup of G. Then nq| |G| and nq = k1q + 1 for some non negative integer k1-  From this it 

follows that nq =1 or p or  p2. If nq = p then k1q + 1 = p, i.e., q|(p-1), A contradiction since q>p. 

Hence nq =1 or p or  p2. If nq = 1 then the Sylow q – subgroup is normal. Let K denote the Sylow 

q – subgroup of G. Then K is a normal subgroup of G. We now consider the subnormal series 

G⊇  K ⊇  {e}. Now since |G/K| = p2 so G/K is commutative. Therefore, the factors of the 

subnormal series G⊇ K ⊇ {e} are commutative. So in this case G is solvable. Again if nq = p2 

then  k1q + 1 = p2 implies q|( p2 – 1), i.e., either q|P -1) or q|)p + 1). Since q>p so q | (p -1). 

Hence q|(p = 1). This is possible only when q = 3 and p = 2. Therefore, |G| = 12 and any group of 

order 12 is solvable. Hence any group of order p2q is solvable. ∎ 

Exercise: Show that every group of order p2q2 is solvable where p and q are primes.  

Solution. Let G be a group of order p2p2. Without any loss of generality we assume that p > q. 

now G has Sylow p – subgroup. Let np denote the number of Sylow p – subgroup of G. Then np 

|ıGı and np = kp+1 for non negative integer k. From this follows that np = 1 or q or q2. If np = q 

then kp +1 = q, i.e, p|(q-1). a contradiction since p>q. Hence np = 1 or q2. If np =1 then the Sylow 

p-subgroup is normal. Let H denote the Sylow p – subgroup of G. Then H is a normal subgroup 

of G. We now consider the subnormal series G ⊇  H ⊇

{𝑒}are commutative. So in this case G is solvable. 

Let np = q2. Then kp +1 = q2 implies p |(q2 -1). This is possible only when p =3 and q =2. 

Therefore, |G| = 36 and any group of order 36 is solvable. Hence any group of order p2q2 

solvable. ∎ 

Definition: Let G be a group and a, b ε G. The commutator of this two elements a and b is the 

element aba−1b−1. 

Set A = { aba−1b−1: a, b ϵ G}. Then the subgroup of G generated by A, denoted by G is called 

the derived subgroup or commutator subgroup of G. One can easily verify that G is the smallest 

subgroup of G containing A.  

Theorem: A group G is commutative if and only if G = {e}.  

Proof. First suppose that G is commutative. Let a, b ε G. Then aba−1b−1 = e and A = {e}. 

Hence, G = {e}.  

Conversely, let G’ = {e}. Then for any a, b ϵ  G, we have ab a−1b−1ϵ  A ⊆ G =

{e}, i. e, aba−1b−1 = e, i. e, ab = ba. Hence G is commutaative. ∎ 
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Theorem: The derived subgroup G of a group G is a normal subgroup of G and G/G’ is 

commutative. 

Proof. To show G’ is a normal subgroup of G, let a ϵ G’ and g ϵ G. Now 𝑔𝑎𝑔−1𝑎−1 ∈ 𝐴 ⊆

G′, i. , e. , 𝑔𝑎𝑔−1𝑎−1 ∈ 𝐺 ′.  A;sp, a ∈ G’.  

Hence 𝑔𝑎𝑔−1 = (𝑔𝑎𝑔−1𝑎−1)𝑎 ∈ 𝐺 ′, for all a 𝑎 ∈ 𝐺 ′ and for all 𝑔 ∈ 𝐺 ′. Threfore, G’ is a normal 

subgroup of G.  

To show G/G’ is commutative, let aG’, bG’ ∈ G/G’. Then a, b ∈ G. Now, aba−1b−1ϵ  G implies 

(ab)(ba)-1 ∈ 𝐺 ′𝑖. 𝑒.,  (ab)G’ = (ba)G’, i.e., (aG’)(bG’) = (bG’)(aG’). Consequently, G/G’ is 

commutative. ∎ 

Theorem: Let G’ be the derived subgroup of a group G and H be a subgroup of G. Then H⊇ G’ 

if and only H is a normal subgroup of G and G/H is commutative.  

Proof. Let G’ ⊆ H. To show H is normal in G, let g ∈G and h ∈H.  

Now, 𝑔ℎ𝑔−1ℎ−1 ∈G’ ⊆ H. Thus, H is normal in G.  

Again, to show G/H is commutative, let aH, bH ∈ G/H. Then a, b ∈ G. Now, aba−1b−1 ∈ 𝐺 ′ ⊆

H  implies (ab)(b 𝑎)−1 ∈ 𝐻, 𝑖𝑙. 𝑒, (𝑎𝑏)𝐻 = (𝑏𝑎)𝐻, 𝑖. 𝑒. , (𝑎𝐻)(𝑏𝐻) = (𝑏𝐻)(𝑎𝐻).  Consequently, 

G/H is commutative.  

Conversely, let H be normal in G and G/H is commutative. Le a, b ∈ 𝐺. Set A = { aba−1b−1 ∈

𝐺 ′}. The 𝐺 ′ is the smallest subgroup of G containing A. Now, let aH,bH ∈ G/H. Since G/H is 

commutative, so (aH)(bH) = (bH)(aH), i.e.,(ab(ba)-1∈ H, i.e., aba-1b-1∈ H, for all a, b ∈ G. Hence, 

A ⊆ H. So H is a subgroup of G containing A where 𝐺 ′is the smallest subgroup of G containing 

A. Consequently 𝐺 ′ ⊆ H ∎ 

Exercise: Find S3′ 

Solution: Now S3 is a non commutative group. So S3′≠ {e}. Also, A3 is a normal subgroup of S3 

and S3/A3 is commutative. Hence S3′ ⊆ A3 . Moreover, S3′  is a normal subgroup of S3. Hence,  

S3′  =A3. ∎ 

Definition: Let G be a group and G′ be the derived subgroup of G. Set G(1) = G′ and define 

inductively G(k+1) =G(k)′, the derived subgroup of G(k), k > 0. For any positive integer k, G(k) is 

called the kth derived subgroup or kth commutator subgroup of G. 

Theorem: Let G be a group. Then G is solvable if and only if there exist a positive integer k 

such that G(k) = {e}. 

Proof. First suppose that there is a positive integer k such that G(k) = {e}. We consider the chain  

G ⊇G(1)⊇G(2)⊇..........⊇ G(k) = {e}→ (1) where G(m+1) is the derived subgroup of G(m) and  G(m) / 

G(m+1) is commutative. So the above series (1) is a solvable series and hence G is a solvable 

group. 

 Conversely, let G be a solvable group. Then there is a solvable series G = H0⊇ H1⊇ 

H2⊇...............⊇Hs = {e} for G. 
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 We now prove by induction on k that G(k)⊆ Hk for all k  = 1, 2,........., n. Now H1 is a 

normal subgroup of G and G/H1 is commutative. So 𝐺 ′ ⊆ H1, i.e., G(1)⊆ H1. Hence the result is 

true for k = 1. 

 Assume that the result is true for k = p where 1 ≤ p < n. Now, Hp+1 is a normal subgroup 

of Hp and Hp/Hp+1 is commutative. Hence Hp′ ⊆ Hp+1. Again, by induction hypothesis, G(p)⊆ Hp. 

This implies, G(p)′ ⊆ Hp′ ⊆ Hp+1. Thus the result is true for k = p + 1. Hence by method of 

induction we at once have G(k)⊆ Hk for all k = 1, 2, ......, n. Since Hn = {e}, so G(n)⊆ Hn= {e}, 

i.e., G(n) ={e}. Hence, the theorem. ∎ 

Lemma Let Sn be the symmetric group of n symbols. If n ≥5, then Sn
(k) contains all 3-cycles for 

any k ∈ N. 

Proof. Let (a b c) ∈ Sn be any 3 cycle. Since n ≥5, so there exist d & f such that a, b, c, d and f 

are distinct. Now, (a b d), (a c f) ∈ Sn . So (a b d) (a c f) (a b d) – 1 (a c f) -1∈ Sn′ i.e. (a b d) (a c f) 

(a d b) (a f c) ∈ Sn′ i.e. (a b c) ∈ Sn′ . 

 Now Sn′  is a normal subgroup of ∈ Sn and ∈ Sn′  contains a 3 cycle. Again, An is a 

normal subgroup Sn and Sn /An is commutative. Hence Sn′ ⊆ An.  Therefore, Sn′ is a normal 

subgroup of An such that Sn′ contains a 3 cycle. Then Sn′contains all the 3 cycles and thus Sn′ = 

An. Now A′n is a normal subgroup of An which contains all the three cycles. Hence  A′n= An. 

Thus Sn
(2) = A′n= An. Proceeding as above we can show that Sn

(2)= An for  any k ∈ N. Hence 

Sn
(k)contains all 3 cycles for any k ∈ N. ∎ 

Theorem  The symmetric group Sn on n symbols is not solvable for n ≥5. 

Proof.  By Lemma 4.24, we see that Sn
(k) = An ≠ {e}.  Consequently, Sn(n ≥ 5) is not solvable. ∎ 

Exercise  Let G be the group of all n x n real matrices which are invertible where n ≥ 3. Show 

that G is not solvable.  

Solution.  Let Eij be the nxn matrix whose (i, j)  th-entry is 1 and all other entries are 0. Then 

𝐸𝑖𝑗𝐸𝑟𝑠 {
𝐸𝑖𝑠  𝑖𝑓 𝑗 = 𝑟

0  𝑖𝑓 𝑗 ≠ 𝑟
 

where 0 denote the n x n null matrix. 

 Let I denote the nxn identity matrix. Now for i ≠ j, (I +Eij)∈ G and also (I + Eij)-1 = (I - Eij). Let 

T be the subgroup of G generated by {I + Eij : i ≠ j}. Since n≥ 3, so we can find an integer k such 

that 1≤ i ≠ k ≠ j ≤ n. 

Now   (I + Eik)(I + Ekj)(I + Eik)-1(I + Ekj)-1 

 = (I + Eik)(I + Ekj)(I - Eik)(I - Ekj) 

 = (I + Eik + Ekj+ Eij )(I - Eik - Ekj - Eij ) 

 = I + Eij 
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Therefore, I + Eij∈ T′, proving that T ∈ T′. Hence T = T ′. Thus, T is not solvable and hence G is 

not solvable. 
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Group Actions 

 

Introduction 

Action of a group is a formal way of interpreting the manner in which the elements of the group 

correspond to transformations of some space in a way that preserves the structure of that space. 

Common examples of spaces that groups act on are sets, vector spaces, and topological spaces. 

Definition Let (G, o) be a group and S be a nonempty set. A left action of G on S is function𝜑 : 

G × S → S such that 

(i) (𝑔1, 𝑔2) 𝜑 𝑥 = 𝑔1 𝜑(𝑔2𝜑𝑥) for all  𝑔1 ,  𝑔2 ∈ 𝐺 and for all 𝑥 ∈ 𝑆 

(ii) 𝑒𝜑𝑥 = 𝑥 for all 𝑥 ∈ 𝑆, where 𝑒 is the identity element in (𝐺, o). 

If there is a left action of a group (𝐺, o) on a nonempty set S then S is called a G-set and in this 

case we say that G acts on S on the left. 

Exercise Let G be a group and H be a subgroup of G. Let S = {aH ∶ a ∈ G}. We define 𝜑 : G × 

S → S by 𝑔𝜑𝑎𝐻 = (𝑔𝑎)𝐻. Then under this operation S is a G-set. 

Theorem Let G be a group and S be a G-set. Then the left action of G on S induces a 

homomorphism from G into A(S), where A(S) is the group of all permutations on S. 

Theorem Let G be a group and H be a subgroup of G. Let S = {aH ∶ a ∈ G}. Then there exists a 

homomorphism 𝜃 from G into A(S) such that 𝑘𝑒𝑟𝜃 ⊆ 𝐻.  
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Proof: We define 𝜑 : G × S → S by 𝑔𝜑𝑎𝐻 = (𝑔𝑎)𝐻. Under this operation S is a G-set. Hence 

this left action induces a homomorphism 𝜃 from G into A(S). 

Now, 

𝑘𝑒𝑟𝜃 = {𝑔 ∈ 𝐺 ∶  𝜃(𝑔) = identity element o𝑓 𝐴(𝑆)} 

               = {𝑔 ∈ 𝐺 ∶  Δ𝑔 = identity mapping from 𝑆 → 𝑆 } 

     = {𝑔 ∈ 𝐺 ∶  Δ𝑔(𝑎𝐻) = 𝑎𝐻, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎𝐻 ∈ 𝑆 } 

= {g ∈ G ∶  gaH = aH, for all aH ∈ S } 

                           = {𝑔 ∈ 𝐺 ∶  𝑔𝐻 = 𝐻, in particular we take 𝑒𝐻 for 𝑎𝐻 } 

= {𝑔 ∈ 𝐺 ∶ 𝑔 ∈ 𝐻} = 𝐻                           ∎ 

Theorem (Cayley’s Theorem) Any group G is isomorphic to a subgroup of the permutation 

group A(S). 

Proof: Let Δ𝑔: 𝐺 → 𝐺 by Δ𝑔(𝑎) = 𝑔𝑎 for all 𝑎 ∈ 𝐺, where 𝑔 ∈ 𝐺. 

Let 𝑎1 , 𝑎2 ∈ 𝐺 be such that Δ𝑔(𝑎1) = Δ𝑔(𝑎2). Then g𝑎1 = 𝑔𝑎2, 𝑖. 𝑒. , 𝑎1 =

𝑎2 . Thus, Δ𝑔is injective. 

Again, let 𝑏 ∈ 𝐺 . Then𝑔−1𝑏 ∈ 𝐺 such that  Δ𝑔(𝑔−1𝑏) = 𝑔(𝑔−1𝑏) = 𝑏 . Thus  Δ𝑔  is surjective. 

Hence  Δ𝑔  is bijective and thus  Δ𝑔 ∈ 𝐴(𝐺) . Also, we have (Δ𝑔)
−1

= Δ𝑔−1  and thus Δ𝑔1𝑔2
=

 Δ𝑔1
° Δ𝑔2

. 

 Now we define 𝜃: 𝐺 → 𝐴(𝑆) by 𝜃(𝑔) =  Δ𝑔, for all 𝑔 ∈ 𝐺. 

Then for any  𝑔1, 𝑔2 ∈ 𝐺, we have 𝜃(𝑔1𝑔2) = Δ𝑔1𝑔2
=  Δ𝑔1

° Δ𝑔2
= 𝜃(𝑔1)° θ(𝑔2). Hence θ is a 

homomorphism. 

Again, let   𝑔1 , 𝑔2 ∈ 𝐺 be such that 𝜃(𝑔1) =  θ(𝑔2). Then this leads to Δ𝑔1
= Δ𝑔2

, i.e., Δ𝑔1
(𝑎) =

Δ𝑔2
(𝑎) , for all 𝑎 ∈ 𝐺 , i.e., 𝑔1𝑎 = 𝑔2𝑎 , for all 𝑎 ∈ 𝐺 , i.e., 𝑔1 = 𝑔2 . Hence 𝜃  is injective. 

Consequently, G is isomorphic to some subgroup θ(G) of A(G). This proves the theorem.      ∎ 
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Theorem Let G be a group of order 2m, where m is an odd integer. Show that G has a normal 

subgroup of order m. 

Proof: Since G is a group of even order so there exists an element g ϵ G such that 𝑜 (𝑔) =

 2.Now by Cayley’s theorem G is isomorphic to a subgroup H of of A(G) where 𝜃 ∶ 𝐺 → 𝐴(𝐺) is 

given by 𝜃(𝑥) =  ∆𝑥, ∆𝑥(𝑎) =  𝑥𝑎, ∀𝑥, 𝑎 𝜖 𝐺. Now ∆𝑔(𝑔𝑎) =  𝑔(𝑔𝑎) =  𝑔2𝑎 = 𝑎. Hence ∆𝑔 is a 

product of transpositions of the form (𝑎 𝑔𝑎). Since |𝐺| =  2𝑚 so the number of transpositions 

appearing in the factorization of ∆𝑔is 𝑚. Thus ∆𝑔 is an odd permutation. Hence H contains an 

odd permutation. We now define 𝑓 ∶ 𝐻 → {1, −1}by 

𝑓(𝑜) =  {
   1    if 𝑜 is an even permutation 
−1    if 𝑜 is an odd permutation

} 

Where {1, -1} is a group under multiplication.  

It is easy to verify (verify!) that 𝑓is an epimorphism H onto {1, -1}. Hence H/kerf ≅ {1, -1}. 

Thus, |H/ker 𝑓 |= 2, i.e., |ker 𝑓|=
|𝐻|

2
=  

2𝑚

2
= 𝑚 [since 𝐻 ≅ 𝐺 so|𝐻| =  |𝐺| = 2𝑚]. 

So H has a normal subgroup, viz., 𝑟 𝑓 ,of order m and consequently, G has a normal subgroup of 

order m.∎ 

Definition Let S be a G – Set, where G is a group. On S we define a relation ‘~’ by, for all a, b ϵ 

S, a~ b if and only if 𝑔𝑎 =  𝑏 for some g ϵ G.  

Since S is a G – set, so for all 𝑎 𝜖 𝑆, 𝑒𝑎 = 𝑎. Hence 𝑎 ~ 𝑎 and thus ‘~’ is reflexive. Let 𝑎, 𝑏 𝜖 𝑆 

be such that  𝑎 ~𝑏. Then 𝑔𝑎 = 𝑏 for some 𝑔 𝜖 𝐺.  Now, 𝑔−1𝑏 =  𝑔−1(𝑔𝑎) = (𝑔−1𝑔)𝑎 = 𝑒𝑎 =

𝑎. Thus 𝑏~𝑎 and hence ‘~’ is symmetric.  

Finally, let 𝑎, 𝑏, 𝑐 𝜖 𝑆  be such that 𝑎~𝑏 and ~𝑐 . Then there exists 𝑔1 , 𝑔2𝜖 𝐺. such that 𝑔1𝑎 =

𝑏 𝑎𝑛𝑑 𝑔2𝑏 = 𝑐. Hence 𝑐 =  𝑔2𝑏 =  𝑔2(𝑔1𝑎) = (𝑔2𝑔1)𝑎  where 𝑔2𝑔1ϵG such that 𝑔1𝑎 = 𝑏  and 

𝑔2𝑏 = 𝑐.  Hence 𝑐 = 𝑔2𝑏 = 𝑔2(𝑔1𝑎) =  (𝑔2𝑔1)𝑎  where 𝑔2𝑔1𝜖 𝐺. Thus 𝑎~𝑐  and hence ‘~’ is 

transitive. Consequently, ‘~’ is an equivalence relation. Then S can be partitioned into disjoint 

equivalence classes. Each class is called orbit and the orbit of an element 𝑎𝜖 𝑆 is denoted by [a] 

and [a] = {𝑏 𝜖 𝑆: 𝑔𝑎 = 𝑏 for some 𝑔 𝜖 𝐺} =  𝐺𝑎. 

Definition Let G be a group and S b a G-Set. Let  𝑎 𝜖 𝑆  and  𝑔 𝜖 𝐺.  Then 

𝑎 is called 𝑓𝑖𝑥𝑒𝑑 𝑏𝑦 𝑎 𝑔 if 𝑔𝑎 = 𝑎. If 𝑔𝑎 = 𝑎 𝑓or all 𝑔 𝜖 𝐺 then a is called 𝑓𝑖𝑥𝑒𝑑 𝑏𝑦 𝐺. 
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Let S be a G – Set. We consider the subset 𝐺𝑎 of G where 𝐺𝑎 = {𝑔 𝜖 𝐺: 𝑔𝑎 = 𝑎}𝑎 𝜖 𝑆. 

Clearly 𝐺𝑎  is nonempty since 𝑐𝑎 = 𝑎  implies 𝑐 𝜖 𝐺𝑎. Let 𝑔1 , 𝑔2 𝜖 𝐺𝑎. Then 𝑔1𝑎 = 𝑎 𝑎𝑛𝑑 𝑔2𝑎 =

𝑎. Now, 𝑔2𝑎 = 𝑎 implis =  𝑔2
−1(𝑔2𝑎) =  𝑔2

−1𝑎, i. e, (𝑔2
−1𝑔2)𝑎 =  𝑔2

−1𝑎, i. e. , a = 𝑔2
−1𝑎.  

Now, (𝑔1𝑔2
−1)𝑎 =  𝑔1(𝑔2

−1 𝑎) =  𝑔1𝑎 = 𝑎. Hence 𝑔1𝑔2
−1 𝜖 𝐺𝑎.  Consequently, 𝐺𝑎  is a subgroup 

of G. This subgroup 𝐺𝑎 called stabilizer of a or isotropy group of a. 

Theorem Let G be a group and S b a G-Set. Then for all 𝑎 ∈ 𝑆, [𝐺 ∶  𝐺𝑎] = |[𝑎]|.  

Theorem (Burnside Theorem) Let G be a finite group and S be a finite G-set. Then the number 

of orbits of S is 
𝑥

𝑦
∑ 𝐹(𝑔),𝑔∈𝐺 where 𝐹(𝑔) is the number of elements of S fixed by 𝑔. 

Proof: We consider the set 𝑇 = {(𝑔, 𝑎) ∈ 𝐺 × 𝑆 ∶ 𝑔𝑎 = 𝑎}. Also for each 𝑔 ∈ 𝐺, let 𝐶𝑔 = {𝑎 ∈

𝑆 ∶ 𝑔𝑎 = 𝑎}. Then |𝐶𝑔| = 𝐹(𝑔) and hence |𝑇| = ∑ 𝐹(𝑔) = ∑ |𝐺𝑎|𝑎∈𝑆𝑔∈𝐺 . 

Let n be the number of orbits of S. Then 𝑆 = [𝑎1] ∪ [𝑎2] ∪ … … .∪ [𝑎𝑛] = ⋃ [𝑎]𝑎∈𝐴  where 𝐴 =

{𝑎1 , 𝑎2 , … . . , 𝑎𝑛} is a subset of S containing exactly one element from each orbit. 

Therefore, ∑ 𝐹(𝑔) = |𝑇| = ∑ |𝐺𝑎|𝑎∈𝑆𝑔∈𝐺 = ∑ |𝐺𝑎|𝑎∈𝑎1
+ ∑ |𝐺𝑎|𝑎∈[𝑎2] + ⋯ + ∑ |𝐺𝑎|𝑎∈[𝑎𝑛] . 

Now, [𝐺 ∶ 𝐺𝑎] = |[𝑎]| = |[𝑎1]| = [𝐺 ∶ 𝐺𝑎1
] where 𝑎1 ∈ [𝑎]. 

Therefore, 
|𝐺|

|𝐺𝑎|
=

|𝐺|

|𝐺𝑎1
|
, i.e., |𝐺| = 𝐺𝑎1

. 

Hence ∑ 𝐹(𝑔) =𝑎∈𝐺 |𝐺𝑎1
||[𝑎1]| + |𝐺𝑎2

||[𝑎2]| + ⋯ + |𝐺𝑎𝑛
||[𝑎𝑛]| 

= |𝐺𝑎1
|[𝐺 ∶ 𝐺𝑎1

] + |𝐺𝑎2
|[𝐺 ∶ 𝐺𝑎2

] + ⋯ + |𝐺𝑎𝑛
|[𝐺 ∶ 𝐺𝑎𝑛

] 

= |𝐺𝑎1
|

|𝐺|

|𝐺𝑎1
|

+ |𝐺𝑎2
|

|𝐺|

|𝐺𝑎2
|

+ ⋯ + |𝐺𝑎𝑛
|

|𝐺|

|𝐺𝑎𝑛
|
 

= |𝐺| + |𝐺|+. . . +|𝐺|    (𝑛 𝑡𝑖𝑚𝑒𝑠) 

= 𝑛|𝐺| 

Therefore 𝑛 =
1

|𝐺|
∑ 𝐹(𝑔)𝑔∈𝐺 . Hence, the theorem.∎ 
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Corollary Let G be a finite group and S be a finite G-set. Then |𝑆| = ∑ [𝐺 ∶ 𝐺𝑎1
]𝑎∈𝑆 , where A is 

a finite subset of S containing exactly one element from each orbit. 

Proof: Since S is finite, so the number of orbits of S is finite. 

Therefore, 𝑆 = [𝑎1] ∪ [𝑎2] ∪ [𝑎2] … … ∪ [𝑎𝑛] = ⋃ [𝑎]𝑎∈𝐴  where 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}  is finite 

subset of S containing exactly one element from each orbit. 

Hence, |𝑆| = ∑ |[𝑎]|𝑎∈𝑆 . But |[𝑎]| = [𝐺 ∶ 𝐺𝑎1
]. Therefore |𝑆| = ∑ [𝐺 ∶ 𝐺𝑎1

]𝑎∈𝑆 .  

Example Let G be a group and H be a subgroup of G of index 𝑛 such that |𝐺| does not divide 𝑛!. 

Then G contains a nontrivial normal subgroup. 

Solution Let 𝑆 = {𝑎𝐻 ∶ 𝑎 ∈ 𝐺}. Since G is finite so is S. Also |𝑆| = [𝐺 ∶ 𝐻] = 𝑛. We define 𝜑 ∶

𝐺 × 𝑆 → 𝑆 by 𝑔𝜑(𝑎𝐻) = (𝑔𝑎)𝐻 for all 𝑔 ∈ 𝐺, for all 𝑎𝐻 ∈ 𝑆. Then under this operation S is a 

G-set and this action induces a homomorphism 𝜃 ∶ 𝐺 → 𝐴(𝑆)  such that 𝑘𝑒𝑟𝑓 𝜃 ⊆ 𝐻 . Hence 

𝐺/ ker 𝜃 is isomorphic to a subgroup of A(S). So |𝐺/ ker 𝜃 | divides 𝑛!. But |𝐺| does not divides 

𝑛!. Hence |𝑘𝑒𝑟 𝜃| ≠ 1, proving that ker 𝜃 is a nontrivial subgroup of G. Hence G contains a 

nontrivial normal subgroup. 

Exercise Let G be a finite group of order of order 𝑝𝑛 where 𝑝 is prime 𝑝 > 𝑛. If H is subgroup 

of G of order 𝑝, then prove that H is a normal subgroup of G. 

Exercise Let G be a finite group. Let H be a subgroup of G of index 𝑝, where 𝑝 is the smallest 

prime dividing |𝐺|. Show that H is a normal subgroup of G.  

Exercise Let H be a subgroup of a group G. Prove that if H has a finite index 𝑛 then there is a 

normal subgroup K of G with 𝐾 ⊆ 𝐻 and [𝐺 ∶ 𝐾] ≤ 𝑛!. 
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Unit 11 
 

Course Structure 

1.0 The Revised Simplex Method 

1.1.1 Introduction 

1.1.2 Steps for solving Revised Simplex Method 
1.1.3 Worked Examples 
1.2   Dual Simplex Method 

1.2.1 Introduction:  
1.2.2 Computational Procedure of Dual Simplex Method 
1.2.3 Worked Examples:  
1.3  Dantzig–Wolfe decomposition 

1.3.1 Introduction 

1.3.2 Problem Reformulation:  

1.3.3 The Algorithm:  

1.3.4 Implementation 

1.4 Summary 

 
1.1 The Revised Simplex Method 

1.1.1 Introduction 

          While solving linear programming problem on a digital computer by regular simplex method, it requires 
storing the entire simplex table in the memory of the computer table, which may not be feasible for very large problem. 
But it is necessary to calculate each table during the each iteration. The revised simplex method which is a 
modification of the original method is more economical on the computer, as it computes and stores only the relevant 
information needed currently for testing and / or improving the current solution. i.e., it needs only 

  

 The net evaluation row Δj to determine the non-basic variable that enters the basis. 

 The pivot column 

 The current basis variables and their values (XB column) to determine the minimum positive ratio and 
then identify the basis variable to leave the basis. 

 

The above information is directly obtained from the original equations by making use of the inverse of the 
current basis matrix at any iteration. 

 
There are two standard forms for revised simplex method 

 Standard form-I – In this form, it is assumed that an identity matrix is obtained after introducing slack 
variables only. 

 Standard form-II – If artificial variables are needed for an identity matrix, then two- phase method of 
ordinary simplex method is used in a slightly different way to handle artificial variables. 
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1.1.2 Steps for solving Revised Simplex Method 
 

Solve by Revised simplex method  
      Max Z = 2x1 + x2 

Subject to 

3 x1 + 4 x2 ≤ 6 
6 x1 + x2 ≤ 3 

and x1, x2 ≥ 0 
SLPP 

Max Z = 2x1 + x2+ 0s1+ 0s2 Subject 
to 

3 x1 + 4 x2 + s1 = 6 
6 x1 + x2 + s2 = 3 

and x1, x2, s1, s2 ≥ 0. 

 

Step 1 – Express the given problem in standard form – I 

 Ensure all bi ≥ 0 

 The objective function should be of maximization 

 Use of non-negative slack variables to convert inequalities to equations The objective function 

is also treated as first constraint equation 

Z - 2x1 - x2 + 0s1 + 0s2 = 0 

3 x1 + 4 x2 + s1 + 0s2= 6 -- (1) 

6 x1 + x2 + 0s1 + s2= 3 

and x1, x2, s1, s2 ≥ 0 
Step 2 – Construct the starting table in the revised simplex form Express (1) in the matrix 
form with suitable notation 

 

 

Column vector corresponding to Z is usually denoted b  

matrix B1, which is usually denoted as B1 = [β0
(1)

, β1
(1)

, β2
(1) 

… βn    ] 

Hence the column β0
(1)

, β1
(1)

, β2
(1) 

constitutes the basis matrix B1 (whose inverse B1
-1 

is also B1) 
 

  

 

 a1 
(1) a2 

(1) 

-2 
3 
6 

-1 
4 
1 

 
Basic 

variables 

B1
-1 

  

 
XB 

 

 
Xk 

 

 
XB / Xk e1 

(Z) 
β1

(1) β2
(1) 

Z 1 0 0 0   
s1 0 1 0 6
s2 0 0 1 3

 

66



79 
 

Step 3 – Computation of Δj for a1 
(1) and a2 

(1)
 

Δ1 = first row of B1
-1 

* a1 
(1) 

= 1 * -2 + 0 * 3 + 0 *6 = -2 

Δ2 = first row of B1
-1 

* a2 
(1) 

= 1 * -1 + 0 * 4 + 0 *1 = -1 

Step 4 – Apply the test of optimality 

 
Both Δ1 and Δ2 are negative. So find the most negative value and determine the incoming vector. 

Therefore most negative value is Δ1 = -2. This indicates a1 
(1) (x1) is incoming vector. 

Step 5 – Compute the column vector Xk  

Xk = B1
-1 * a1 

(1) 

 

 

 
Step 6 – Determine the outgoing vector. We are not supposed to calculate for Z row. 

 

 
Basic 

variables 

B1
-1

 
 

 

XB 

 

 

Xk 

 

 

XB / Xk e1 (Z) 
β1

(1) β2
(1) 

Z 1 0 0 0 -2 - 

s1 0 1 0 6 3 2 

s2 0 0 1 3 6 1/2→outgoing 

↑ 

incoming 
 

Step 7 – Determination of improved solution 

 
Column e1 will never change, x1 is incoming so place it outside the rectangular boundary  

 

 

β1
(1) β2

(1) XB X1 

R1 0 0 0 -2 
R2 1 0 6 3 

R3 0 1 3 6 
 

Make the pivot element as 1 and the respective column elements to zero. 

 

β1
(1) β2

(1) XB X1 

R1 0 1/3 1 0 
R2 1 -1/2 9/2 0 

R3 0 1/6 1/2 1 
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Construct the table to start with second iteration 

 

  
 

Δ4 = 1 * 0 + 0 * 0 + 1/3 *1 = 1/3 

Δ2 = 1 * -1 + 0 * 4 + 1/3 *1 = -2/3 

Δ2 is most negative. Therefore a2 
(1) 

is incoming vector. Compute the column vector 

 

 

 

 

 
Determine the outgoing vector 

 
Basic 

variables 

B1
-1 

 
 

 

XB 

 

 

Xk 

 

 

XB / Xk 
e1 (Z) 

β1
(1) β2

(1) 

Z 1 0 1/3 1 -2/3 - 

s1 0 1 -1/2 9/2 7/2 9/7→outgoing 

x1 0 0 1/6 1/2 1/6 3 

↑ 

incoming 
 

 

Determination of improved solution 

 

β1
(1) β2

(1)  XB X2 

R1 0 1/3 1 -2/3 

R2 1 -1/2 9/2 7/2 

R3 0 1/6 1/2 1/6 
 

 

β1
(1) β2

(1) XB X2 

R1 4/21 5/21 13/7 0 
R2 2/7 -1/7 9/7 1 

R3 -1/21 8/42 2/7 0 
 

 a4 
(1) a2 

(1) 

0 
0 
1 

-1 
4 
1 

 
Basic 

variables 

B1
-1 

  

 
XB 

 

 
Xk 

 

 
XB / Xk 

e1 

(Z) 
β1

(1) β2
(1) 

Z 1 0 1/3 1   
s1 0 1 -1/2 9/2
x1 0 0 1/6 1/2
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Δ4 = 1 * 0 + 4/21 * 0 + 5/21 *1 = 5/21 

Δ3 = 1 * 0 + 4/21 * 1 + 5/21 *0 = 4/21 

Δ4 and Δ3 are positive. Therefore optimal solution is Max Z = 13/7, x1= 2/7, x2 = 9/7 

1.1.3 Worked Examples: 

Example 1 

Max Z = x1 + 2x2  

Subject to 

x1 + x2 ≤ 3  

x1 + 2x2 ≤ 5 3x1 + 

x2 ≤ 6 

and x1, x2 ≥ 0 

Solution SLPP 

Max Z = x1 + 2x2+ 0s1+ 0s2+ 0s3 

Subject to 

x1 + x2 + s1 = 3  

x1 + 2x2 + s2 = 5 3x1 + x2 

+ s3 = 6 

and x1, x2, s1, s2, s3 ≥ 0 

Standard Form-I 

Z - x1 - 2x2 - 0s1 - 0s2 - 0s3= 0  

x1 + x2 + s1 + 0s2 + 0s3= 3 

x1 + 2x2 + 0s1 + s2 + 0s3 = 5  

3x1 + x2 + 0s1 + 0s2 + s3 = 6 

and x1, x2, s1, s2 , s3 ≥ 0 

 
Matrix form 

 

 
 
 
 

 a4 
(1) a3 

(1) 

0 
0 
1 

0 
1 
0 

 
Basic 

variables 

B1
-1 

  

 
XB 

 

 
Xk 

 

 
XB / Xk 

e1 

(Z) 
β1

(1) β2
(1) 

Z 1 4/21 5/21 13/7   
x2 0 2/7 -1/7 9/7
x1 0 -1/21 8/42 2/7
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Revised simplex table Additional table 

  

Computation of Δj for a1 
(1) 

and a2 
(1)

 

Δ1 = first row of B1
-1 * a1 

(1) = 1 * -1 + 0 * 1 + 0 *1 + 0 *3= -1 

Δ2 = first row of B1
-1 

* a2 
(1) 

= 1 * -2 + 0 * 1 + 0 *2+ 0 *1 = -2 

Δ2 = -2 is most negative. So a2 
(1) 

(x2) is incoming vector. 

Compute the column vector Xk 

              Xk = B1
-1 * a1 

(1) 

 

 
Basic 

variables 

B1
-1   

 

XB 

 

 

Xk 

 

 

XB / Xk e1 

(Z) 
β1

(1) β2
(1) β3

(1) 

Z 1 0 0 0 0 -2 - 

s1 0 1 0 0 3 1 3 

s2 0 0 1 0 5 2 5/2→ 

s3 0 0 0 1 6 1 6 

↑ 
 
Improved Solution 

 

β1(1) β2(1) XB  Xk 

R1 0 0 0 0  -2 
R2 1 0 0 3  1 

R3 0 1 0 5  2 

R4 0 0 1 6  1 

 

β1
(1) β2

(1) β3
(1) XB

 Xk 

R1 0 1 0 5 0 
R2 1 -1/2 0 1/2 0 

R3 0 1/2 0 5/2 1 

R4 0 -1/2 1 7/2 0 

Revised simplex table for II iteration 

 

   a1 
(1)

 a2 
(1) 

 

  
-1 -2 
1 1 
1 2 
3 1 

 
Basic 

B1
-1 

  
XB 

 
Xk 

 
XB / Xk e1 β1

(1) β2
(1) β3

(1) 

variables (Z)    
Z 1 0 0 0 0   
s1 0 1 0 0 3
s2 0 0 1 0 5
s3 0 0 0 1 6
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Δ1 = 1 * -1 + 0 * 1 + 1 *1 + 0 *3= 0 

Δ4 = 1 * 0 + 0 * 0 + 1 *1+ 0 *0 = 1 
 
Δ1 and Δ4 are positive. Therefore optimal solution is Max Z = 5, x1= 0, x2 = 5/2. 

 

1.2 Computational Procedure of Dual Simplex Method 
 

1.2.1 Introduction:  
 

         Any LPP for which it is possible to find infeasible but better than optimal initial basic solution can be solved 
by using dual simplex method. Such a situation can be recognized by first expressing the constraints in ‘≤’ form 
and the objective function in the maximization form. After adding slack variables, if any right hand side element is 
negative and the optimality condition is satisfied then the problem can be solved by dual simplex method. 

 
        Negative element on the right hand side suggests that the corresponding slack variable is negative. This means 
that the problem starts with optimal but infeasible basic solution and we proceed towards its feasibility. 

 
       The dual simplex method is similar to the standard simplex method except that in the latter the starting initial 
basic solution is feasible but not optimum while in the former it is infeasible but optimum or better than optimum. 
The dual simplex method works towards feasibility while simplex method works towards optimality. 

 

 

 
 
1.2.2 Computational Procedure of Dual Simplex Method 
 

The iterative procedure is as follows 

 
Step 1 - First convert the minimization LPP into maximization form, if it  is given in the minimization 
form. 
Step 2 - Convert the ‘≥’ type inequalities of given LPP, if any, into those of ‘≤’ type by multiplying the 
corresponding constraints by -1. 
Step 3 – Introduce slack variables in the constraints of the given problem and obtain an initial basic solution. 
Step 4 – Test the nature of Δj in the starting table 

 If all Δj  and XB  are non-negative, then an optimum basic feasible solution has been attained. 

 If all Δj are non-negative and at least one basic variable XB is negative, then go to step 5. 

 If at least Δj one is negative, the method is not appropriate. 

Step 5 – Select the most negative XB. The corresponding basis vector then leaves the basis set B. Let Xr be the 

most negative basic variable. 

 

 

 a1 
(1) a4 

(1) 

-1 0 
1 0 
1 1 
3 0 

 
Basic 

variables 

B1
-1 

  

 
XB 

 

 
Xk 

 

 
XB / Xk 

e1 

(Z) 
  β1

(1) β2
(1) β3

(1) 

Z 1 0 1 0 5   
s1 0 1 -1/2 0 1/2 
x2 0 0 1/2 0 5/2
s3 0 0 -1/2 1 7/2
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Step 6 – Test the nature of Xr 

 If all Xr are non-negative, then there does not exist any feasible solution to the given problem. 

 If at least one Xr is negative, then compute Max (Δj / Xr ) and determine the least negative for incoming 
vector. 

Step 7 – Test the new iterated dual simplex table for optimality. 

Repeat the entire procedure until either an optimum feasible solution has been attained in a finite number of steps. 

 

1.2.3 Worked Examples:  
 

Example 1 
Minimize Z = 2x1 + x2  

Subject to 

3x1 + x2 ≥ 3 
4x1 + 3x2 ≥ 6 
x1 + 2x2 ≥ 3 

and  x1 ≥ 0, x2  ≥ 0 

 
Solution 

Step 1 – Rewrite the given problem in the form  

Maximize Z2 – = ׳x1 – x2 

Subject to 
–3x1 – x2 ≤ –3 
–4x1 – 3x2 ≤ –6 
–x1    – 2x2 ≤ –3  
x1, x2 ≥ 0 

Step 2 – Adding slack variables to each constraint  

Maximize Z
 ׳
= – 2x1 – x2 

Subject to 
–3x1 – x2 + s1 = –3 

–4x1 – 3x2 + s2 = –6 
–x1 – 2x2 + s3 = –3 

x1, x2, s1,s2, s3 ≥ 0 
Step 3 – Construct the simplex table 

 
 Cj → -2 -1 0 0 0  

 

 

 

 

→ outgoing 

Basic 
variables CB XB X1 X2 S1 S2 S3 

s1 0 -3 -3 -1 1 0 0 

s2 0 -6 -4 -3 0 1 0 

s3 0 -3 -1 -2 0 0 1 
 

Z0 = ׳ 
 
2 

↑ 
1 

 
0 

 
0 

 
0 

 

←Δj 
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Step 4 – To find the leaving vector 
Min (-3, -6, -3) = -6. Hence s2 is outgoing vector 

 

Step 5 – To find the incoming vector 

Max (Δ1 / x21, Δ2 / x22) = (2/-4, 1/-3) = -1/3. So x2 is incoming vector 
 

Step 6 –The key element is -3. Proceed to next iteration 

 
 Cj → -2 -1 0 0 0 

 

 

 

 

→ outgoing 

Basic 
variables CB XB X1 X2 S1 S2 S3 

s1 0 -1 -5/3 0 1 -1/3 0 

x2 -1 2 4/3 1 0 -1/3 0 

s3 0 1 5/3 0 0 -2/3 1 
 

Z2- = ׳ 
↑ 
2/3 

 
0 

 
0 

 
1/3 

 
0 

 

←Δj 

 

Step 7 – To find the leaving vector 
Min (-1, 2, 1) = -1. Hence s1 is outgoing vector 

 

Step 8 – To find the incoming vector 

Max (Δ1 / x11, Δ4 / x14) = (-2/5, -1) = -2/5. So x1 is incoming vector 
 

Step 9 –The key element is -5/3. Proceed to next iteration 

 
 Cj → -2 -1 0 0 0  

Basic 
variables CB XB X1 X2 S1 S2 S3 

x1 -2 3/5 1 0 -3/5 1/5 0 

x2 -1 6/5 0 1 4/5 -3/5 0 

s3 0 0 0 0 1 -1 1 
 

Z
 ׳
= -12/5 

 
0 

 
0 

 
2/5 

 
1/5 

 
0 

 

←Δj 

 

Step 10 – Δj ≥ 0 and XB ≥ 0, therefore the optimal solution is Max Z
  ׳

= -12/5, Z = 12/5, and x1=3/5, x2 = 6/5 

 
Example 2 

 

     Minimize Z = 3x1 + x2 

Subject to 
x1 + x2 ≥ 1 

2x1 + 3x2 ≥ 2 

and  x1 ≥ 0, x2  ≥ 0 
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Solution 
 

Maximize Z3 – = ׳x1 – x2  

Subject to 

–x1 – x2 ≤ –1 
–2x1 – 3x2 ≤ –2 

x1, x2 ≥ 0 
 

SLPP 

Maximize Z
 ׳
= – 3x1 – x2  

Subject to 
–x1 – x2 + s1 = –1 
–2x1 – 3x2 + s2 = –2 

x1, x2, s1,s2  ≥ 0 

 

Cj → -3 -1 0 0 
Basic 
variables CB XB X1 X2 S1 S2 

 

s1 

s2 

0 -1 
0 -2 

-1 -1 1 0  
→ -2 -3 0 1 

 

Z0 = ׳ 
↑ 

3 1 0 0 
 

←Δj 

s1 

x2 

0 -1/3 
-1 2/3 

-1/3 0 1 -1/3  → 

2/3 1 0 -1/3 

 

Z2/3- = ׳ 
↑ 

7/3 0 0 1/3 
 

←Δj 

s2 

x2 

0 1 
-1 1 

1 0 -3 1 
1 1 -1 0 

 

 

Z
 ׳
= -1 

 
2 0 1 0 

 

←Δj 

 

Δj ≥ 0 and XB ≥ 0, therefore the optimal solution is Max Z1- = ׳, Z = 1, and x1= 0, x2 = 1. 

 

1.3 Dantzig–Wolfe decomposition 
 

1.3.1 Introduction: 
           Dantzig–Wolfe decomposition is an algorithm for solving linear programming problems with special 
structure. It was originally developed by George Dantzig and Philip Wolfe and initially published in 1960. Many 
texts on linear programming have sections dedicated to discussing this decomposition algorithm.  

          Dantzig–Wolfe decomposition relies on delayed column generation for improving the tractability of large-
scale linear programs. For most linear programs solved via the revised simplex algorithm, at each step, most 
columns (variables) are not in the basis. In such a scheme, a master problem containing at least the currently active 
columns (the basis) uses a sub-problem or sub-problems to generate columns for entry into the basis such that their 
inclusion improves the objective function. 
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1.3.1 Required Form:  
        In order to use Dantzig–Wolfe decomposition, the constraint matrix of the linear program must have a specific 
form. A set of constraints must be identified as "connecting", "coupling", or "complicating" constraints wherein 
many of the variables contained in the constraints have non-zero coefficients. The remaining constraints need to be 
grouped into independent sub-matrices such that if a variable has a non-zero coefficient within one sub-matrix, it 
will not have a non-zero coefficient in another sub-matrix. This description is visualized below: 

 

The D matrix represents the coupling constraints and each Fi represents the independent sub-matrices. Note that it is 
possible to run the algorithm when there is only one F sub-matrix. 

1.3.2 Problem Reformulation:  
        After identifying the required form, the original problem is reformulated into a master program 
and n subprograms. This reformulation relies on the fact that a non-empty, bounded convex polyhedron can be 
represented as a convex combination of its extreme points (or, in the case of an unbounded polyhedron, a convex 
combination of its extreme points and a weighted combination of its extreme rays). 

        Each column in the new master program represents a solution to one of the sub-problems. The master program 
enforces that the coupling constraints are satisfied given the set of sub-problem solutions that are currently available. 
The master program then requests additional solutions from the sub-problem such that the overall objective to the 
original linear program is improved. 

1.3.3 The Algorithm:  
       While there are several variations regarding implementation, the Dantzig–Wolfe decomposition algorithm can 
be briefly described as follows: 

1. Starting with a feasible solution to the reduced master program, formulate new objective functions for each 
sub-problem such that the sub-problems will offer solutions that improve the current objective of the 
master program. 

2. Sub-problems are re-solved given their new objective functions. An optimal value for each sub-problem is 
offered to the master program. 

3. The master program incorporates one or all of the new columns generated by the solutions to the sub-
problems based on those columns' respective ability to improve the original problem's objective. 
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4. Master program performs x iterations of the simplex algorithm, where x is the number of columns 
incorporated. 

5. If objective is improved, go to step 1. Else, continue. 
6. The master program cannot be further improved by any new columns from the sub-problems, thus return. 

1.3.4 Implementation 
      There are examples of the implementation of Dantzig–Wolfe decomposition available in the AMPL and GAMS 

mathematical modeling languages. There is a general, parallel implementation available that leverages the open 
source GNU Linear Programming Kit. 

      The algorithm can be implemented such that the sub-problems are solved in parallel, since their solutions are 
completely independent. When this is the case, there are options for the master program as to how the columns 
should be integrated into the master. The master may wait until each sub-problem has completed and then 
incorporate all columns that improve the objective or it may choose a smaller subset of those columns. Another 
option is that the master may take only the first available column and then stop and restart all of the sub-problems 
with new objectives based upon the incorporation of the newest column. 

       Another design choice for implementation involves columns that exit the basis at each iteration of the algorithm. 
Those columns may be retained, immediately discarded, or discarded via some policy after future iterations (for 
example, remove all non-basic columns every10 iterations). 

        A recent (2001) computational evaluation of Dantzig-Wolfe in general and Dantzig-Wolfe and parallel 
computation is the PhD thesis by J. R. Tebboth. 

  
 

1.4 Summary:   
The revised simplex method is another efficient method developed by G.B. Dantzig, for solving L.P.P. it is 

efficient in the sense that at each iteration we need not re-compute values of all the variable in the simplex 
table while moving from one iteration to next in such of an improved solution of an L.P.P. In the dual simplex 
method we always attempt to retain optimality while bringing the primal back to feasibility. 
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Unit 12 
Course Structure 2.1 Introduction  2.2. Types of Integer Programming 2.3. Integer Linear Programming 2.4 Cutting Plane Methods 2.5 Branch-and-Bound Method 2.6 Summary  
2.1 Introduction       In all the previous lectures in linear programming discussed so far, the design variables considered are supposed to take any real value. However in practical problems like minimization of labor needed in a project, it makes little sense in assigning a value like 5.6 to the number of laborers. In situations like this, one natural idea for obtaining an integer solution is to ignore the integer constraints and use any of the techniques previously discussed and then round-off the solution to the nearest integer value. However, there are several fundamental problems in using this approach: 1. The rounded-off solutions may not be feasible. 2. The objective function value given by the rounded-off solutions (even if some are feasible) may not be the optimal one. 3. Even if some of the rounded-off solutions are optimal, checking all the rounded-off solutions is computationally expensive ( n2 possible round-off values to be considered for an n  variable problem) 
2.2. Types of Integer Programming        When all the variables in an optimization problem are restricted to take only integer values, it is called an 
all – integer programming problem. When the variables are restricted to take only discrete values, the problem is called a discrete programming problem. When only some variable values are restricted to take integer or discrete, it is called mixed integer or discrete programming problem. When the variables are constrained to take values of either zero or 1, then the problem is called zero – one programming problem.  
2.3. Integer Linear Programming 

         Integer Linear Programming (ILP) is an extension of linear programming, with an additional restriction that the variables should be integer valued. The standard form of an ILP is of the form, 

Units 16 & 17
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0

max




X
bAXtosubject

XcT  
 X must be integer valued         The associated linear program dropping the integer restrictions is called linear relaxation LR. Thus, LR is less constrained than ILP. If the objective function coefficients are integer, then for minimization, the optimal objective for ILP is greater than or equal to the rounded-off value of the optimal objective for LR. For maximization, the optimal objective for ILP is less than or equal to the rounded-off value of the optimal objective for LR.         For a minimization ILP, the optimal objective value for LR is less than or equal to the optimal objective for ILP and for a maximization ILP, the optimal objective value for LR is greater than or equal to that of ILP. If LR is infeasible, then ILP is also infeasible. Also, if LR is optimized by integer variables, then that solution is feasible and optimal for IP.          A most popular method used for solving all-integer and mixed-integer linear programming problems is the cutting plane method by Gomory (Gomory, 1957). 

Def. (Integer Programming):A linear programming problem in which some or all of the variables in the optimal solution are restricted to assume non-negative integer values is called an Integer Programming Problem (IPP) or Integer Linear Programming.  
 

Def. (Importance of Integer programming problem): In LPP the values for the variables are real in the optimal solution. However in certain problems this assumption is unrealistic. For example if a problem has a solution of 81/2 cars to be produced in a manufacturing company is meaningless. These types of problems require integer values for the decision variables. Therefore IPP is necessary to round off the fractional values.  
Def. (Pure IPP):In a linear programming problem, if all the variables in the optimal solution are restricted to assume non-negative integer values, then it is called the pure (all) IPP. 
 

Def. (Mixed IPP):In a linear programming problem, if only some of the variables in the optimal solution are restricted to assume non-negative integer values, while the remaining variables are free to take any non-negative values, then it is called A Mixed IPP. 
 

Def. (Zero-one problem):If all the variables in the optimum solution are allowed to take values either 0 or 1 as in ‘do’ or ‘not to do’ type decisions, then the problem is called  Zero-one problem or standard discrete programming problem. 
 
Methods of IPP: a) Cutting Plane Method b) Branch and Bound Method 
2.4 Cutting Plane Methods        The first exact techniques for solving integer programming problems were cutting plane techniques.   General idea: Solve linear programming relaxation, i.e., the given problem without integrality requirements. If the optimal solution is integer, we are done. Otherwise, introduce a cutting plane, i.e., an additional constraint that (1) cuts off (i.e., makes infeasible) the present optimal solution, while (2) not cutting off any feasible integer point.  
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 Example: Consider the all-integer programming problem:   P: Max z = y1 +   y2  s.t.            3y1 + 2y2 ≤ 6                    y1 + 3y2 ≤ 3            y1,      y2 ≥ 0 and integer. 
 

 The shaded area shows the feasible set of the linear programming relaxation, and yLP
 = (12/7, 3/7) is the optimal solution of the linear programming relaxation.   The triangle shown by the broken lines connecting (0, 0), (2, 0), and (0, 1) is the convex hull of the feasible set.  The dotted line is the cutting plane 5y1 + 10y2 ≤ 12. It is indeed a cutting plane, as the present optimal solution 

yLP
 is cut off as 90/7  12, and since all four feasible integer points satisfy the condition & are thus not cut off.    Computation performance of cutting planes has been disappointing.   

Example: We use a simple Dantzig cut, which does not require any knowledge beyond the solution typically provided by a solver. Other, more efficient, cutting planes work on the same principle.    Given an all-integer linear programming problem. Include all slack and excess variables, so that all constraints are equations. Let there be n nonnegative variables (including the slack and excess variables) and 
m structural equation constraints, and assume that the present optimal solution of the linear programming relaxation has at least one non-integer component.   Separate the variables into two disjoint sets B and N, where B includes all variables that are presently positive, while N includes all variables that are presently zero. If the solution is nondegenerate, the set Bwill include exactly m variables, and the set N exactly (n–m) variables. In case of primal degeneracy, the set N will include more than (n – m) variables, in which case we define N as any (n – m) variables presently at zero.   A Dantzig cut requires the sum of all variables in the set N to be at least “1.” Validity: (1) Since all variables in the set N equal zero, the cutting plane invalidates the present solution. (2) Any feasible solution to the original integer problem will need to have at least one variable in N assume a positive value, which, since this is an all-integer optimization problem, must be at least one. Hence, the sum of all the variables that are presently zero, must be at least one.   Add the cut to the problem & re-solve the problem (preferably with a warm start). Stop, if the new solution is integer; else, repeat. The the process, the z-value cannot increase (decrease) for max (min) problems. In each step, the feasible set shrinks. Unfortunately, for Dantzig cuts, this is not necessarily finite.   
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Example: Consider the integer programming problem:  Max z = 3y1 + 2y2  s.t. 3y1 + 7y2 22        5y1 + 3y2 17            y1   2  y1,      y2   0 and integer. Adding slack variables S1 and S2 and an excess variable E3, we obtain the following formulation with n = 5 variables and m = 3 structural constraints:  Max z = 3y1 + 2y2  s.t. 3y1 + 7y2 + S1             = 22        5y1 + 3y2 +       S2       = 17  y1 –                      E3 =   2  y1,     y2,    S1, S2, E3   0 and integer. The optimal solution is
1 2.0385y  ,

2 2.2692y  , 
1 2 0 S S , and 

3 0.0385E  with 10.65385z . Here, N = {S1, S2}, so that the Dantzig cut is S1 + S2 ≥ 1(or 8y1 + 10y2 ≤ 38). Subtracting a new excess variable E4 from the left-hand side of this cut, we obtain S1 + S2 – E4 = 1. Adding this cut to the problem and solving it again, we obtain the new solution
1 2.1538y ,

2 2.0769y , 
1 1S , 

2 4 0 S E and 
3 0.1538E  with an objective value 10.61539z . Clearly, another cut is required. The sequence of cutting planes generated in the process is shown in the table below. 

 
Optimal solution Cutting plane 

1 2.0385y , 
2 2.2692y , 

1 0S , 
2 0S , 

3 0.0385E  with 

10.65385z  (optimal solution of the LP relaxation). 

S1 + S2 ≥ 1 or 
S1 + S2 – E4 = 1 

1 2.1538y , 
2 2.0769y , 

1 1S , 
2 0S , 

3 0.1538E ,
4 0E  with 

10.61539z . 

S2 + E4 ≥ 1 or 
S2 + E4 – E5 = 1 

1 2.2692y , 
2 1.8846y , 

1 2S , 
2 0S , 

3 0.2692E , 
4 1E , 

5 0E  with 10.5769z . 

S2 + E5 ≥ 1 or 
S2 + E5 – E6 = 1 

1 2.3846y , 
2 1.6923y , 

1 3S , 
2 0S , 

3 0.3846E , 
4 2E , 

5 1E , 
6 0E  with 10.53846z . 

S2 + E6 ≥ 1 or  
S2 + E6 – E7 = 1 

1 2.5y , 
2 1.5y , 

1 4S , 
2 0S , 

3 0.5E , 
4 3E , 

5 2E , 
6 1E , 

7 0E  with 10.5z . 

S2 + E7 ≥ 1 or  
S2 + E7 – E8 = 1 

1 2.6154y , 
2 1.3077y , 

1 5S , 
2 0S , 

3 0.6154E , 
4 4E , 

5 3E , 
6 2E , 

7 1E , 
8 0E  with 10.46154z . 

S2 + E8 ≥ 1 or 
S2 + E8 – E9 = 1 

1 2.7308y , 
2 1.1154y , 

1 6S , 
2 0S , 

3 0.7308E , 
4 5E , 

5 4E , 
6 3E , 

7 2E , 
8 1E , 

9 0E  with 10.42308z . 

S2 + E9 ≥ 1 or 
S2 + E9 – E10 = 1 

  

1 2y , 
2 2y , 

1 2S , 
2 1S , 

3 0E  with 10z  (optimal all-

integer solution)  Even for this toy example, a large number of cuts are need to solve the problem. This is true in general. “Deep cuts” are much better, but cannot compete with “branch & bound methods” discussed next. One could use the objective function to derive a cut: Since all variables must be integer, the value of the objective function z = 
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3y1 + 2y2 must also be integer. The LP relaxation of the problem has an objective value of 10.65385z , hence z  ≤ 10 must hold.   A cutting plane is then 3y1 + 2y2 + S4 = 10. Solving the problem with this added constraint results in the solution 
1 3.3333y , 

2 0y , 
1 12S , 

2 0.3333S , 
3 1.3333E  and 

4 0S  with z  = 10. (Since the objective value has not changed, we presently encounter dual degeneracy).   The next cutting plane is then y2 + S4 ≥ 1, (or, alternatively, 3y1 + y2 + S5 = 9). Adding the cut results in an optimal solution 
1 2.6667y , 

2 1y , 
1 7S , 

2 0.6667S , 
3 E  0.6667, 

4 5 0 S S , with 10.z   The next cut is S4 + S5 ≥ 1, or, rewritten in terms of the original variables and the new slack variable S6, it is written as 6y1 + 3y2 + S6 = 18. The optimal solution is then 
1 2 2 y y , 

1 2S , 
2 1S , 

3 4 0 E S , 
5 1S , 

6 0S , with 10z . This solution is an integer optimum. The cuts are shown in the figure below.   
 

 

2.5 Gomory’s Cutting Plane Method for All – Integer Programming Consider the following optimization problem.  

0,

4593

62tosubject

3Maximize

21

21

21

21






xx
xx

xx
xxZ  

x1and x2 are integers 
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The graphical solution for the linear relaxation of this problem is shown below.  

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

D C

B

A

x1

x2

It can be seen that the solution is 7
33,7

54 21  xx and the optimal value of 7
417Z . The feasible solutions accounting the integer constraints are shown by red dots. These points are called integer lattice points. The original feasible region is reduced to a new feasible region by including some additional constraints such that an extreme point of the new feasible region becomes an optimal solution after accounting for the integer constraints.  The graphical solution for the example previously discussed taking x1and x2 as integers are shown below. Two additional constraints (MN and OP) are included so that the original feasible region ABCD is reduced to a new feasible region AEFGCD.  Thus the solution for this ILP is 3,4 21  xx and the optimal value is 15Z .   

7
417Z  

 7
33,7

54  

62 21  xx  

4593 21  xx  
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0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

D C

B

A

Additional constraints

G

E

F

x1

x2

(4,3)

O

P

M

N

Gomary proposed a systematic method to develop these additional constraints known as Gomory constraints. Generation of Gomory Constraints: Let the final tableau of an LP problem consist of n basic variables (original variables) and m non basic variables (slack variables) as shown in the table below. The basic variables are represented as xi(i=1,2,…,n) and the non-basic variables are represented as yj (j=1,2,…,m). 
Table 1 

Basis Z Variables
rb  

1x  2x  … ix  … nx  1y  2y  … jy  … my  Z 1 0 0  0  0 c1 c2  cj  cm b  

1x  0 1 0  0  0 c11 c12  c1j  c1m 1b  

2x  0 0 1  0  0 c21 c22  c2j  c2m 2b…               

ix  0 0 0  1  0 c31 c32  c3j  c3m ib  

…               

nx  0 0 0  0  1 c41 c42  c4j  c4m nb

 7
33,7

54  

15Z  

7
417Z
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 Choose any basic variable ix  with the highest fractional value. If there is a tie between two basic variables, arbitrarily choose any of them as ix . Then from the ith equation of table, 




m

j
jijii ycbx

1

                                                           ……..(1) 
Express both ib  and ijc  as an integer value plus a fractional part.   

)3........(

)2........(

ijijij

iii

cc
bb




  

Where ib , ijc denote the integer part and i , ij denote the fractional part. i will be a strictly positive fraction  10  i  and ij is a non-negative fraction  10  ij .Substituting equations (2) and (3) in (1), equation (1) can be written as 




m

j
jijiij

m

j
iji ycbxy

11

     …….(4) 
For all the variables ix  and jy  to be integers, the right hand side of equation (4) should be an integer. 




j

m

j
iji y

1

 integer   ……(5) 
Since ij are non-negative integers and jy  are non-negative integers, the term j

m

j
ij y

1

  will always be a non-negative number. Thus we have, 
1

1


















ij

m

j
iji y                                                       …….(6) 

Hence the constraint can be expressed as  
0

1




j

m

j
iji y       …….(7) 

By introducing a slack variable is (which should also be an integer), the Gomory constraint can be written as 
ij

m

j
iji ys  

1

          …….(8) 
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General procedure for solving ILP: Solve the given problem as an ordinary LP problem neglecting the integer constraints. If the optimum values of the variables are integers itself, then there is nothing more to be done.  If any of the basic variables has fractional values, introduce the Gomory constraints as discussed in the previous section. Insert a new row with the coefficients of this constraint, to the final tableau of the ordinary LP problem (Table 1). Solve this by applying the dual simplex method. Since the value of 0jy  in Table 1, the Gomory constraint equation becomes iis   which is a negative value and thus infeasible. Dual simplex method is used to obtain a new optimal solution that satisfies the Gomory constraint.   Check whether the new solution is all-integer or not. If all values are not integers, then a new Gomory constraint is developed from the new simplex tableau and the dual simplex method is applied again.  This process is continued until an optimal integer solution is obtained or it shows that the problem has no feasible integer solution.  Thus, the fundamental idea behind cutting planes is to add constraints to a linear program until the optimal basic feasible solution takes on integer values. Gomory cuts have the property that they can be generated for any integer program, but has the disadvantage that the number of constraints generated can be enormous depending upon the number of variables. 
2.5 Branch-and-Bound Method The widely used search method is the Branch and Bound Technique. It starts with the continuous optimum, but systematically partitions the solution space into sub problems that eliminate parts that contain no feasible integer solution. It was originally developed by A.H.Land and A.G.Doig.  These methods are very flexible & are applicable to AILP&MILPs.  Idea: Starting with the LP relaxation, subdivide the problem into subproblems, whose union includes all integer solutions that are not worse than the best known integer solution.  For instance, if presently y3 = 5.2, we subdivide the problem (the “parent”) by adding the constraint y3 ≤ 5 &y3 ≥ 6, respectively (thus creating “children”). Example:  Max z = 5y1 +   9y2  s.t.         5y1 + 11y2 94   Constraint I          10y1+  6y2 87   Constraint II   y1 ,y2  ≥ 0 and integer.  
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Solution Tree 

 
 Note: Each node of the solution tree represents one linear program.  
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The constraints at a node are all original constraints plus all additional constraints between the root of the tree & the node in question.  As we move down the tree, the problems get to be more constrained & thus their objective values cannot improve.  
 At any stage, the problem to be worked on is the “best” active node (whose z-value is the present upper bound (for max problems, lower bound for min problems)), the best known integer solution is the present lower bound (for max problems, upper bound for min problems).  
 Different modes: fully automatic (specify integrality conditions & let the optimizer do its thing), fully manual (manually construct the solution tree & solve the LPs graphically), or semi-automatic (manually construct the solution tree, whose LP solutions are obtained by some LP solver).  Same example:  
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If the IP problem has no feasible solution:  P: Max z = y1 + 4y2  s.t. 28y1 + 7y2 ≤ 49                 30y1 6y2 ≥ 36  y1,      y2 ≥   0 and integer. 
 

 
  
 
 

 
 
 
 
 
 
 
 
 
 

y
1
 = 1.4444 

y
2
 = 1.2222 

z  = 6.3333 

y
1
 = 1.5 

y
2
 = 1 

z  = 5.5 

y
2  
≤ 1 

y
2  
≥ 2 

no feasible 
solution   

No feasible 
solution   

No feasible 
solution   

Branching 1

Branching 2
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1.6 Summary 

         In this chapter, an extension of linear programming, referred to as integer linear programming, was 

introduced where few or all variables must be an integer. If all variables of a problem are integers, then such 

problems are referred to as all-integer linear linear programming problems. Most integer programming applications 

involve 0-1 variables. 

               The number of applications of integer linear programming continues to grow rapidly due to the availability 

of integer linear programming software packages.  

          The study of integer linear programming is helpful when fractional values for the variables are not permitted 

and rounding off their values may not provide an optimal integer solution; integer LP programming facilitates 

developing mathematical models with variables assume either value 0 or 1. Capital budgeting , fixed cost , plant 

location ,etc. , are few examples where 0-1 integer programming techniques are extensively used to find an optimal 

solution. 
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Unit-13 
Course Structure 3.1. INTRODUCTION 3.2. The Mathematical Aspects          3.2.1. Assumptions Made in Sequencing Problems          3.2.2. Applicability           3.2.3. Types of Sequencing Problems :          3.3  SOLUTIONS FOR SEQUENCING PROBLEMS :          3.3.1.  ‘N’ Jobs and Two Machines  
         3.3.1.1.  Analytical Method         3.3.2.  SEQUENCING OF ‘N’ JOBS ON “M”  MACHINES          3.4 summary  
 
 
3.1  INTRODUCTION                  In this Chapter let us look to a problem, where we have to determine the order or sequence in which the jobs are to be processed through machines so as to minimize the total processing time. Here the total effectiveness, which may be the time or cost that is to be minimized is the function of the order of sequence. Such type of problem is known as SEQUENCING PROBLEM.                   In case there are three or four jobs are to be processed on two machines, it may be done by trial and error method to decide the optimal sequence (i.e. by method of enumeration). In the method of enumeration for each sequence, we calculate the total time or cost and search for that sequence, which consumes the minimum time and select that sequence. This is possible when we have small number of jobs and machines. But if the number of jobs and machines increases, then the problem becomes complicated. It cannot be done by method of enumeration. Consider a problem, where we have ‘n‘ machines and ‘m’ jobs then we have  theoretically possible sequences. For example, we take n = 5 and m = 5, then we have  sequences i.e. which works out to 25, 000,000,000 possible sequences. It is time consuming to find all the sequences and select optima among all the sequences. Hence we have to go for easier method of finding the optimal sequence. Let us discuss the method that is used to find the optimal sequence. Before we go for the method of solution, we shall define the sequencing problem and types of sequencing problem. The student has to remember that the sequencing problem is basically a minimization problem or minimization model. 
 
3.2. The Mathematical Aspects of Job Sequencing and Processing Problems 
 A general sequencing problem may be defined as follows:                                            Let there be ‘n’ jobs ( , ,  ……… ) which are to be processed on ‘m’ machines (A, B, C,………), where the order of processing on machines i.e. for example, ABC means first on machine A, second on machine B and third on machine C or CBA means first on machine C, second on machine B and third on machine A etc. and the processing time of jobs on machines (actual or expected) is known to us, then our job is to find the optimal sequence of processing jobs that minimizes the total processing time or cost. Hence our job is to find that sequence out of  sequences, which minimizes the total elapsed time ( i.e.. time taken to process all the jobs). The usual notations used in this problem are:  
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                        = Time taken by i th job on machine A where i = I, 2,3…n. Similarly we can interpret for machine B and C  i.e.   and   etc.                             T = Total elapsed time which includes the idle time of machines if any and set up time and transfer time.  
 
3.1.1. Assumptions Made in Sequencing Problems  Principal assumptions made for convenience in solving the sequencing problems are as follows:                   (a) The processing times  and  etc. are exactly known to us and they are independent of order of processing the job on the machine. That is whether job is done first on the machine, last on the machine, the time taken to process the job will not vary it remains constant.                   (b) The time taken by the job from one machine to other after processing on the previous machine is negligible. (Or we assume that the processing time given also includes the transfer time and setup time).               (c) Each job once started on the machine, we should not stop the processing in the middle. It is to be processed completely before loading the next job.               (d) The job starts on the machine as soon as the job and the machine both become idle (vacant).This is written as job is next to the machine and the machine is next to the job. (This is exactly the meaning of transfer time is negligible).               (e) No machine may process more than one job simultaneously. (This means to say that the job once started on a machine, it should be done until completion of the processing on that machine).               (f) The cost of keeping the semi-finished job in inventory when next machine on which the job is to be processed is busy is assumed to be same for all jobs or it is assumed that it is too small and is negligible. That is in process inventory cost is negligible.               (g) While processing, no job is given priority i.e. the order of completion of jobs has no significance. The processing times are independent of sequence of jobs.              (h) There is only one machine of each type. 
 
3.2.2. Applicability   The sequencing problem is very much common in Job workshops and Batch production shops. There will be number of jobs which are to be processed on a series of machine in a specified order depending on the physical changes required on the job. We can find the same situation in computer center where number of problems waiting for a solution. We can also see the same situation when number of critical patients waiting for treatment in a clinic and in Xerox centers, where number of jobs is in queue, which are to be processed on the Xerox machines. Like this we may find number of situations in real world. 
 
3.2.3. Types of Sequencing Problems :  
There are various types of sequencing problems arise in real world. All sequencing problems cannot be solved. 
Though mathematicians and Operations Research scholars are working hard on the problem satisfactory method of 
solving problem is available for few cases only. The problems, which can be solved, are: 
 (a) ‘n’ jobs are to be processed on two machines say machine A and machine B in the order AB. This means that the job is to be processed first on machine A and then on machine B. (b) ‘n’ jobs are to be processed on three machines A,B and C in the order ABC i.e. first on machine A, second on machine B and third on machine C. (c) ‘n’ jobs are to be processed on ‘m’ machines in the given order (d) Two jobs are to be processed on ‘m’ machines in the given order. 
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3.3  SOLUTIONS FOR SEQUENCING PROBLEMS : 
 Now let us take above mentioned types problems and discuss the solution methods. 
 
3.3.1.  ‘N’ Jobs and Two Machines  
 
If the problem given has two machines and two or three jobs, then it can be solved by using the Gantt chart. But if 
the numbers of jobs are more, then this method becomes less practical. (For understanding about the Gantt chart, the 
students are advised to refer to a book on Production and Operations Management (chapter on Scheduling). 
 
3.3.1.1.  Analytical Method 
 A method has been developed by Johnson and Bellman for simple problems to determine a sequence of jobs, which minimizes the total elapsed time. The method:                    1. ‘n’ jobs are to be processed on two machines A and B in the order AB ( i.e. each job is to be processed first on A and then on B) and passing is not allowed. That is whichever job is processed first on machine A is to be first processed on machine B also, whichever job is processed second on machine A is to be processed second on machine B also and so on. That means each job will first go to machine A get processed and then go to machine B and get processed. This rule is known as no passing rule.                   2. Johnson and Bellman method concentrates on minimizing the idle time of machines. Johnson and Bellman have proved that optimal sequence of ‘n’ jobs which are to be processed on two machines A and B in the order AB necessarily involves the same ordering of jobs on each machine. This result also holds for three machines but does not necessarily hold for more than three machines. Thus total elapsed time is minimum when the sequence of jobs is same for both the machines.  
                3. Let the number of jobs be 1,2,3,…………n The processing time of jobs on machine A be   , , ………….  The processing time of jobs on machine B be  , , ………….. . 

Jobs Machining time in hours
 Machine A Machine B (Order of processing is AB)1   2   3   …..   …. … …I  ….    …. … …S  ….   …. … …….   .… … …T  ….   .… … ……   …. … …N   

           4. Johnson and Bellman algorithm for optimal sequence states that identify the smallest element in the given matrix. If the smallest element falls under column 1 i.e under machine I then do that job first. As the job after processing on machine 1 goes to machine 2, it reduces the idle time or waiting time of machine 2. If the 
smallest element falls under column 2 i.e under machine 2 then do that job last. This reduces the idle time of machine 1. i.e. if r th job is having smallest element in first column, then do the r th job first. If s th job has the smallest element, which falls under second column, then do the s th job last. Hence the basis for Johnson and 
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Bellman method is to keep the idle time of machines as low as possible. Continue the above process until all the jobs are over.                 5. If there are ‘n’ jobs, first write ‘n’ number of rectangles as shown. Whenever the smallest elements falls in column 1 then enter the job number in first rectangle. If it falls in second column, then write the job number in the last rectangle. Once the job number is entered, the second rectangle will become first rectangle and last but one rectangle will be the last rectangle.                           6. Now calculate the total elapsed time as discussed. Write the table as shown. Let us assume that the first job starts at Zero th time. Then add the processing time of job (first in the optimal sequence) and write in out column under machine 1. This is the time when the first job in the optimal sequence leaves machine 1 and enters the machine 2. Now add processing time of job on machine 2. This is the time by which the processing of the job on two machines over. Next consider the job, which is in second place in optimal sequence. This job enters the machine 1 as soon the machine becomes vacant, i.e first job leaves to second machine. Hence enter the time in out column for first job under machine 1 as the starting time of job two on machine 1. Continue until all the jobs are over. Be careful to see that whether the machines are vacant before loading. Total elapsed time may be worked out by drawing Gantt chart for the optimal sequence. 
 
Problem 3.1.  There are five jobs, which are to be processed on two machines A and B in the order AB. The processing times in hours for the jobs are given below. Find the optimal sequence and total elapsed time. (Students has to remember in sequencing 
problems if optimal sequence is asked, it is the duty of the student to find the total elapsed time also). 
 

Jobs 1 2 3 4 5 

Machine A 
(Time in hours) 2 6 4 8 10 

Machine B 
(Time in hours) 3 1 5 9 7 

 The smallest element is 1 it falls under machine B hence do this job last i.e. in 5th  position. Cancel job 2 from the matrix. The next smallest element is 2, it falls under machine A hence do this job first, i.e in the first position. Cancel the job two from matrix. Then the next smallest element is 3 and it falls under machine B. Hence do this job in fourth position. Cancel the job one from the matrix. Proceed like this until all jobs are over. 
 
 
Total elapsed time : 
 
 
 
 
 
 
 
             

Total elapsed time = 32 hours. (This includes idle time of job and idle time of machines). 

1 3 4 5 2 

Optimal 
Sequence 

MACHINE-A MACHINE-B MACHINE IDLE 
JOB IDLE Remarks 

IN OUT IN OUT A B  
1 
3 
 
 

 
4 
 
5 
 
2 
 

0 
2 
 
 

 
6 
 

14 
 

24 

2 
6 
 
 

 
14 

 
24 

 
30 

2 
6 
 
 

 
14 

 
24 

 
31 

5 
11 

 
 

 
23 

 
31 

 
32 

 

 
 
 
 

 
 
 
 
 
1 

2 
1 
 

 
 
3 
 
1 
 
2 

 
As the Machine B 
Finishes Work at 5th  hour will 
be idle for 1hour. 
 
-do- 3 hr. 
 
-do- 3 hr. 
 
 
1 hr as job 
finished early 1 hr  idle. 
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                        The procedure: Let Job 1 is loaded on machine A first at zero th time. It takes two hours to process on the machine. Job 1 leaves the machine A at two hours and enters the machine 2 at 2nd  hour. Up to the time i.e first two hours, the machine B is idle. Then the job 1 is processed on machine B for 3 hours and it will be unloaded. As soon as the machine A becomes idle, i.e. at 2nd  hour then next job 3 is loaded on machine A. It takes 4 hours and the job leaves the machine at 6th hour and enters the machine B and is processed for 6 hours and the job is completed by 11th  hour. (Remember if the job is completed early and the Machine B is still busy, then the job has to wait and the time is entered in job idle column. In case the machine B completes the previous job earlier, and the machine A is still processing the next job, the machine has to wait for the job. This will be shown as machine idle time for machine B.). Job 4 enters the machine 
A at 6th  hour and processed for 8 hours and leaves the machine at 14th  hour. As the machine B has finished the job 3 by 11th  hour, the machine has to wait for the next job (job 4) up to 14th  hour. Hence 3 hours is the idle time for the machine 
B. In this manner we have to calculate the total elapsed time until all the jobs are over. 
 
Problem 3.2.                     There are 6 jobs to be processed on Machine A. The time required by each job on machine A is given in hours. Find the optimal sequence and the total time elapsed. 
 
Solution                  Here there is only one machine. Hence the jobs can be processed on the machine in any sequence depending on the convenience. The total time elapsed will be total of the times given in the problem. As soon as one job is over the other follows. The total time is 32 hours. The sequence may be any order. For example: 1,2,3,4,5,6 or 6,5,4,3,2,1, or 2, 4 6 1 3 5 and so on. 
 
Problem 3.3.                 A machine operator has to perform two operations, turning and threading, on a number of different jobs. The time required to perform these operations in minutes for each job is given. Determine the order in which the jobs should be processed in order to minimize the total time required to turn out all the jobs. 
 

Job: 1 2 3 4 5 5 

Time for turning  
(in min.) 

3 12 5 2 9 11 

Time for threading  
(in min). 

8 10 9 6 3 1 

 
Solution               The smallest element is 1 in the given matrix and falls under second operation. Hence do the 6th job last. Next smallest element is 2 for the job 4 and falls under first operation hence do the fourth job first. Next smallest element is 3 for job 1 falls under first operation hence do the first job second. Like this go on proceed until all jobs are over. The optimal sequence is :  4 1 3 2 5 6    
 
 
 
                   

Jobs 1 2 3 4 5 6 

Time in hours  
(Machine A) 

6 4 3 2 9 8 

Optimal sequence Turning operation Threading operation Job idle Machine idle.  In Out In Out Turning Threading 4 0 2 2 8 --- -- 2 1 2 5 8 6 3  3 5 10 16 25 6  2 10 22 25 35 3  5 22 31 25 38 4  6 31 42 42 43 -- 1 --  Total elapsed time :           43 minutes
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The Job idle time indicates that there must be enough space to store the in process inventory between two machines. This point is very important while planning the layout of machine shops.     
 
Problem 3.4.               There are seven jobs, each of which has to be processed on machine A and then on Machine B (order of machining is AB). Processing time is given in hours. Find the optimal sequence in which the jobs are to be processed so as to minimize the total time elapsed.  Job: 1 2 3 4 5 6 7 

Machine: A (Time in hours) 3 12 15 6 10 11 9 Machine: B (Time in hours) 8 10 10 6 12 1 3  
Solution            By Johnson and Bellman method the optimal sequence is:   
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.3.2.  SEQUENCING OF ‘N’ JOBS ON “M”  MACHINES 
 

             A general sequencing problem of processing of ‘n’ jobs through ‘m’ machines ,  in the order   can be solved by applying the following rules. 

Optimal 
Sequence 

Machine-A Machine-B Machine idle 
Job idle Job idle time Remarks 

In Out In Out A B   

1 0 3 3 11  3 --  
. 

4 3 9 11 17   2 Job finished early 

5 9 19 19 31  2  
Machine A takes more 

time. 

3 9 34 34 44  3  Machine A takes more 
time. 

2 34 46 46 56  2  -do- 

7 46 55 56 59   1 Job finished early 

6 55 66 66 67 1 7  

Machine A takes more 
time. Last is 

 finished on machine A 
at 66th hour. 

 Total Elapsed Time :  67 hours.  

1 4 5 3 2 7 6 
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             If  where i = 1,2,3…..n and j = 1, 2, 3……….m is the processing time of i th job on j th machine, then find   and    (i.e. minimum time element in the first machine and minimum time element in last Machine) and find  of intermediate machines i.e 2 nd machine to m-1 machine. 
 The problem can be solved by converting it into a two-machine problem if the following conditions are satisfied.            (a) Min     Max. for all j = 1,2,3,…..m-1             (b) Min   Max for all j = 1, 2,3 …….m-1             At least one of the above must be satisfied. Or both may be satisfied. If satisfied, then the problem can be converted into 2- machine problem where Machine G =  and Machine G =   ,Where i = 1,2,3,….n.            Once the problem is a 2- machine problem, then by applying Johnson Bellman algorithm we can find optimal sequence and then workout total elapsed time as usual. 
           (Point to remember: Suppose  constant number for all ‘i‘ , we can 
consider two extreme machines i.e. machine 1 and machine -m as two machines and workout optimal 
sequence). 
                      
Problem 3.5.            There are 4 jobs A, B, C and D, which is to be, processed on machines , and   in the order  .The processing time in hours is given below. Find the optimal sequence.   
Solution:  From the data given, Min is 12 and Min   is 12. Max = 5 and Max  = 10. As Min is > than both Min  and Min , the problem can be converted into 2 – machine problem as discussed above. Two-machine problem is:                              
 
 
 
 
 
 
 
 
     

Jobs. Machine (processing times in hours)   G H A 15+5+4 = 24 5+4+14 = 23 B 12+2+10 = 24 2+10+12 = 24 C 13+3+6 = 22 3+6+15 = 24 D 16+0+3 = 19 0+3+19 = 22 
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 Applying Johnson and Bellman rule, the optimal sequence is:      
Sequence 

Machine  
 Time in hours 

Machine  
 Time in hours 

Machine 

 Time in hours 

Machine 

 Time in hours 
Job idle Time 

in hours Machine idle Time in hours  In Out In Out In Out In Out     D 0 16 16 16 16 19 19 38   16 19C 19 29 29 32 32 38 38 53  29 13 B 29 41 41 43 43 53 53 65  9 5 A 41 56 56 61 61 65 65 79 23 18 14  Total Elapsed Time :  79 hrs.     
 

Questions 
Q.1. A bookbinder has one printing press, one binding machine and the manuscripts of a number of different books. The times required to perform printing and binding operations for ach book are known. Determine the order in which the books should be processed in order to minimize the total time required to process all the books. Find also the total time required processing all the books. 
 
 
                                                          Printing time in minutes. 

BOOK A B C D E 

Printing time: 40 90 80 60 50 

Binding Time: 50 60 20 30 40  Suppose that an additional operation, finishing is added to the process described above and the time in minutes for finishing operation is as given below what will be the optimal sequence and the elapsed time. 
 

BOOK A B C D E 

Finishing time (min): 80 100 60 70 110 

 
Q.2. A ready-made garments manufacturer has to process 7 items through two stages of production, i.e. Cutting and Sewing. The time taken for each of these items at different stages are given in hours below, find the optimal sequence and total elapsed time.  
 
                           

Item: 1 2 3 4 5 6 7 

Cutting time in Hrs.: 5 7 3 4 6 7 12 

Sewing time in Hrs: 2 6 7 5 9 5 8 

 

Job Machine (processing times in hours) 
     A 15 5 4 14B 12 2 10 12C 13 3 6 15D 16 0 3 19

D C B A
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Suppose a third stage of production is added, say pressing and packing with processing time in hours as given below, find the optimal sequence and elapsed time.  
Pressing time (Hrs) 10 12 11 13 12 10 11 

Answers 
 
Q.1.For two processes: sequence is : ABEDC and the elapsed time is 340 min.         For three processes: the optimal sequence is: DAEBC and the total elapsed time is 510 min. 
 
Q.2.  For two stages the sequence is : 3457261 and the time is 46 hours.           For three stages the sequence is : 1436257 and the time is 86 hours  
3.4 Summary 

The short-term schedules show an optimal order (sequence) and time in which jobs are processed. They 
also show timetables for jobs, equipment, people, materials, facilities and all other resources that are needed to 
support the production plan. The schedules should use the resources efficiently to give low costs and high 
utilizations. Other purpose of scheduling are, minimizing customers waiting time, meeting promised delivery dates, 
keeping stock levels low, giving preferred working pattern, minimizing waiting time of patients in a hospital for 
different types of tests and so on.                                                                                                 
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Unit 14 
 
Course Structure 

4.1 Convex Nonlinear Programming Problem   
4.2 Optimal conditions  

4.2.1 Definitions  

4.2.2 Finding maxima and Minima 

4.3 The Method of Steepest Descent 
4.4 Karush–Kuhn–Tucker (KKT) conditions  
4.5. Quadratic Programming: 
4.6. Khun-Tucker Conditions: 
4.7. Wolfe’s Modified Simplex Method: 
4.8. Beals’s Method: 
4.9 summary 

 
4.1 Convex Nonlinear Programming Problem  

     First, we define the convexity of a function which facilitates the further studies on nonlinear programming 

problems with equality and inequality constraints.  

Definition 1. Let S be a convex set in . A function f(X) defined on S is said be convex if for any pair of points 

,  in Sand V : 0   1,  

                     

Geometrically speaking in two dimensional plane, Definition 1 means that f(x) is convex if for any two points  

and  in S, the chord joining the points ( , f( )) and ( ' f( )) is above f(x), i.e., for any point  [ ], 

f(x)  PQ, where Q is on the chord, see Fig.1.  

                                                                                                                      B 

                                                                                    Q                      

                                                A                                                                 ( , f( )) 

                                                                                  C 

                              ( , f( ))                                   

                                                                                               

 

                                                                                  P 

                                                                                                              

Remarks. 1. A function f(X) is strictly convex if we have strict inequalities in Definition 1.  

Units 19 & 20
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                 2. A function f(X) is concave (or strictly concave) if - f(X) is convex (or strictly convex).  

                 3. A linear function is convex as well as concave.  

Proposition 1. The sum of two convex functions is convex.  

Proof. Let and   be two convex functions defined on a convex set S  ]Rn. Then, for any two points  and 

 in S, we have for all : 0   1,  

             

             

Now,  

             

                                                            

                                                             

Proposition 2. Let f(X) = . Then f(X) is convex in Rn if  is positive semi-definite 

Corollary 1. Under the conditions of Proposition 2, if f(X)  is positive definite, then f(X) is strictly 

convex.  

Corollary 2. Under the conditions of Proposition 2, we have  

           1. f(X)  is convex  its Hessian matrix is positive semidefinite.   

           2. f(X) is strictly convex  its Hessian matrix is positive definite.  

The proof of Corollary 2 is a direct consequence of the fact that H = 2A in a quadratic form. Note that quadratic 
forms and quadratic functions have different meaning. Corollary 2 is very useful to decide convexity of any 
quadratic function.  

Theorem 1. Let j(X) be a convex function defined over a convex set S in Rn. Then the local minimum is global 
minimum of j(X) over S.  

Proof. Let X* be a point of local minimum. Hence, , where {X : IX - X*I < , > 0} = 

(X*). Take any point   (X*). There exists : 0   1such that  = X* + (1 - )X for any X in S. 

Now, in view of convexity of  on S, we have  

               (  = J( X* + (1 - )X) 

                         (X*) + (1- ) (X)  

                         ( ) + (1- ) (X)  
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This implies f(X*) J(X) or f(X*) f(   f(X). Since X is arbitrary point, and hence f(X*)  f(X) for all X in 

S. So, X* is a point of the global minimum.  

For developing the theory, write the problem in the format  

               min f(X)  

              s.t. (X)  0, i = 1,2, ... , m  

                    X ,  

             f(X) and (X) are convex functions.  

The above nonlinear problem is called convex nonlinear programming problem (CNLPP). Note that f(X) and (X) 

are convex functions over some common convex set.  

Remark: Theorem 1 ensures that in a CNLPP the relative minimum or relative maximum is global minimum or 
global maximum.   

Theorem 2. A set S = {X : (X)  0, X } of feasible solutions of CNLPP is a convex set.  

4.2 Optimal conditions  

In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of 

a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the 

function, either within a given range (the local or relative extrema) or on the entire domain of a function (the 

global or absolute extrema).[1][2][3] Pierre de Fermat was one of the first mathematicians to propose a general 

technique, adequately, for finding the maxima and minima of functions. 

As defined in set theory, the maximum and minimum of a set are the greatest and least elements in the set, 

respectively. Unbounded infinite sets, such as the set of real numbers, have no minimum or maximum. 

4.2.1 Definitions  

A real-valued function f defined on a domain X has a global (or absolute) maximum point at x∗ if f(x∗) ≥ f(x) for 

all x in X. Similarly, the function has a global (or absolute) minimum point at x∗ if f(x∗) ≤ f(x) for all x in X. The 

value of the function at a maximum point is called the maximum value of the function and the value of the function 

at a minimum point is called the minimum value of the function. 

If the domain X is a metric space then f is said to have a local (or relative) maximum point at the point x∗ if there 

exists some ε > 0 such that f(x∗) ≥ f(x) for all x in X within distance ε of x∗. Similarly, the function has a local 

minimum point at x∗ iff(x∗) ≤ f(x) for all x in X within distance ε of x∗. A similar definition can be used when X is 

a topological space, since the definition just given can be rephrased in terms of neighbourhoods. 

In both the global and local cases, the concept of a strict extremum can be defined. For example, x∗ is a strict global 

maximum point if, for all x in X with x ≠ x∗, we have f(x∗) > f(x), and x∗ is a strict local maximum point if there 
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exists some ε > 0 such that, for all x in X within distance ε of x∗ with x ≠ x∗, we have f(x∗) > f(x). Note that a point is a 

strict global maximum point if and only if it is the unique global maximum point, and similarly for minimum points. 

A continuous real-valued function with a compact domain always has a maximum point and a minimum point. An 

important example is a function whose domain is a closed (and bounded) interval of real numbers (see the graph 

above). 

4.2.2 Finding maxima and Minima 

Finding global maxima and minima is the goal of mathematical optimization. If a function is continuous on a closed 

interval, then by the extreme value theorem global maxima and minima exist. Furthermore, a global maximum (or 

minimum) either must be a local maximum (or minimum) in the interior of the domain, or must lie on the boundary 

of the domain. So a method of finding a global maximum (or minimum) is to look at all the local maxima (or 

minima) in the interior, and also look at the maxima (or minima) of the points on the boundary, and take the largest 

(or smallest) one. 

Local extrema of differentiable functions can be found by Fermat's theorem, which states that they must occur 

at critical points. One can distinguish whether a critical point is a local maximum or local minimum by using 

the first derivative test, second derivative test, or higher-order derivative test, given sufficient differentiability. 

For any function that is defined piecewise, one finds a maximum (or minimum) by finding the maximum (or 

minimum) of each piece separately, and then seeing which one is largest (or smallest). 

 

4.3 The Method of Steepest Descent 
 
When it is not possible to find the minimum of a function analytically, and therefore must use an iterative method 
for obtaining an approximate solution, Newton's Method can be an effective method, but it can also be unreliable. 
Therefore, we now consider another approach. 
 
Given a function f :  that is differentiable at , the direction of steepest descent is the vector f(x0). To 
see this, consider the function 
 
                                        (t) = f(x0 + tu), 
 
where u is a unit vector; that is,  = 1. Then, by the Chain Rule,  
 

                        

 

                                  

                                  
                                 (x0 + tu) .u. 
and therefore 
                    
                         (0) ( ).u =  .cos , 
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where  is the angle between ( ) and u. It follows that  (0) is minimized when  = , which yields 
 

                         u = ,   (0)  
 

We can therefore reduce the problem of minimizing a function of several variables to a single-variable minimization 
problem, by finding the minimum of (t) for this choice of u. That is, we find the value of t, for t > 0, that 
minimizes 

                         
 
After finding the minimizer , we can set  

                        

 
and continue the process, by searching from  in the direction of  to obtain  by minimizing 

and so on. 
 
This is the Method of Steepest Descent: given an initial guess , the method computes a sequence of iterates  
where  
 

                     
 

where  > 0 minimizes the function 
 

                      
 
Example: 
We apply the Method of Steepest Descent to the function f(x; y) = 4  - 4xy + 2  with initial point  = (2, 3).  
 
We first compute the steepest descent direction from 
             f(x, y) = (8x - 4y, 4y - 4x) 
 

to obtain 
             f(x0) = f(2, 3) = (4, 4), 
 

We then minimize the function 
 

             (t) = f((2, 3) - t(4, 4)) = f(2 - 4t, 3 - 4t) 
 

by computing 
 

            (t) = f(2 - 4t, 3 - 4t) .(4, 4) 
                     = (8(2 - 4t) - 4(3 - 4t), 4(3 - 4t) - 4(2 - 4t)).(4, 4) 
                     = (16 - 32t - 12 + 16t, 12 - 16t - 8 + 16t). (4, 4) 
                     = - (-16t + 4, 4).(4, 4) 
                     = 64t – 32. 
 

This strictly convex function has a strict global minimum when (t) = 64t-32, or t = 1/2, as can be seen by noting 

that (t) = 64 > 0. We therefore set 

               =  f(x0) =  
 

Continuing the process, we have 
 

              f( ) =   
 

and by defining 
 

             (t) = f((0, 1) - t(-4; 4)) = f(4t; 1 - 4t), 
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we obtain 
 

         (t)  (8(4t) - 4(1 - 4t), 4(1 - 4t) - 4(4t))).(-4; 4) =  (48t – 4,-32t + 4).(-4; 4) = 320t – 32, 
 

We have (t) = 0 when t = 1/10, and because (t) = 320, this critical point is a strict global minimizer. We 
therefore set 
 

         =  - f( )  

 
Repeating this process yields  = (0, 0.2). We can see that the Method of Steepest Descent produces a sequence of 

iterates  that is converging to the strict global minimizer of (x, y) at 

 = (0, 0). 
 
The following theorems describe some important properties of the Method of Steepest Descent. 
 
Theorem: Let f :  be continuously differentiable on , and let  D. Let  > 0 be the minimizer of 
the function 
 

           (t) = f(  - f( )), t 0  
 

and let  =  - f( ).  
 

Then   f( ) < f( ). 
  
That is, the Method of Steepest Descent is guaranteed to make at least some progress toward a minimizer   during 

each iteration. This theorem can be proven by showing that  < 0, which guarantees the existence of  > 0 such 

that  < (0).  
 
Theorem: Let f :  be continuously differentiable on , and let  and , for k 0, be two 

consecutive iterates produced by the Method of Steepest Descent. Then the steepest descent directions from  and 

 are orthogonal; that is, 
 

              f( ). f( ) = 0. 
 

 
Theorem:  Let f :  be a coercive function with continuous first partial derivatives on . Then, for any 

initial guess , the sequence of iterates produced by the Method of Steepest Descent from  contains a 

subsequence that converges to a critical point of . 
 
Theorem: Let f :  be a coercive, strictly convex function with continuous first partial derivatives on . 

Then, for any initial guess , the sequence of iterates produced by the Method of Steepest Descent from  

converges to the unique global minimizer  of (x) on . 
 
This theorem can be proved by noting that if the sequence  of steepest descent iterates does not converge to , 

then any subsequence that does not converge to must contain a subsequence that converges to a critical point, by 

the previous theorem, but f(x) has only one critical point, which is which yields a contradiction.   
 

4.4 Karush–Kuhn–Tucker (KKT) conditions  

        In mathematical optimization, the Karush–Kuhn–Tucker (KKT) conditions, also known as the Kuhn–

Tucker conditions, are first-order necessary conditions for a solution in nonlinear programming to be optimal, 

provided that some regularity conditions are satisfied. Allowing inequality constraints, the KKT approach to 
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nonlinear programming generalizes the method of Lagrange multipliers, which allows only equality constraints. The 

system of equations and inequalities corresponding to the KKT conditions is usually not solved directly, except in 

the few special cases where a closed-formsolution can be derived analytically. In general, many optimization 

algorithms can be interpreted as methods for numerically solving the KKT system of equations and inequalities.   

       The KKT conditions were originally named after Harold W. Kuhn, and Albert W. Tucker, who first published 

the conditions in 1951.[2] Later scholars discovered that the necessary conditions for this problem had been stated 

by William Karush in his master's thesis in 1939.  

Consider the following nonlinear minimization or maximization problem: 

Optimize   

subject to 

         

         

where   is the optimization variable,  is the  objective or  utility function,   are the 

inequality constraint functions, and  are the equality constraint functions. The numbers of 

inequality and equality constraints are denoted m and ℓ, respectively.  

Necessary Conditions:  

Suppose that the objective function  and the constraint functions  and  

  are continuously differentiable at a point . If  is a local optimum and the optimization 

problem satisfies some regularity conditions (see below), then there exist constants 

 and 

, called 

KKT multipliers, such that 

Stationarity   

 

                                  Inequality constraint diagram for optimization problems 
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For maximizing f(x):  

For minimizing f(x): 

 

 

Primal feasibility  

 
 

 

Dual feasibility 

 

 

Complementary slackness 

 

 

         In the particular case  , i.e., when there are no inequality constraints, the KKT conditions turn into the 

Lagrange conditions, and the KKT multipliers are called Lagrange multipliers. If some of the functions are non-

differentiable, sub-differential versions of Karush–Kuhn–Tucker (KKT) conditions are available.  

In order for a minimum point  to satisfy the above KKT conditions, the problem should satisfy some regularity 

conditions; some common examples are tabulated here: 

 

Constraint 
Acron

ym 
Statement 

Linearity constraint 

qualification 
LCQ If  and  are affine functions, then no other condition is needed. 

Linear independence 

constraint qualification 
LICQ 

The gradients of the active inequality constraints and the gradients of the equality 

constraints are linearly independent at . 
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Mangasarian-Fromovitz 

constraint qualification 
MFCQ 

The gradients of the equality constraints are linearly independent at  and there 

exists a vector  such that  for all active inequality 

constraints and  for all equality constraints.[6] 

Constant rank constraint 

qualification 

CRCQ 
For each subset of the gradients of the active inequality constraints and the 

gradients of the equality constraints the rank at a vicinity of  is constant. 

Constant positive linear 

dependence constraint 

qualification 

CPLD 

For each subset of gradients of active inequality constraints and gradients of 

equality constraints, if the subset of vectors is linearly dependent at  with 

non-negative scalars associated with the inequality constraints, then it remain 

linearly dependent in a neighborhood of . 

It can be shown that LICQ⇒MFCQ⇒CPLD and LICQ⇒CRCQ⇒CPLD (and the converses are not true), In practice 

weaker constraint qualifications are preferred since they provide stronger optimality conditions. 

Kuhn-Tucker Necessary Conditions:  

Maximize    f(x), X = (x1, x2,…….,xn)                                                                                                                                                 

Subject to  gi(x) ≤ bi,    i=1,2,…..,m. 

Including the non-negative constraints x ≥0, the necessary conditions for a local maxima at X are   

i)  = 0,    j=1,2,…..,n.     

ii) [gi( ) – bi] = 0, 

iii) gi( ) ≤ bi, 

iv)  ≥ 0,       i =1,2,…….,m. 

Where  is Lagrange function L defined by: 

  L(x1, x2,……, xn; 1, 2,……., m) = f(x1, x2,……, xn) + 1g1(x1, x2,……, xn) + 2g2(x1, x2,……, xn) 

+…………+ mgm(x1, x2,……, xn).  

Here  1, 2,……., m are Lagrange Multipliers. 

For the stationary points  = 0 ,  =0  ,    for j 1,2,…..,n;  1,2,………,m.  

Example: Consider an  inventory model written as 

        Min             TAC(D,S,q)  =  + +       
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        Subject to   w0q ≤ W,        D, S, q > 0.    

The above problem can be written as Lagrangian form  

       =  + +  – (W – q ).                                                                            

From Kuhn-Tucker necessary conditions the solution can be obtained as (doing the partially derivative w.r.t. S, D, q and  

respectively), 

     = 0, 

      = 0, 

    + -  +   = 0, 

      and    = 0.                                                                                                            

Here two conditions    or   = 0. 

When , does not satisfies all the equation of above problem, so consider  = 0. 

And optimal solution is, 

        = ,  

        =   ,                                                                                                          

         =   .                                

4.5. Quadratic Programming: 
Among several non-linear programming methods available for solving NLP problems, we shall discuss in this 
section, an NLP problem with non-linear objective function and linear constraints. Such an NLP problem is called 
quadratic programming problem. The general mathematical model of quadratic programming problem is as follows: 

          Optimize (Max or Min) Z = {∑ ܿݔୀଵ + 
ଵଶ ∑ ∑ ݔ ݀ݔୀଵୀଵ } 

subject to the constraints  ܽݔ
ୀଵ ≤ ܾ 

andݔ ≥ 0 for all i and j 
In matrix notations, QR problem is written as: 

          Optimize (Max or Min) Z = c x + 
ଵଶ  D x ்ݔ

subject to the constraints 
Ax≤ b 
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andݔ ≥ 0  
where     x = (x1, x2, …, xn)

T  ; c = (c1, c2, …, cn);    b = (b1, b2, …, bn)
T 

                   D = [ ݀] is an n × n symmetric matrix, i.e. ݀ = ݀ is an n × n matrix 
        If the objective function in QP problem is of minimization, then the matrix D is symmetric and positive definite 
(i.e. the quadratic term ்ݔ D x in x is positive for all values of x except at x = 0) and objective function is strictly 
convex in x. But, if the objective function is of maximization, then matrix D is symmetric and negative-definite i.e. ்ݔ D x < 0 for all values of x except for x = 0) and objective function is strictly concave in x. If matrix, D is null, 
then the QP problem reduces to the standard LP problem. 
 
4.6. Khun-Tucker Conditions: 
The necessary and sufficient Khun-Tucker conditions to get an optimal solution to the maximization QP problem 
subject to the linear constraints can be derived as follows: 
Step 1:Introducing slack variables ݏଶ amd ݎଶ to constraints, the QP problem becomes: 

              Max f(x) = {∑ ܿݔୀଵ − ଵଶ ∑ ∑ ݔ ݀ݔୀଵୀଵ } 

subject to the constraints ∑ ܽݔୀଵ ଶݏ + = ܾ;       i = 1, 2,…, m. 
and−ݔ + ݎଶ = 0;                   j = 1, 2, …, n. 
 
Step 2: Forming the Lagrange function as follows: 
           L(x, s, r, ૃ, ߤ) = f(x) − ∑ ୀଵݔ(ܽߣ ଶݏ +  − ܾ) − ∑ ݔ−)ߤ  + ଶ)ୀଵݎ   
 
Step 3:Differentiate L(x, s, r, ૃ, ߤ) partially with respect to the components of x, s, r, ૃ and ߤ. Then equate those 
derivatives with zero in order to get the required Khun-Tucker necessary conditions. That is, 

(i) c − ଵଶ(2்ݔ D) –ૃA + 0 = ߤ, or ܿ − ∑ ݔ ݀ୀଵ − ∑ ୀଵߤ +ܽߣ  = 0;   j = 1, 2, …, n. 

(ii) – 2 ૃ s = 0 or ߣݏଶ = 0, or 
∑ }ߣ  ܽݔୀଵ − ܾ} = 0,                         i = 1, 2,…, m. 

(iii) – 2 ߤ r = 0 or  ߤ ݎ = 0,                            j = 1, 2, …, n.  ߤ ݔ = 0,                                                  j = 1, 2, …, n. 

(iv) Ax + ݏଶ– b = 0; i.e. Ax ≤ b, or ∑ ܽݔୀଵ ≤ ܾ,                                         i = 1, 2,…, m. 

(v) – x + r2= 0, i.e. x ≥ 0, or 
ݔ   ≥ 0,                                                       j = 1, 2, …, n. 

(vi) ߣ, ߤ, ݔ, ݏ, ݎ ≥ 0. 

These conditions, except (ii) and (iii), are linear constraints involving 2 (n+m) variables. The condition ߤ ݔ =  ߣ ݏ = 0 implies that both   ݔ and  ߤ as well as  ݏ and  ߣ cannot be basic variables at a time in a non-
degenerate basic feasible solution ߤ ݔ = 0 and  ߣ ݏ = 0 are also called complementary slackness conditions. 

4.7. Wolfe’s Modified Simplex Method: 

          The Wolf’s method for solving quadratic programming problem can be summarized in the following steps: 
Step 1:Introducing artificial variables ܣ (j = 1, 2, …, n) in the Kuhn-Tucker condition (i). Then we have  ܿ − ∑ ݔ ݀ୀଵ − ∑ ୀଵߤ +ܽߣ  = 0ܣ + 
For a starting basic feasible solution we shall have ݔ = 0, ߤ = 0, ܣ = − ܿ and ݏଶ= ܾ. However, this solution would 
be desirable if and only if ܣ = 0 for all j. 
Step 2:Apply phase-I of the simplex method to check the feasibility of the constraints Ax≤ b. If there is no feasible 
solution, then terminate the solution procedure, otherwise get an initial basic feasible solution for phase-II. To obtain 
desired feasible solution solve the following problem: 
      Minimize Z = ∑ ୀଵܣ  
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subject to the constraints ∑ ݔ ݀ୀଵ + ∑ ୀଵߤ −ܽߣ ∑ .= ܿ,   j = 1, 2, …, nܣ + ܽݔୀଵ ଶݏ + = ܾ,       i = 1, 2,…, m. 
andߣ, ߤ, ݔ, ݏ, ܣ ≥ 0 for all i and j. ఒ௦ୀఓೕ௫ೕୀቅComplimentary slackness conditions 

Thus, while deciding for a variable to enter into the basis at each iteration, the complementary slackness conditions 
must be satisfied. 
    The problem has 2(m+n) variables and (m+n) linear constraints, together with (m+n) complementary slackness 
conditions. 
Step 3:Apply Phase-II of the simplex method to get an optimal solution to the problem given in step 2. The solution 
so obtained, will also an optimal solution of the quadratic programming problem. 
 
Example: Use Wolfe’s method to solve the quadratic programming problem: 
       Maximize Z = 4 x1 + 6 x2–2 x1

2– 2 x1 x2– 2 x2
2 

subject to the constraint 
x1 + 2 x2≤ 2 and x1, x2≥ 0. 
Solution: Consider non-negative conditions x1, x2≥ 0 as inequality constraints. Add slack variable to all inequality 
constraints in order to express them as equations. The standard form of QP problem becomes: 
Maximize Z = 4 x1 + 6 x2–2 x1

2– 2 x1 x2– 2 x2
2 

subject to the constraint 
        (i) x1 + 2 x2 + s1

2 = 2 (ii) – x1 + r1
2 = 0 (iii) – x2 + r2

2 = 0 and x1, x2, s1, r1, r2≥ 0. 
To obtain the necessary conditions, we construct the Lagrange function as follows: 
           L(x1, x2, s1, ૃ1, 2ߤ ,1ߤ, r1, r2) = (4 x1 + 6 x2–2 x1

2– 2 x1 x2– 2 x2
2) −ૃ1(x1 + 2 x2 + s1

x1 + r1 –)1ߤ − (2 −2
2) –  2ߤ 

(– x2 + r2
2). 

The necessary and sufficient conditions for the maximum of L and hence of Z are: డడ௫భ = 4 −4 x1−2 x2−ૃ1 + 0 = 1ߤ. డడఒభ = x1 + 2 x2 + s1
2– 2 = 0. డడఓభ = – x1 + r1

2 = 0. డడభ = 2 1ߤr1= 0. డడ௫మ = 6 −2 x1−4 x2− 2ૃ1 + 0 = 2ߤ. డడ௦భ = 2 ૃ1s1= 0. డడఓమ = – x2 + r2
2 = 0. డడమ = 2 2ߤr2 = 0. 

After simplifying these conditions, we get: 
(i) 4 x1+2 x2+ૃ1−4 = 1ߤ (ii)  2 x1+4 x2+2ૃ1– x1+2 x2+s1  (iii) 6 = 2ߤ

2= 2. ఒభ௦భୀ               ఓభ௫భୀ ఓమ௫మୀ ቅ (Complimentary conditions) 

and    x1, x2, ૃ1, 2ߤ ,1ߤ, s1≥0 
Introducing artificial variables A1 and A2 in the first two constraints respectively. Then the modified LP problem 
becomes: 
            Minimize Z* = A1 + A2 
subject to the constraints 
4 x1+2 x2+ૃ1−1ߤ + A1= 4 
                                       2 x1+4 x2+2ૃ1–  A2= 6 + 2ߤ
x1+2 x2+s1

2= 2 
and                   x1, x2, ૃ1, 2ߤ ,1ߤ, A1, A2≥0 
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The initial basic feasible solution to this LP problem is shown in Table-1 
Table-1 ܿ                                                        0               0             0                0          0               0             1          1 

CB     Basic       Solution     
        Variables    Values 
           B                b(=xB) 

x1              x2                   ૃ1                 2ࣆ               1ࣆ              s1                    A1        A2 

1          A1               4 
1          A2                 6 
0           s1                2 

4               2           1            -1          0             0           1         0  
2               4           2             0         -1             0           0         1 
1               2           0             0          0             1           0          0 

Z* = 10              ࢉ −  0          0           0             1          1             3-         6-             6- ࢠ
 
 

 
Iteration 1:   in Table-1, the largest negative values among ࢉ −  .values is– 6 corresponding to x1 and x2 columnsࢠ
This means of these two variables can be entered into the basis. Since 0 = 1ߤ (not in the basis), x1 is considered to 
enter into the basis. It will replace A1 in the basis. The new solution is shown in Table-2 

Table-2 ܿ                                                        0               0              0              0              0               0               1 
CB     Basic       Solution     
        Variables    Values 
           B                b(=xB) 

x1            x2                      ૃ1                   2ࣆ                  1ࣆ             s1                A2 

0         x1                1 
1          A2                 4 
0           s1                2 

1             1/2        1/4          -1/4          0             0                0  
0              3           3/2          1/2         -1             0                1 
0              3/2       -1/4          1/4         0             1                0 

Z* = 4              ࢉ −          0                0            1          1/2-         3/2-           3-             0 ࢠ
 
 

 
Iteration 2: In Table-2, 0 = 2ߤ (not in the basis), therefore x2 can be introduced into the basis to replace s1, in the 
basis. The new solution is shown in Table-3 

Table-3 ܿ                                                        0               0          0         0               0                   0                      1         
CB     Basic       Solution     
        Variables    Values 
           B                b(=xB) 

x1            x2              ૃ1           2ࣆ                      1ࣆ                s1                      A2 

0       x1                2/3 
1        A2                 2 
0         x1                 2/3 

1             0          1/3          -1/3           0             -1/3               0  
0              0           2               0            -1             -2                1 
0              1          -1/6           1/6            0             2/3             0 

Z* = 4              ࢉ −          0              2               1              0              2-           0              0 ࢠ
 
 

 
Iteration 2: In Table-3, 0 = 1ݏ (not in the basis), therefore ૃ1 can be entered into the basis to replace A2. The new 
solution is shown in Table-4 

Table-4              ܿ                                             0          0        0            0                  0                   0                         
CB     Basic       Solution     
        Variables    Values 
           B                b(=xB) 

x1        x2          ૃ1                2ࣆ                          1ࣆ                   s1  

0       x1                1/3 
0       ૃ1               1 
0       x2               5/6 

1         0       0         -1/3           1/6                  0 
0         0       1            0            -1/2               -1                 
0         1       0          1/6         -1/12               1/2 

Z* = 0         ࢉ −          0                   0             0            0       0         0 ࢠ
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      In Table-4, since all c୨ − z୨ = 0, anoptimal solution for Phase-1 is reached. The optimal solution is: 
x1 = 1/3, x2 = 5/6, ૃ1 = 1,ૃ2 = 0, 0 = 2ߤ = 1ߤ, s1 = 0 
This solution also satisfied the complimentary conditions: λଵsଵ = 0; μଵxଵ =  μଶxଶ =  0 and the restriction on the 
signs of Lagrange multipliers, λଵ,μଵ, μଶ. 
       Further, as Z* = 0, this implies that the current solution is also feasible. Thus, the maximum value of the given 
quadratic programming problem is: 
        Max Z = 4 x1 + 6 x2–2 x1

2– 2 x1 x2– 2 x2
2 

                   = 4(1/3)  + 6(5/6) – 2(1/3)2– 2(1/3)(5/6) – 2(5/6)2 = 25/6 
 
4.8. Beals’s Method: 
  In this method, instead of Kuhn-Tucker conditions, results based on calculus are used for solving a given quadratic 
programming problem.  

             Minimize Z = c x + 
ଵଶ  Dx                                      (1)்ݔ

subject to the constraints 
                            A x = b                                                   (2) 
and                       x≥ 0                                                           (3) 
where x ∈ ∋ , bܧ ∋ , cܧ  ., D is symmetric n×n matrix and A is m×n matrixܧ
      Beale’s method starts with the partitioning of n variables in QP problem into the basic and non-basic variables at 
each iteration of the solution process, and expressing the basic variables as well as objective function in terms of 
non-basic variables. Let B be any m×n non-singular matrix that contains columns of A corresponding to the basic 
variables, xB∈m× (n-m) matrix that contains columns of A corresponding to basic variables, xN∈ E n-m. Eqn. (2) can 
then be written as: 

[B, N]  ቂݔݔேቃ  = b or Bݔ + Nݔே = b or  ݔ = B-1b – B-1 Nݔே 

Or          ݔ= ݕ - ∑ ேೕିୀଵݔݕ  ; i= 1, 2,……….., m               (4)       

whereݕ = (ݕଵ, ,ଶݕ … … … . ,   = B-1 Nݕ  ) T = B-1b andݕ
For the current basic feasible solution ݔேೕ= 0 (j=1,2,……..,n - m), we have ݔೕ= ݕ , (i=1,2,…….,m). 

Assuming that ݕ ≥ 0. 
The objective function (1) in terms of ݔ and  ݔே  can be written as: 

           Z = [ ܿ , ܿே]ቂݔݔேቃ+ 
ଵଶ [ݔ ,் ் ேݔ ]  ݀ଵଵ ݀ଵଶ݀ଶଵ ݀ଶଶ൨ ቂݔݔேቃ 

Expressing Z in terms of the remaining (n – m) non-basic variables ݔே only, and simplifying, we get: 
           Z = ܼ + α ݔே + ݔே ்  Gݔே                                 (5)       
  
whereܼ = value of objective function Z when ݔே = 0 and ݔ=  ݕ 
                 G = symmetric matrix of order (n – m) x (n – m) 
     α = αଵ, αଶ,………..,αି (constant) 
 
The Procedure 
Step 1: Evaluate the partial derivatives of Z with respect to non-basic variables, ݔே = 0. Thus, from Eqn.(5) 
We get:  డడ௫ೀ = α + 2 ∑ ݃ݔேିୀଵ  ; j = 1,2,……..,n – m                      (6)    

Step 2:  See the nature of ቤ డడ௫ೀቤ௫ಿ  = α  ;   k = 1,2,……..,n – m  

(a) If α୨ < 0, for all j, then the current solution is also an optimal solution 

(b) But if at least one α୨ > 0, one of the non-basic variables, which is currently at zero level, corresponding to    

the largest positive value of α୨, will be selected to enter the basis. 
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Step 3:       பப୶ొቚ୶ొୀ  = α୨ (largest), then choose non-basic variables x୰, for entering the basis. For this it will be 

profitable to go on increasing its value from zero till a point where either : 

(a) any one of the present basic variables becomes negative, or  

(b) ∂Z/ ∂xౠ reduces to zero and is about to become negative. 

 
Step 4:      For maintaining the feasibility of the solution we must consider only that value of non-basic variables ݔ, 

say βଵ , which has only a positive coefficient. In this case, the first basic variable selected to leave the basis should 

satisfy the usual minimum ratio rule of the simplex method and will be given by: 

βଵ = ቐ݊݅ܯ ൜௬బ௬ೕ  ; ݕ > 0                               ൠ∞    ; ≥ ݕ   0,   ݆ = 1,2, … … , ݊ − ݉  (7)     

whereݕ = ݔ 
      Since it is not desirable to increase the value of the non-basic variable  ݔ beyond the point where ∂Z/  ேೕݔ∂

becomes zero, the critical value of ݔsay βଶ, at which  ∂Z/ ேೕ becomes zero is given by : βଶ = ቐݔ∂ หೕหଶ ೕ  ;  ݃ > 0∞  ;  ݃  ≤ 0  
where ݃ is the element of matrix G . 
Hence the value of non-basic variable ݔ must be determined by taking the minimum between βଵandβଶ, that is, ݔ = 

Min { βଵ, βଶ}. However if  βଵ = βଶ= ∞, the value of ݔ can be increased indefinitely without violating either the 

condition (a) or (b) of Step-3 and the condition that QP problem must have an unbounded solution . Moreover, 

(i) If the entering variable ݔ is increased up to only βଵ and at least one basic variable is reduced to Zero, then 

a new basic feasible solution can be obtained by the usual simplex method. But if by entering ݔ into the basis two 

or more basic variables are reduced to zero, then the new solution, so obtained, will be degenerate and thus cycling 

can occur. 

(ii) If the entering variable is increased up βଶ(< ∞), then we may have more than m variables at positive level 

at any iteration. This stage comes when the new (non-basic) feasible solution occurs where ∂Z/  ேೕ = 0. At thisݔ∂

stage we define a new variable (unrestricted) ݑ as : ݑ =  
డడ௫ೝ = α + 2 ∑ ݃ݔேିୀଵ  

 The variable u୨ is also called free variable. Clearly, we now have m+1 non-zero variables and m + 1 constraints. 

These variables forms a basic feasible solution to the new set of constraints: 

Ax = b  u୨ – 2 ∑ g୨୩x୩୬ି୫୩ୀଵ  =  α୨ 
The variable  u୨ is introduced in the set of constraints only for computational purposes and its value is zero at the 

next basic feasible solution. Now, the variables  x and u୨ are treated as basic variables. The new set of constraints is 

again expressed in terms of non-basic variables for obtaining the new basic feasible solution. 

Step 5: Go to step 1 and repeat the entire procedure of getting a new basic feasible solution until no further 

improvement in the objective function can be obtained by making any permitted changes in one of the non-basic 
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variables. The permitted changes here include increase in all variables and decrease in free variables. In other words, 

the procedure terminate when: 

డడ௫ೀ ቊ≤ 0,   if ݔேೕ is a restricted ( non − negative) variable= 0, if ݔேೕ is  a free variable.                                             (8)The necessary conditions (8) for terminating the 

produce are also sufficient for a global minimum if D is positive semi-definite or positive definite. 

Remarks: 1. While evaluating ∂Z/     is unrestricted signݑ , both increase and decrease must be checked, asݑ∂

2. If at any iteration a free variable becomes a basic variable is non-zero, then drop the new constraint 

containing it. This should be done because it is a free variable, and therefore, will neither be chosen    to leave the 

basis nor will appear in the selection of leaving variable. 

 

Example: Use Beale’s method to solve quadratic programming problem: 

      Maximize Z = 2 x1 + 3x2−2 x2
2 

subject to the constraints 
(i)  x1 + 4x2≤ 4     (ii)  x1 + x2≤ 2 

and   x1, x2≥ 0       
 

Solution: After introducing slack variables s1 and s2, the given constraints can be written as: 

(i) x1 + 4x2 + s1 = 4     (ii)  x1 + x2 + s2= 2 

and   x1, x2,s1,s2≥ 0. 
     Consider s1 and s2are basic variables in initial solution and express these in terms of non-basic variables s1 and 
s2as follows: 
     s1 = 4 + 1 (−x1)+ 4 (−x2)and s2 = 2 + 1 (−x1)+ 2 (−x2) 
the initial basic feasible solution: x1 = x2 = 0;  s1 = 4 and s2 =2, is shown in Table-1 
 

Table-1 
 Basic       Solution     
Variables   Values 
B                b(=xB) 
 

x1                   x2                s1               s2 

     s1                1/3 
 s2           1 
 

1                     4                 1                 0       
 
1                     1                 0                 1 

 
     The value of the objective function at this solution is Z = 0. Also xB = (s1, s2) = (4, 2) and xN = (x1, x2) = (0, 0). 
Expressing Z in terms of non-basic variables x1 and x2 we get: 

           Z = 2 x1 + 3x2−2 x2
2   and  

డడ௫భ = 2, 
డడ௫మ = 3 – 4 x2 

At the current basic feasible solution evaluate those partial derivatives of Z with respect to xN = 0, i.e. x1 = x2 = 0. பப୶భቚ୶భୀ୶మୀ= 2      and    
பப୶మቚ୶భୀ୶మୀ= 3 

     Here 2 = 1ߙ and 3 = 2ߙ. Since both of these are positive, therefore chose x2 (due to most positive value 2ߙ) to 
enter into the basis in order to improve the value of the objective function. Using Table-1, the critical value 2ߚof x2 
is given by: 

(i) Largest value of x2 without deriving any basic variable s1 and s2 to zero. Since  
(a)s1 = 4 −x1−4 x2        (b)s2 = 2−x1−x2 

Therefore 1ߚ min {4/4, 2/1} = 1, (corresponding to y22) 
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(ii)   The partial derivatives 
பப୶మ becomes zero at x2 = ¾ (x1 = 0). Therefore 2ߚ = 

|మ|ଶ మమ = 
|ଷ|ଶ (ଶ) = 

ଷସ 

The new value of the entering variable x2 is given by: 
             X2 = min { 2ߚ ,1ߚ} = {3/4 ,1} = ¾ 
This value of x2 corresponding to 2ߚ;; therefore case (ii) applies and neither of the current basic 
variables become zero. Consequently we introduce a free variables u1 and the new constraint: 
 

u1 = 
பப୶మ = 3 – 4x2 or 4x2 + u1 = 3 

as shown in table-2 
It may be noted from tabe-2 that now xB = (s1, s2, u1) and xN = (x1, x2). 

 
Table-2 

 Basic       Solution     
Variables   Values 
B                b(=xB) 
 

x1                   x2                 s1              s2              u1 

     s1                4     s2              2 
     u1              3 
 

1                     4                 1                 0           0      
1                     1                 0                 1           0 
0                     4                 0                 0           1 

 
Introducing x2 into the basis and remove u1 from the basis in Table-2. The new solution is shown in Table-3 

Table-3 
 Basic       Solution     
Variables   Values 
B                b(=xB) 
 

x1                   x2                 s1                s2              u1 

     s1                1     s2            5/4 
     x2                 3/4 
 

1                     0                 1                 0            0      
1                     0                 0                 1          1/4 
0                     1                 0                 0         -1/4 

 
The new set of basic and non-basic variables is: 
xB = (s1, s2, x2) = (1, 5/4, 3/4);     xN = (x1, u1) = (0, 0) 
Expressing basic variables x2, s1 and s2 in terms of non-basic variables x1 and u1 as follows: 

(i) x2 =  
ଷସ − ଵସ u1 ;   (ii) s1 = 1 − x1− u1 (iii) s2 = 

ହସ − ଵݔ − ଵସ u1 

Also by eliminating the basic variable x2 from the objective function and expressing it in terms of non-basic 
variables x1 and u1 we get: 

           Z = 2 x1 + 3 (
ଷସ − ௨భସ  ) − 2 (

ଷସ − ௨భସ )2 = 
ଽ଼ ଵݔ 2 + − ௨భమ଼ 

Computing the partial derivatives of Z with respect to x1 and u1 we have பப୶భ = 2;          
பப୳భ = − ௨భସ  

At the current solution we get: பப୶భቚ୳భୀ୶భୀ= 2      and    
பப୳భቚ୳భୀ୶భୀ= 0 

Since 2 = 1ߙ and 0 = 2ߙ, choose x1 to enter the basis. Using Table-3, the critical value βଵ of x1 is given by 
(i) Largest value of x1 without deriving any basic variable s1, s2 and x2 to zero. Since 

 

(i) x2 =  
ଷସ − ଵସ u1 ;   (ii) s1 = 1 − x1− u1 (iii) s2 = 

ହସ − ଵݔ − ଵସ u1 
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therefore βଵ = min {
ଵଵ , (ହ/ସ)ଵ } = 1. 

      (ii) Since partial derivative 
பப୶భ is non-zero, therefore βଶ = 0. 

Thus the new value of entering variable x1 is: x1 = min {βଵ, βଶ} = 1. This value of ݔଵ corresponds to βଵ, therefore 
case (i) applies and the new optimal solution is shown in Table-4 
 
 
 
 

Table-4 
 Basic       Solution     
Variables   Values 
B                b(=xB) 
 

x1                   x2                s1                         s2               u1 

     x1                1     s2            1/4 
     x2                 3/4 
 

1                     0                 1                 0            0      
1                     0                -1                 1         -3/4 
0                     1                 0                 0         -1/4 

 
Now we havexB = (x1, s2, x2) = (1, 1/4, 3/4);     xN = (s1, u1) = (0, 0) 
      Expressing basic variables x1, x2ands2in terms of non-basic variables s1 and u1 as follows: 

(i) x1 = 1 − s1− u1; (ii)  s2 = 
ଵସ + ଵݏ + ଷସ u1 (iii) x2 = 

ଷସ + 
ଵସu1 

Also expressing objective function Z in terms of non-basic variables s1and u1, we get: 

     Z = 
ଽ଼
 + 2 (1 − s1− u1) − ଵ଼  = ଵଶݑ

ଶହ଼ −2 s1−2 u1− ଵ଼  ଵଶݑ

      Computing partial derivative of Z with respect to s1and u1, we have: பபୱభ = −2;          
பப୳భ =− 2 − ௨భସ  

But the current solution, we have: பபୱభቚୱభୀ୳భୀ= −2      and    
பப୳భቚ୳భୀ୶భୀ= − 2 

Since both ߙ< (j = 1, 2), the optimal solution is: x1 = 1, x2 = 
ଷସ and Max Z = 25/8. 

 
Exercise 

1. Use Wolfe’s method to solve the quadratic programming problem: 

      Maximize Z = 2 x1+  x2–  x1
2 

 
subject to the constraint 

(i)2x1 + 3 x2≤ 6(ii)2x1 +  x2≤ 4      and x1, x2≥ 0. 
 

      2. Use Beale’s method to solve following quadratic programming problem: 
Maximize Z = −4 x1 +x1

2– 2 x1 x2+2 x2
2 

subject to the constraints 
(i) 2x1 + x2≥ 6     (ii)  x1−4 x2≥ 0   and x1, x2≥ 0       

 

 
 
 
 
 
 

116



129 
 

4.9  Summary  
            
 Linear programming required the objective function and constrains to be linear. However, if either of these 
are not linear, then non-linear programming methods are used to find optimal value of the objective function with or 
without constraints. In the more general procedure, conditions necessary for an optimum value of a function subject 
to inequality constraints, are known as Kuhn-Tucker conditions. Beale’s and Wolf”s methods have also been 
demonstatrated to solve quadratic programming problems. 
            In case the objective function and constrains are separable, the separable programming technique is used for 
solving a NL programming problem. Sometimes, functions that are not separable by using the approximation 
methods.  
           Geometric programming is used to solve NL programming problems that involve special type of functions 
called polynomials. The GP approach first finds the optimal value of the objective function by solving its dual 
problem and then determines the solution to the given NLP problem from the optimal solution of the dual. 
           If true values of the LP model parameters are not known, then in such a case stochastic programming 
approach is used to solve the LP model by making a few decisions by selecting model parameters at different points 
in time. This is done to consider random effects on the parameters explicitly in the solution of the model.   
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Block I
Differential Geometry I



Unit 1
Course structure

• Differentiability of a map from R2 to R3

• Inverse Function Theorem

Objective
The object of this unit is to give the idea that what differential geometry is and what are needed to

study differential geometry.

1 Introduction
Differential geometry is a subject, where we study geometric properties with the help of calculus.
To have the idea of this subject, we need some basic concept of calculus of several variables. We
also need some knowledge of basic linear algebra.

1.1 Definition
Let f be a map from an open set of R to Rn given by

f(t) = (f1(t), f2(t), · · · , fn(t))

The map will be called continuous at a point if the each component f(t) = (f1(t), f2(t), · · · , fn(t)
is continuous at that point. Similarly differentiability of f is determined by the differentiability of
the components.

1.2 Differentiability of a map from R2 to R3

There is a precise definition of differentiability of valued maps. For details, readers may consult
some standard books of calculus of several variables. In the following, we give an working idea of
differentiability of maps from R2 → R3.

Let f : U → R3, U is open in R2 be given by

f(x, y) = (f1(x, y), f2(x, y), f2(x, y))

Now

J(f) =


∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

∂f3
∂x

∂f3
∂y


The map f will be called differentiable at a point of U , if al that point J(f) is maximal rank.
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1.3 Inverse function theorem
Let f : U → Rn be a smooth map defined on an open subset U of Rn (n ≥ 1). Assume that at some
point x0 ∈ U , the Jacobian matrix J(f) is invertible. Then there is an open subset V of Rn and a
smooth map g : V → Rn such that

(i) y0 = f(x0) ∈ V

(ii) g(y0) = x0

(iii) g(V ) ⊆ U

(iv) g(V ) is an open subset of Rn

(v) f(g(y)) = y for all y ∈ V .

In particular, g : V → g(V ) and f : g(V )→ V are inverse bijection.

Thus the inverse function theorem says that, if J(f) is invertible at some point, then f is bijective
near that point and its inverse map is smooth.

1.4 Summary
In this unit, we have learnt about the continuity of vector-valued functions and their differentiability
dtermined by the conitnuity and differentiability of the component functions. Also, we learnt the
Inverse function theorem.
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Unit 2
Course structure

• Parametric curves

Objective

The object of this unit is to study parametric curves and their reparametrization.

2 Introduction
In our undergraduate classes, we read about the curvature of curves in two dimensional plane R2.
Here we shall study curvature of curves in R2 and curvature and torsion of curves in R3. In this
chapter, we shall use parametric equation of curves. We know that parametric equation of the circle
x2 + y2 = 1 is x = cos t, y = sin t. In analytical notation, we represent a curve in plane by a
mapping from an open interval of R to R2. For instance, we express a circle by a map γ : [0, 2π]→
R2 by

γ(t) = (cos t, sin t).

Now if we take (0, 2π) instead of [0, 2π], we get the circle excluding the point (0, 1).

Since, we shall use analysis to study curves, we have to use concept of differentiability. So we
prefer (0, 2π) instead of [0, 2π]. In the following we give formal definition of parametric curves.

2.1 Parametrized curve
A parametrized curve in Rn is a map γ : (α, β)→ Rn, for some α, β with −∞ ≤ α < β ≤ ∞.

The symbol (α, β) denotes the open interval

(α, β) = {t ∈ R : α < t < β

A parametrized curve whose image is contained in a level curve C is called a parametrization of part
of C.

2.2 Smooth curve
Let γ : (α, β)→ Rn be given by

γ(t) =
(
γ1(t), γ2(t), · · · , γn(t)

)
The curve γ will be called smooth if each of the components γ1, γ2, · · · , γn of γ is smooth.

3
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2.3 Tangent to a curve
If γ(t) is a parametrized curve, its derivative dγ

dt
is called the tangent vector of γ at the point γ(t).

2.4 Arc length of a parametrized curve
The arc length of a curve γ starting at the point γ(t0) is the function s(t) given by

s(t) =

∫ t

0

||γ̇(n)||dn

For logarithmic spiral
γ(t) = (etcos t, etsint)

We have

γ̇ =
(
et(cos t− sin t), et(sin t+ cos t)

)
||γ̇|| = e2t(cos t− sin t)2 + e2t(sin t+ cos t)2

= 2e2t (2.1)

Hence the arc length of γ starting at γ(0) = (1, 0) is

s =

∫ t

0

√
2e2ndn

=
√

2(et − 1) (2.2)

Note: If s is the arc length of a curve γ starting at γ(t0), we have

ds

dt
=

d

dt

∫ t

t0

||γ(u)||du

= ||γ̇(t)||

Thinking of γ(t) as the position of a moving point at time t, ds
dt

is the speed of the point (rate of
change of distance along the curve). For this reason, we make the following definition.

2.5 Speed of curve

If γ : (α, β)→ Rn is parametrized curve, its speed at that point γ(t) is || ˙γ(t)||, and γ is said to be a
unit speed curve if ||γ̇(t)|| is a unit vector for all t ∈ (α, β).

2.6 Proposition
Let n(t) be a unit vector that is a smooth function of a parameter t. Then the dot product ṅ(t)·ṅ(t) =
0 for all t, i.e., ṅ(t) is zero or perpendicular to n(t) for all t.

In particular, if γ is a unit speed curve, then γ̈ is zero or perpendicular to γ̇.
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Proof: We use the product formula for differentiating dot products of vector valued functions a(t)
and b(t)

d

dt
(a · b) =

da

dt
· b+ a · db

dt

Using this to differentiate both sides of the equation n · n = 1, with respect to t gives

ṅ · n+ n · ṅ = 0

So 2ṅn = 0. The last part follows by taking n = γ̇. We know that parametric equation of a curve is
not unique. So we can parametrize a curve in several ways but the curve is same. In the following,
we give the definition of reparametrization.

2.7 Reparametrization

A parametrized curve γ̃ : (α̃, β̃)→ Rn is a parametrization of a parametrized curve γ : (α, β)→ Rn

if there is a smooth bijective map φ : (α̃, β̃)→ (α, β) such that the inverse map

φ−1 : (α, β)→ (α̃, β̃)

is also smooth and
γ̃(t̃) = γ

(
φ(t̃)

)
for all t̃ ∈ (α̃, β̃)

Two curves that are reparametrizations of each other have the same image, so they should have the
same geometric properties.

2.8 Proposition
Any reparametrization of a regular curve is regular.

Proof: Suppose that γ and γ̃ are related as in definition 2.7. Let t = φ(t̃) and let ψ = φ−1 so that
t̃ = ψ(t). Differentiating both sides of the equation φ

(
ψ(t)

)
= t with respect to t and using the

chain rule gives
dφ

dt̃
· dψ
dt

= 1

This shows that dφ
dt̃

is never zero. Since γ̃(t̃) = γ
(
φ(t̃)

)
, another application of chain rule gives

dγ̃

dt̃
=
dγ

dt
· dφ
dt̃

(2.3)

which shows that dγ̃
dt̃

is never zero if dγ
dt

is never zero.

2.9 Observation
See that f : R2 − {(0, 0)} → R defined by f(x, y) =

√
x2 + y2 is smooth in R2 − (0, 0).
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2.10 Proposition
If γ(t) is regular curve, its arc length s starting at any point γ is a smooth function of t.

Proof: We have already seen that s is a differentiable function of t and ds
dt

= ||γ̇(t)||. To simplify
the notation, assume from now on that γ is plane curve, say

γ(t) =
(
u(t), v(t)

)
, (2.4)

where u and v are smooth functions of t. Define f : R2 → R by

f(u, v) =
√
u2 + v2

so that
ds

dt
= f(u̇, v̇) (2.5)

The crucial point is that f is smooth on R2−{(0, 0)}, which means that all the partial derivatives of
f of all orders exist and are continuous functions except at the origin (0, 0). For example

∂f

∂u
=

u√
u2 + v2

,
∂f

∂v
=

v√
u2 + v2

are well defined and continuous expect where u = v = 0 and similarly for higher derivatives. Since
γ is regular u̇ and v̇ are never both zero. So the chain rule and equation (2.5) shows that ds

dt
is smooth.

For example,
d2s

dt2
=
∂f

∂u
ü+

∂f

∂v
v̈,

and similarly for the higher order derivatives of s.

2.11 Proposition
A parametrized curve has unit speed reparametrization if and only if it is regular.

Proof: Suppose first that a parametrized curve γ : (α, β)→ Rn has a unit speed reparametrization
γ̃, with reparametrization map φ. Letting t = φ(t̃), we have

γ̃(t̃) = γ(t)

⇒ dγ̃

dt̃
=
dγ

dt
· dt
dt̃

∴

∣∣∣∣∣
∣∣∣∣∣dγ̃dt̃

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣dγdt

∣∣∣∣∣
∣∣∣∣∣ ·
∣∣∣∣∣
∣∣∣∣∣dtdt̃
∣∣∣∣∣
∣∣∣∣∣

Since γ̃ is unit speed,
∣∣∣∣∣∣dγ̃
dt̃

∣∣∣∣∣∣ = 1, so clearly dt
dt

is not zero.
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Conversely, suppose that the tangent vector dγ
dt

is never zero. By the note 2.4 ds
dt
> 0 for all t,

where s is the arc length of γ starting at any point of the curve and by proposition 2.10 s is smooth
function of t. It follows from inverse function theorem of multivariable calculus that s : (α, β)→ R

is injective, that its image is an open interval (α̃, β̃) and that the inverse map s−1 : (α̃, β̃) → (α, β)
is smooth. We take φ = s−1 and let γ̃ be the corresponding reparametrization of γ, so that

γ̃(s) = γ(t)

⇒ dγ̃

ds
· ds
dt

=
dγ

dt

⇒

∣∣∣∣∣
∣∣∣∣∣dγ̃ds

∣∣∣∣∣
∣∣∣∣∣ · dsdt =

∣∣∣∣∣
∣∣∣∣∣dγdt

∣∣∣∣∣
∣∣∣∣∣ =

ds

dt

∴

∣∣∣∣∣
∣∣∣∣∣dγ̃ds

∣∣∣∣∣
∣∣∣∣∣ = 1

The above proof shows that the arc length is essentially the only unit speed parameter on a regular
curve.

2.12 Exercise
(i) Show that γ(t) =

(
cos2t− 1

2
, sin t cos t, sin t

)
is a parametrization of the curve of intersection

of the circular cylinder of radius 1
2

and axis the z-axis with the sphere of radius 1 and centre (1
2
, 0, 0).

(ii) Show that the curve γ given by

γ(t) =

(
1

3
(1 + t)3/2,

1

3
(1− t)3/2, t√

2

)

is unit speed.

(iii) Test whether the following curve regular

γ(t) =
(
cos2t, sin2t

)
for −∞ < t <∞

2.13 Summary
In this unit, we have known about parametrization of a curve in Rn. Reparametrization is explained.
Necessary and sufficient condition for reparametrization is proved.

Suggested Readings: Elementary differential geometry by Andrew Pressley.
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Unit 3
Course structure

• Curvature of curves

Objective

The object of this present unit is to give the idea of curvature of plane curves, signed curvature of
plane curves and curvature and torsion of space curves.

3 Introduction
In our undergraduate classes, we have studied about curvature of plane curves. We know that the
curvature of a circle in plane is constant.

In this unit we shall study how to find curvature of plane and space curves.

Recall that a curve γ parametrized by t is called a unit speed curve if ||γ̇(t)|| = 1.

We also have seen in the previous unit that if we reparametrize a curve by arc length, the curve
becomes unit speed. In the following we shall give two definitions of curvature of curves. One for
unit speed curve parametrized by arc length and another for any regular curve.

3.1 Curvature for unit speed curve parametrized by arc length
If a curve γ is unit speed and is parametrized by arc length s, then its curvature k(s) is defined as

k(s) =

∣∣∣∣∣
∣∣∣∣∣d2γ(s)

ds2

∣∣∣∣∣
∣∣∣∣∣.

Observe that dγ(s)
ds

denotes the tangent to the curve γ at γ(s). Hence second derivative of γ denotes
the rate of change of tangent. Thus the definition conforms with our usual sense of curvature as a
rate of change of tangents. Again there are some other reasoning to define curvature like the above
definition. For details see any standard book of Differential Geometry of curves and surfaces.

However, to give unit speed reparametrization to a curve using arc length is theoretically true but
practically some times it become a hard work. So there is another definition of curvature for regular
curves.
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3.2 Curvature of regular curve
Let γ(t) be a regular curve in R3, then its curvature k(t) is defined as

k(t) =
||γ̈ × γ̇||
||γ̇||3

where the × denotes the vector product and · denote d
dt

.

3.3 The definition 3.2 can be deduced from 3.1 as following:
Let γ̃ (with parameter s) be a unit speed reparametrization of γ, and let us denote d

ds
by a dash (′).

Then by chain rule

γ̃′
ds

dt
= γ̇

so

k = ||γ̃′′|| =

∣∣∣∣∣
∣∣∣∣∣ dds
(
γ̇
ds
dt

)∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣
d
dt

(
γ̇
ds
dt

)
ds
dt

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣ γ̈ dsdt − γ̇ d

2s
dt2

ds
dt

∣∣∣∣∣
∣∣∣∣∣ (3.1)

Now (
ds

dt

)2

= ||γ̇||2 = γ̇ · γ̇

and differentiating with respect to t gives

ds

dt
· d

2s

dt2
= γ̇ · γ̈

Using this and above equation (3.1), we get

k =

∣∣∣∣∣
∣∣∣∣∣ γ̈
(
ds
dt

)2
− γ̇ d2s

dt2
ds
dt(

ds
dt

)4
∣∣∣∣∣
∣∣∣∣∣

=
||γ̈(γ̇ · γ̇)− γ̇(γ̇ · γ̈)||

||γ̇||4

Using the vector triple product identity

a× (b× c) = (a · c)b− (a · b)c, (a, b, c ∈ R3)

9



we get
γ̇ × (γ̈ × γ̇) =

...
γ (γ̇ · γ̇)− γ̇(γ̇ · γ̈)

Again γ̇ and γ̈ × γ̇ are perpendicular vectors so

||γ̇ × (γ̈ × γ̇)|| = ||γ̇|| ||γ̈ × γ̇||,

Hence

||γ̈(γ̇ · γ̇)− γ̇(γ̇ · γ̈)||
||γ̇||4

=
||γ̇ × (γ̈ × γ̇)||
||γ̇||4

=
||γ̈ × γ̇||
||γ̇||3

If γ is non-regular curve its curvature is not defined, in general.

3.4 Concept of signed curvature
For plane curves, it is possible to refine the definition of curvature slightly and give it an appealing
geometric interpretation.

t
ηs

Suppose that γ(s) is a unit speed curve in R2. Denoting
d
ds

by a dot, let
t = γ̇

be the tangent vector of γ; note that t is a unit vector.
There are two unit vectors perpendicular to t; we make
a choice by defining ηs, the signed unit normal of γ, to
be the unit vector obtained by rotating t anticlockwise by
π
2
.

We know that ṫ = γ̈ is perpendicular to t, and hence parallel to ηs. Thus, there is a number ks
such tat

γ̈ = ksηs.

The scalar ks is called the signed curvature of γ (it can be positive, negative or zero).

Note that ||ηs|| = 1, we have

k = ||γ̈|| = ||ksηs|| = |ks|,

so the curvature of γ is the absolute value of its signed curvature.

3.5 Proposition
Let γ(s) be a unit speed plane curve, and let φ(s) be the angle through which a fixed unit vector
must be rotated anticlockwise to bring it into coincidence with the unit tangent vector t of γ. Then

ks =
dφ

ds
.
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Proof: Let a be the fixed unit vector and let b be the unit vector obtained by rotating a anticlock-
wise by π

2
. Then,

t = a cos φ+ b sin φ,

⇒ ṫ = (−a sin φ+ b cos φ)
dφ

ds

∴ ṫ.a = −a sin φdφ
ds

∴ ks(ηs.a) = −sin φdφ
ds

t
ηs

b

a
φ

But the length between ηs and a is φ + π
2
, since t must

be rotated anticlockwise by π
2

to bring it into coincidence with
ηs.

Hence
ηs.a = cos (φ+

π

2
) = −sin φ.

Hence
ks =

dφ

ds
.

3.6 Theorem
Let κ : (α, β) → R be any smooth function. Then, there is a unit speed curve γ : (α, β) → R2

whose signed curvature is κ.

Further, if γ̃ : (α, β) → R2 is any other unit speed curve whose signed curvature is κ, there is a
rigid motion M of R2 such that

γ̃(s) = M(γ(s)) for all s ∈ (α, β)

Proof: For the first part, fix s0 ∈ (α, β) and define, for any s ∈ (α, β),

γ(s) =

(∫ s

s0

cos φ(v)dv,

∫ s

s0

sin φ(v)dv

)
,

where φ(s) =
∫ s
s0
k(u)du.

Then, the tangent vector of γ is

γ̇(s) = (cos φ(s), sin φ(s)),

which is a unit vector making an angle φ(s) with the x-axis. Then γ is a unit speed and , by
proposition 3.5 its signed curvature is

dφ

ds
=

d

ds

∫ s

s0

k(u)du = k(s)
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For second part, let φ̃(s) be the angle between the x-axis and the unit tangent ˙̃γ of γ̃. Thus

˙̃γ(s) = (cos φ̃(s), sin φ̃(s)),

∴ γ̃(s) =

(∫ s

s0

cos φ̃(v)dv,

∫ s

s0

sin φ̃(v)dv

)
+ γ̃(s0)

By previous result, we have

dφ̃

ds
= k(s)

∴ φ̃(s) =

∫ s

s0

k(u)du+ φ̃(s0) = φ(s) + φ̃(s0)

Form the above equations and writing a for the constant vector γ̃(s0) and θ for the constant scalar
φ̃(s0), we get

γ̃(s) = Ta

(∫ s

s0

cos (φ(v) + θ)dv,

∫ s

s0

sin (φ(v) + θ)dv

)

= Ta

(
cos θ

∫ s

s0

cos φ(v)dv − sin θ
∫ s

s0

sin φ(v)dv, sin θ

∫ s

s0

cos φ(v)dv + cos θ

∫ s

s0

sin φ(v)dv

)

= TaRθ

(∫ s

s0

cos φ(v)dv,

∫ s

s0

sin φ(v)dv

)
= M(γ(s))

3.7 Space curves
In the previous section, we have seen that a plane curve is completely determined by signed curva-
ture. But this is not true for space curves. To describe space curves, we need a space curve we need
two curvatures. One is called simply curvature and the second one is called torsion.

We shall prove that curvature and torsion completely determine the curve in space.

Let γ(s) be a unit speed curve in R3, and let t = γ̇ be its unit tangent vector. If the curvature κ(s)
is non-zero, we define the principal normal of γ at the point γ(s) to be the vector

η(s) =
1

κ(s)
ṫ(s)

Since ||ṫ|| = κ, η is unit vector. Further we know ṫ · ṫ = 0. So t is perpendicular to η. It follows that

t× η = b (say)

is a unit vector perpendicular to both t and η. The vector b(s) is called binormal vector of γ at the
point γ(s). Thus {t, η, b} is an orthonormal basis of R3 and is right handed, i.e.,

b = t× η, η = b× t, t = η × b

12



Since b(s) is unit vector for all s, b is perpendicular to b. Now we use the product rule for differenti-
ating the vector product of vector valued functions u and v of a parameter s

d

ds
(u× v) =

du

ds
× v + u× dv

ds

Applying this to b = t× η gives

ḃ = ṫ× η + t× η̇
= t× η̇

Since by definition of η,
ṫ× η = κ(η × η) = 0.

Hence ḃ is perpendicular to t. Being perpendicular to both t and b, ḃ must be parallel to η. So

ḃ = −τη,

for some scalar τ , which is called the torsion of γ. Note that the torsion is only defined if the curva-
ture is non-zero.

Of course, we define the torsion of an arbitrary regular curve γ to be the torsion of a unit speed
reprametrization of γ of the form

u = ±s+ c

where c is a constant, then τ is unchanged. But this change of parameter has the following effect on
the vectors introduced above: t→ ±t, ṫ→ ṫ, η → η, b→ ±b, ḃ→ b.

Hence τ → τ .

3.8 Proposition
Let γ(t) be a regular curve in R3 with nowhere vanishing curvature. Then denoting d

dt
by a dot, its

torsion is given by

τ =
(γ̇ × γ̈) ·

...
γ

||γ̇ × γ̈||2

3.9 Example
Compute the torsion of the circular helix

γ(θ) = (a cos θ, a sin θ, bθ)

Solution:

γ̇(θ) = (−a sin θ, a cos θ, b),
γ̈(θ) = (−a cos θ,−a sinθ, 0),
...
γ (θ) = (−a sin θ,−a cos θ, 0)

13



Hence

γ̇ × γ̈ = (ab sin θ,−ab cos θ, a2)
∴ ||γ̇ × γ̈||2 = a2(a2 + b2)

∴ (γ̇ × γ̈)
...
γ = a2b

and so the torsion

τ =
(γ̇ × γ̈)

...
γ

||γ̇ × γ̈||2

=
a2b

a2(a2 + b2)

=
b

a2 + b2

3.10 Theorem
Let γ be a unit speed curve in R3 with nowhere vanishing curvature. Then

ṫ = κη

η̇ = −κt+ τb

ḃ = −τη

3.11 Theorem
Let γ(s) and γ̃(s) be two unit speed curves in R3 with the same curvature κ(s) > 0 and the same
torsion τ(s) for all s. Then, there is a rigid motion M of R3 such that

γ̃(s) = M
(
γ(s)

)
for all s

Further, if κ and τ are smooth functions with κ > 0 everywhere, there is a unit speed curve in R3

whose curvature is κ and whose torsion is τ .

3.12 Exercise
(i) Show that a circle with centre (x0, y0) and radius R has curvature 1

R
.

(ii) Compute the curvature of the curve

γ(t) =

(
1

3
(1 + t)3/2,

1

3
(1− t)3/2, t√

2

)
(iii) Show that, if the curvature κ(t) of a regular curve γ(t) > 0 everywhere, then κ(t) is a smooth

function of t. Give an example to show that this may not be the case without the assumption that
κ > 0.

(iv) Prove that signed curvature is a smooth function.

(v) Prove that any regular plane curve whose curvature is a positive constant is part of a circle.

14



3.13 Summery
In this unit we have studied about curvature and torsion of curves in R3. We have studied about
signed curvature of plane curves. We observed that for a plane curves, signed curvature dtermine the
curve completely and a space curve is determined by curvature and torsion.

3.14 Suggested Reading
Elementary Differential Geometry by Andrew Pressley.
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Unit 4
Course structure

• Global properties of plane curves

Objective

The object of this present unit is to study some global properties of plane curves. We mainly study
isoperimetric inequality and four vertex theorem.

4 Introduction
In the previous chapters, we have studied some properties of curves which depend on a point of the
curve. These properties are called local properties. There are some properties which depend on the
total shape of the curve. These properties are known as global properties.

4.1 Simple closed curve
Let a ∈ R be a positive constant. A simple closed curve in R2 with period a is a (regular) curve
γ : R→ R2 such that γ(t) = γ(t′) if and only if (t′ − t) = κ a for some integer κ.

4.2 Length of simple closed curve
The length of a curve γ is defined as

l(γ) =

∫ a

0

||γ̇(t)||dt,

where a is period of the curve.

4.3 Orientation
If the signed normal of a curve points into the interior of the curve γ, then the curve γ is called
positively oriented.

4.4 Note
In the next section, we shall be interested in the area contained by a single closed curve γ, i.e.,

A
(
int(γ)

)
=

∫ ∫
int(γ)

dx dy

This can be computed by using Green’s Theorem, which says that, for all smooth functions f(x, y)
and g(x, y) ∫ ∫

int(γ)

(
∂g

∂x
− ∂f

∂y

)
=

∫
γ

(
f(x, y)dx+ g(x, y)dy

)
16
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if γ is positively oriented simple closed curve.

4.5 Proposition

If γ(t) =
(
x(t), y(t)

)
is a positively oriented simple closed curve in R2 with period a, then

A
(
Int(γ)

)
=

1

2

∫ a

0

(xẏ − yẋ)dt

Proof: Taking f = −1
2
y, g = 1

2
x in Green’s Theorem, we get

A
(
Int(γ)

)
=

1

2

∫
γ

(x dy − y dx)

which proves the proposition.

4.6 Isoperimetric inequality

Let γ be a simple closed curve, let l(γ) be its length and let A
(
int(γ)

)
be the area of its interior.

Then
A
(
int(γ)

)
≤ 1

4π
l(γ)2,

with equality holding if and only if γ is a circle.

To prove the theorem, we need the following inequality:

4.7 Wirtinger Inequality
Let F : [0, π] 7→ R be a smooth function such that F (0) = F (π) = 0. Then∫ π

0

(
dF

dt

)2

dt ≥
∫ π

0

F (t)2dt,

with equality holding if and only if F (t) = A sin t for all t ∈ [0, π], where A is a constant.

Proof: Let

G(t) =
F (t)

sin t

Then denoting d
dt

by a dot as usual,∫ π

0

Ḟ 2dt =

∫ π

0

(Ġ sin t+G cos t)2dt

=

∫ π

0

Ġ2 sin2 tdt+ 2

∫ π

0

GĠ sin t cos tdt+

∫ π

0

G2 cos2 tdt

17



Integrating by parts,

2

∫ π

0

GĠ sin t cos tdt = G2 sin t cos t
∣∣π
0
−
∫ π

0

G2(cos2 t− sin2 t)dt

=

∫ π

0

G2(sin2 t− cos2 t)dt

So, ∫ π

0

Ḟ 2dt =

∫ π

0

Ġ2 sin2 tdt+

∫ π

0

G2(sin2 t− cos2 t)dt+

∫ π

0

G2 cos2 tdt

=

∫ π

0

(G2 + Ġ2) sin2 tdt

=

∫ π

0

F 2dt+

∫ π

0

Ġ2 sin2 tdt

and so, ∫ π

0

Ḟ 2dt−
∫ π

0

F 2dt =

∫ π

0

Ġ2 sin2 tdt

The integral on the right hand side is obviously greater than 0, and it is zero if and only if Ġ = 0
for all t, that is, if and only if G(t) is equal to a constant, say A, for all t. Then F (t) = A sin t, as
required.

We now prove the isoperimetric inequality.

Proof: We start by making some assumptions about γ that will simplify the proof.

First, we can, if we wish, assume that γ is parametrized by arc length s. However, because of the
π that appears in the statement, it turns out to be more convenient to assume that the period of γ is
π. If we change the parameter of γ from s to

t =
πs

l(γ)
(4.1)

the resulting curve is still simple closed, and has period π because when s increases by l(γ), t in-
creases by π. We shall therefore assume that γ is parametrized using the parameter t in (4.1) from
now on.

For the second simplification, we note that both l(γ) and A(γ) are unchanged if γ is subjected to
a translation

γ(t)→ γ(t) + b

where b is any constant vector. Taking b = −γ(0), we might as well assume that γ(0) = 0 to begin
with, that is, we assume that γ begins and ends at the origin.

To prove the theorem, we shall calculate l(γ) and A(int(γ)) by using polar coordinates

x = r cos θ, y = r sin θ

18



Using the chain rule, it is easy to show that

ẋ2 + ẏ2 = ṙ2 + r2θ̇2

xẏ − yẋ = r2θ̇

where d
dt

is denoted by a dot. Then using equation (4.1),

ṙ2 + r2θ̇2 =

(
dx

dt

)2

+

(
dy

dt

)2

=

[(
dx

dt

)2

+

(
dy

dt

)2
](

ds

dt

)2

=
l(γ)2

π2

Since (
dx

ds

)2

+

(
dy

ds

)2

= 1

further by A(int(γ)) = 1
2

∫ a
0

(xẏ − yẋ)dt, we have,

A(int(γ)) =
1

2

∫ π

0

(xẏ − yẋ)dt

=
1

2

∫ π

0

r2θ̇dt (4.2)

Now, to prove the theorem, we have to show that

l(γ)2

4π
−A(int(γ)) ≥ 0

with equality holding if and only if γ is a circle. By equation (4.2),∫ π

0

(ṙ2 + r2θ̇2)dt =
l(γ)2

π

Hence using equation (4.2),

l(γ)2

4π
−A(int(γ)) =

1

4

∫ π

0

(ṙ2 + r2θ̇2)dt− 1

2

∫ π

0

r2θ̇2dt

=
1

4
I

where,

I =

∫ π

0

(ṙ2 + r2θ̇2 − 2r2θ̇)dt (4.3)

Thus to prove the theorem, we have to show that, I ≥ 0 and that I = 0 if and only if γ is a circle.
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θ

θ α-

r

α

By simple algebra,

I =

∫ π

0

r2(θ̇ − 1)2dt+

∫ π

0

(ṙ2 − r2)dt (4.4)

The first integral on the right hand side of (4.4) is obviously
greater than or equal to zero and hence the second integral
is greater than or equal to zero by Wirtinger’s inequality(we
are taking F = r: note that r(0) = r(π) = 0, since γ(0) =
γ(π) = 0). Hence, I ≥ 0. Further, since both the integrals
on the right hannd side of equation (4.4) are ≥ 0, their sum
I is zero if and only if both of these integrals are zero. But
the first integral is zero only if θ̇ = 1 for all t, and the second
is zero only if r = A sin t for some constant A(by Wirtinger inequality). So, θ = t + α, where α is
a constant, and hence r = A sin(θ − α). It is easy to see that this is the polar equation of a circle of
diameter A. Hence the proof is complete.

4.8 Convex Curve
A simple closed curve γ is called a convex curve if its interior int(γ) is convex, in the usual sense
that the straight line segment joining any two points of int(γ) is contained entirely on int(γ).

4.9 Vertex
A vertex of a curve γ(t) in R2 is a point where its signed curvature κs has a stationary point, that is,
where dκs

ds
= 0.

4.10 Four Vertex Theorem
Every convex simple closed curve in R2 has at least four vertices.

Proof:

P Q

b

a

We might as well assume that the curve γ(t) is unit speed so that
its period is the length l of γ. We consider the integral∫ l

0

κ̇s(t)γ(t)dt

where a dot denotes the derivative.

Integrating by parts and using the equation

η̇s = −κst

20



we get ∫ l

0

κ̇sγdt = −
∫ l

0

κsγ̇dt

=

∫ l

0

κstdt

=

∫ l

0

η̇sdt

= ηs(l)− ηs(0)

= 0 (4.5)

Now, κs attains all its values on the closed interval [0, l], so κs must attain its maximum and minimum
values at some points P and Q of γ, say. We can assume that P 6= Q. Since otherwise κs would be
constant, γ would be a circle and every point of γ would be a vertex. Let a be a unit vector perallel
to the vector PQ, and let b be the vector obtained by rotating a anticlockwise by π/2. Taking the dot
product of the integral in equation (4.5) with constant vector b gives∫ l

0

κ̇s(γ.b)dt = 0 (4.6)

Suppose that P and Q are the only vertices of γ. Since γ is convex, the straight line joining P and
Q divides γ into two segments, and since there are no other vertices, we must have κ̇s > 0 on one
segment and κ̇s < 0 on the other. But then the integrand on the left hand side of (4.6) is either always
> 0 or always < 0 (except at P and Q where it vanishes), so the integral is definitely > 0 or < 0, a
contradiction.

Hence there must be at least one more vertex, say R. If there are no other vertices, the points P ,
Q and R divide γ into three segments, on each of which, κ̇s is either always > 0 or always < 0. But
then κ̇s must have the same sign on two adjacent segments. Hence there is a straight line that divides
γ into two segments, on one of which κ̇s is always positive, and on the other, κ̇s < 0. The argument
in the preceeding paragraph shows that this is not possible. So there must be a fourth vertex.

4.11 Exercises
1. Show that the definition of a vertex of a plane curve is independent of its parametrization.

2. Find the signed curvature κ(s) of the curve

γ(t) = (a cos t, b sin t)

Find at how many points dκ(s)
ds

vanishes. Hence verify four vertex theorem for this problem.

4.12 Summary
In this unit, we have learnt about the simple closed curves and their orientations leading up to isoperi-
metric inequality and Wirtinger Inequality and Four Vertex Theorem.
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Unit 5
Course structure

• Surface: Definition

• Transition map, Normal to surface, Orientable surface

Objective
The objective of the present unit is to study surfaces in R3 in parametric form. The notion of

tangent space and orientability have also been discussed with examples.

5 Introduction
In this chapter, we introduce several ways to formulate mathematically the notion of a surface.

5.1 What is a Surface?
A surface is a subset of R3 that looks like a piece of R2 in the vicinity of any given point, just as
the surface of the earth, although actually nearly spherical, appears to be a flat plane to an observer
on the surface who sees only to the horizon. To make the phrases ‘looks like’ and in the vicinity
precise, we must first introduce some preliminary material. We describe this for Rn for any n ≥ 1,
although we shall need it only for n = 1, 2, or 3.

First, a subset U of Rn is called open if whenever a is a point in U , there is a positive number ε
such that every point u ∈ Rn within a distance of ε of a is also in U :

a ∈ U and ||u− a|| < ε =⇒ u ∈ U

For example, the whole of Rn is an open set, as in

Dr(a) = {u ∈ Rn; ||u− a|| < r}

the open ball with centre a and radius r > 0. (If n = 1, an open ball is called an open interval; if
n = 2, it is called an open disc.) However,

D̄r(a) = {u ∈ Rn; ||u− a|| ≤ r}

is not open, because however small the positive number ε is, there is a point within a distance ε
of the point (a1 + r, a2, . . . , an) ∈ D̄n(say) that is not in D̄r(a) (for example the point (a1 + r +
ε/2, a2, . . . , an))
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Next ifX and Y are subsets ofRm andRn, respectively a map f : X 7→ Y is said to be continuous
at a point a ∈ X if points in X near a are mapped by f onto points in Y near f(a). More precisely,
f is continuous at a if, given any number ε > 0, there is a number δ > 0 such that

u ∈ X and ||u− a|| < δ

=⇒ ||f(u)− f(a)|| < ε

Then f is said to be continuous if it is continuous at every point of X . Composites of continuous
maps are also continuous.

In view of the definition of open sets, this is equivalent to the following:

f is continuous if and only if, for any open set V of Rn, there is an open set U of Rm such that f
maps U ∩X into V ∩ Y .

If f : X 7→ Y is continuous and bijective and if its inverse function f−1 : Y 7→ X is also contin-
uous, then f is called a homeomorphism and X and Y are said to be homeomorphic.

In the following, we give the definition of surface in R3.

5.2 Definition
A subset S of R3 is a surface, if for every point p ∈ S, there is an open set U in R2 and an open set
W in R3 containing p such that S ∩W is homeomorphic to U .

Thus, a surface comes equipped with a collection of homeomorphisms σ : U 7→ S ∩W , which
we call surface patches or parametrizations. The collection of all these surface patches is called atlas
of S.

Every point of S lies in the image of at least one surface patch in the atlas of S. The reason for
this terminology will become clear from the following example.

5.3 Example
Prove that the unit sphere

S2 = {(x, y, z) ∈ R3;x2 + y2 + z2 = 1}

is a surface.

The most obvious parametrization is probably that given by latitude θ and longitude φ.

σ(θ, φ) = (cos θ cosφ, cos θ sinφ, sin θ)

Without some restriction on (θ, φ), σ is not injective and so it is not homeomorphism. To cover the
whole sphere, it is clearly sufficient to take −π/2 ≤ θ ≤ π/2, 0 ≤ φ ≤ 2π.

23



θ

φ
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y

z

(   ,   )θ φ

However, the set of points (θ, φ) satisfying these inequalities is not an open subset of R2 and so
cannot be used as the domain of a surface. The largest open set consistent with the above inequalities
is

U = {(θ, φ);−π/2 < θ < π/2, 0 < φ < 2π}
but now the image of σ : U 7→ R3 is not the whole of the sphere, but rather the complement
of the great semicircle C consisting of the points of the sphere of the form (x, 0, z) with x ≥ 0.
Hence, U → R3 covers only a patch of the sphere. Again we shall not verify in detail that σ is a
homeomorphism from U to the intersection of the sphere with the open set

W = {(x, y, z) ∈ R3;x < 0 or y 6= 0}
To show that the sphere is a surface, we must therefore produce at least one more surface patch
covering the part of the sphere omitted by σ. For example, let σ̃ be the patch obtained by rotating σ
by π about the z-axis and then by π/2 about the x-axis. Explicitly, σ̃ : U 7→ R3 is given by

σ̃(θ, φ) = (− cos θ cosφ,− sin θ,− cos θ sinφ)

The image σ̃ is the component of the great semi-circle C̃ consisting of the points of the sphere of the
form (x, y, 0) with x ≤ 0.

It is clear that C and C̃ do not intersect, so the union of the images of σ and σ̃ is the whole sphere.
Note that most points of the sphere are in the images of both surface patches.

5.4 Transition Map
As the example of the sphere shows, a point a of a surface S will generally lie in the image of more
than one surface patch. Suppose then that σ : U 7→ S∩W and σ̃ : Ũ 7→ S∩W̃ are two patches such
that a ∈ S ∩W ∩ W̃ . Since σ and σ̃ are homeomorphisms, σ−1(S ∩W ∩ W̃ ) and σ̃−1(S ∩W ∩ W̃ )
are open sets V ⊆ U and Ṽ ⊆ Ũ , respectively. The composite homeomorphism σ−1 ◦ σ̃−1 : Ṽ 7→ V
is called the transition map from σ to σ̃. If we denote this map by Φ, we have

σ̃(ũ, ṽ) = σ(Φ(ũ, ṽ))

for all (ũ, ṽ) ∈ Ṽ .
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5.5 Smooth Surface
In differential geometry we use calculus to analyse surface (and other geometric objects). We must
be able to make sense of the statement that a function on a surface is differentiable, for example. For
this, we have to consider surfaces with some extra structure.

First, if U is an open subset of Rm, we say that a map f : U 7→ Rn is smooth if each of the
n-components of f , which are functions U → R, have continuous partial derivatives of all orders.
The partial derivatives of f are then computed component-wise. For example, if m = 2 and n = 3,
and

f(u, v) = (f1(u, v), f2(u, v), f3(u, v))

then

∂f

∂u
=

(
∂f1
∂u

,
∂f2
∂u

,
∂f3
∂u

)
∂f

∂v
=

(
∂f1
∂v

,
∂f2
∂v

,
∂f3
∂v

)
and similarly for higher derivatives.

5.6 Definition
A surface patch σ : U 7→ R3 is called regular if it is smooth and the vectors σu and σv are linearly
independent at all points (u, v) ∈ U . Equivalently, σ should be smooth and the vector product
σu × σv should be non-zero at every point of U .

5.7 Definition
A smooth surface is a surface σ whose atlas consists of regular surface patches.

For the unit sphere S2, it is again clear that σ and σ̃ are smooth. As for regularity, we compute

σθ = (− sin θ cosφ,− sin θ sinφ, cos θ)

σφ = (− cos θ sinφ, cos θ cosφ, 0)

which gives
σθ × σφ = (− cos2 θ cosφ,− cos2 θ sinφ,− sin θ cosφ)

and hence,
||σθ × σφ|| = | cos θ|.

But if, (θ, φ) ∈ U , then −π/2 < θ < π/2, so cos θ 6= 0. Similarly, one checks that σ̃ is regular.
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5.8 Proposition
Let U and Ũ be open subsets of R2 and let σ : U 7→ R3 be a regular surface patch. Let φ : Ũ 7→ U
be a bijective smooth map with smooth inverse map φ−1 : U 7→ Ũ . Then

σ̃ ≡ σ ◦ φ : Ũ 7→ R3

is a regular surface patch.

Proof: The patch σ̃ is smooth because any composite of smooth maps is smooth. As for regularity,
let

(u, v) = φ(ũ, ṽ).

By the chain rule,

σ̃ũ =
∂u

∂ũ
σu +

∂v

∂ũ
σv

σ̃ṽ =
∂u

∂ṽ
σu +

∂v

∂ṽ
σv

σ̃ũ × σ̃ṽ =

(
∂u

∂ũ

∂v

∂ṽ
− ∂u

∂ṽ

∂v

∂ũ

)
σu × σv (5.1)

The scalar on the right hand side of this equation is the determinant of the Jacobian matrix

J(φ) =

[
∂u
∂ũ

∂u
∂ũ

∂v
∂ũ

∂v
∂ṽ

]
of φ. We recall from calculus that, if ψ and ψ̃ are two maps between open sets in R2,

J(ψ̃.ψ) = J(ψ̃)J(ψ).

Taking ψ = φ and ψ̃ = φ−1, we see that

J(φ−1) = {J(φ)}−1

In particular, J(φ) is invertible, so its determinant is non-zero and equation (5.1) shows that σ̃ is
regular.

5.9 Theorem
Transition maps of smooth maps are smooth.

Proof: We shall use inverse function theorem to prove the theorem. We want to show that if
σ : U 7→ R3 and σ̃ : Ũ 7→ R3 are two regular patches in the atlas of a surface S, the transition map
from σ to σ̃ is smooth where it is defined.

Suppose that a point P lies in both patches, say

σ(u0, v0) = σ̃(ũ0, ṽ0) = P
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write
σ(u, v) = (f(u, v), g(u, v), h(u, v))

Since σu and σv are linearly independent, the Jacobian matrixfu fv
gu gv
hu hv


of σ has rank 2 everywhere. Hence, at least one of its three 2 × 2 submatrices is invertible at each
point. Suppose that the submatrix [

fu fv
gu gv

]
is invertible at P . (The proof is similar in other two cases) By the inverse function theorem applied
to the map F : U 7→ R2 given by

F (u, v) = (f(u, v), g(u, v))

there is an open subset V of R2 containing F (u0, v0) and an open subset W of U containing (u0, v0)
such that F : W 7→ V is bijective with a smooth inverse function given by π(x, y, z) = (x, y) is also
bijective, since π = F ◦ σ−1 on σ(W ). It follows that W = σ̃−1(σ(W )) is an open subset of Ũ and
that σ−1 ◦ σ̃ ≡ F−1 ◦ F̃ on W̃ , where F̃ = π ◦ σ̃. Since F−1 and F̃ are smooth on W̃ , so is the
transition map σ−1 ◦ σ̃. Since σ−1 ◦ σ̃ is smooth on an open set containing any point (u0, v0) where
it is defined,it is smooth.

5.10 Definition
If γ : (α, β) 7→ R3 is contained in the image of a surface patch σ : U 7→ R3 in the atlas of S, there
is a map (α, β)→ U , say, t→ (u(t), v(t)) such that

γ(t) = σ(u(t), v(t))

The tangent space at a point P of a surface S is the set of tangent vectors at P of all curves in S
passing through P .

5.11 Proposition
Let σ : U 7→ R3 be a patch of a surface S containing a point P of S, and let (u, v) be coordinates
in U . The tangent space to S at P is the vector subspace of R3 spanned by the vectors σu and σv.
Proof: Let γ be a smooth curve in S, say

γ(t) = σ(u(t), v(t))

Denoting d
dt

by a dot, we have, by the chain rule,

γ̇ = σuu̇+ σvv̇

Thus, γ̇ is a linear combination of σu and σv.
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Conversely, any vector subspace of R2 spanned by σu and σv is of the form ψσu + ησv for some
scalars ψ and η.
Define

γ(t) = σ(u0 + ψt, v0 + ηt)

Then γ is smooth curve in S and at t = 0, that is, at the point P in S, we have

γ̇ = ψσu + ησv

This shows that every vector in the span of σu and σv is the tangent vector at P of some curves in S.

5.12 Normal to the surface
Let σu and σv be two linearly independent tangents at a point P on a surface. Then normal to the
surface at P is defined as

N(σ) =
σu × σv
||σu × σv||

5.13 Orientable Surface
An orientable surface is a surface with an atlas having the property that, if φ is the transition map
between any two charts in the atlas, then det{J(φ)} > 0, where φ is defined.

A Möbius band is not orientable.

5.14 Exercises
1. Show that an open disc in the xy-plane is a surface.

2. Show that the circular cylinder

S = {(x, y, z) ∈ R3 : x2 + y2 = 1}

can be covered by a single surface patch and so is to a surface.

3. Show that if f(x, y) is a smooth function, its graph {(x, y, z) ∈ R3 : z = f(x, y)} is a smooth
surface with atlas consisting of the single regular surface patch

σ(u, v) = (u, v, f(u, v))

4. Show that a Möbius band is not orientable.

5.15 Summary
In this unit, we have defined smooth surface, transition map, tangent and normal to a surface. We
have also defined orientability.

5.16 Suggested Reading
(i) Elementary differential geometry- Andrew Pressley.
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Unit 6
Course Structure

1. Topological spaces: definition and examples

1 Introduction

One way to describe the subject of Topology is to say that it is qualita-
tive geometry. The idea is that if one geometric object can be continuously
transformed into another, then the two objects are to be viewed as being
topologically the same. For example, a circle and a square are topologically
equivalent, a sphere and a hollow box are equivalent . Physically, a rubber
band can be stretched into the form of either a circle or a square, as well as
many other shapes which are also viewed as being topologically equivalent.
On the other hand, a figure eight curve formed by two circles touching at
a point is to be regarded as topologically distinct from a circle or square.
A qualitative property that distinguishes the circle from the figure eight is
the number of connected pieces that remain when a single point is removed:
When a point is removed from a circle what remains is still connected, a
single arc, whereas for a figure eight if one removes the point of contact of
its two circles, what remains is two separate arcs, two separate pieces. The
term used to describe two geometric objects that are topologically equivalent
is homeomorphic. Thus a circle and a square are homeomorphic. Concretely,
if we place a circle C inside a square S with the same center point, then pro-
jecting the circle radially outward to the square defines a function f : C → S
, and this function is continuous: small changes in x produce small changes
in f(x) . The function f has an inverse f−1 : C → S obtained by project-
ing the square radially inward to the circle, and this is continuous as well.
One says that f is a homeomorphism between C and S. One of the basic
problems of Topology is to determine when two given geometric objects are
non homeomorphic. This can be quite difficult in general. Our first goal
will be to define exactly what the ‘geometric objects’ are that one studies in
Topology. These are called topological spaces. The definition turns out to
be extremely general, so that many objects that are topological spaces are
not very geometric at all, in fact.
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1.1 Topological Spaces

Rather than jump directly into the definition of a topological space we will
first spend a little time motivating the definition by discussing the notion
of continuity of a function. One could say that topological spaces are the
objects for which continuous functions can be defined.

For the sake of simplicity and concreteness let us talk about functions
f : R→ R . There are two definitions of continuity for such a function that
the you may already be familiar with, the ε− δ definition and the definition
in terms of limits. But it is a third definition, equivalent to these two, that
is the one we want here. This definition is expressed in terms of the notion
of an open set in R , generalizing the familiar idea of an open interval (a, b).

Definition 1. A subset O of R is open if for each point x ∈ O there exists
an interval (a, b) that contains x and is contained in O.

With this definition an open interval certainly qualifies as an open set.
Other examples are:

� R itself is an open set, as are semi-infinite intervals (a,∞) and (−∞, a)
.

� The complement of a finite set in R is open.

� If A = {1/n : n = 1, 2, . . .} ∪ {0} R \ A is open.

� Any union of open intervals is an open set. The preceding examples
are special cases of this. The converse statement is also true: every
open set O is a union of open intervals since for each x ∈ O there is an
open interval (ax, bx) with x ∈ (ax, bx) ⊂ O , and O is the union of all
these intervals (ax, bx) .

� The empty set ∅ is open, since the condition for openness is satisfied
vacuously as there are no points x where the condition could fail to
hold.

Now for the nice definition of a continuous function in terms of open sets:

Definition 2. A function f : R→ R is continuous if for each open set O in
R the inverse imagef−1(O) = {x ∈ R : f(x) ∈ O} is also an open set.
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To see that this corresponds to the intuitive notion of continuity, consider
what would happen if this condition failed to hold for a function f . There
would then be an open set O for which f−1(O) was not open. This means
there would be a point x0 ∈ f−1(O) for which there was no interval (a, b)
containing x0 and contained in f−1(O). This is equivalent to saying there
would be points x arbitrarily close to x0 that are in the complement of
f−1(O). For x to be in the complement of f−1(O) means that f(x) is not
in O. On the other hand, x0 was in f−1(O) so f(x0) is in O. Since O was
assumed to be open, there is an interval (c, d) about f(x0) that is contained
in O. The points f(x) that are not in O are therefore not in (c, d) so they
remain at least a fixed positive distance from f(x0). To summarize: there are
points x arbitrarily close to x0 for which f(x) remains at least a fixed positive
distance away from f(x0). This certainly says that f is discontinuous at x0.
This reasoning can be reversed. A reasonable interpretation of discontinuity
of f at x0 would be that there are points x arbitrarily close to x0 for which
f(x) stays at least a fixed positive distance away from f(x0). Call this fixed
positive distance ε. Let O be the open set (f(x0)−ε, f(x0)+ε). Then f−1(O)
contains x0 but it does not contain any points x for which f(x) is not in O ,
and we are assuming there are such points x arbitrarily close to x0, so f−1(O)
is not open since it does not contain all points in some interval (a, b) about
x0.

In trying to find a satisfactory definition of a topological space we shall
have two aims in mind. The definition should be general enough to allow a
wide range of different structures as spaces. We would like to consider a finite,
discrete set of points as a space, or equally a whole uncountable continuum
of points such as the real line; one of our nice geometrical surfaces should
qualify under the definition, and so too should a function space such as the
set of continuous complex-valued functions defined on the unit circle in the
complex plane. We would like to be able to perform simple constructions with
our spaces, such as taking the cartesian product of two spaces, or identifying
some of the points of a space in order to form a new one (think of the
construction of the Mobius strip outlined earlier). On the other hand, the
definition of a space should contain enough information so that we can define
the notion of continuity for functions between spaces. It is really this second
consideration which leads to the abstract definition given below.

Definition 3. A topological space is a set X together with a collection O of
subsets of X, called open sets, such that:
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(i) Both ∅ and X are in O .
(ii) The union of any collection of sets in O is in O .
(iii) The intersection of any finite collection of sets in O is in O.
The collection O of open sets is called a topology on X.
Complements of open sets are called closed sets.

Exercise 4. Prove that so called open sets in R produces a topology R.

Exercise 5. Give an example to show that intersection of infinitely many
open sets may not be open.

It is always possible to construct at least two topologies on every set X
by choosing the collection O of open sets to be as large as possible or as
small as possible: The collection O of all subsets of X defines a topology on
X called the discrete topology. If we let O consist of just X itself and ∅ , this
defines a topology, the trivial topology.

Thus we have three different topologies on R, the usual topology, the
discrete topology, and the trivial topology. The following one contains, fewer
open sets than the usual topology on R.

Exercise 6. Let O = {A ⊂ R : R \A is finite}. Prove that O is a topology
on R containing fewer open sets than the usual topology on R.

The following one contains, more open sets than the usual topology on
R.

Exercise 7. Let O consists of the sets A ⊂ R such that for each x ∈ A
there exists a, b ∈ R so that x ∈ [a, b) ⊂ A. Prove that O is a topology on R
containing more open sets than the usual topology on R.
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SELF ASSESSMENT
1. Prove that the collection of all open sets in R2 obtained by Euclidean

metric generates a topology.
2. What will by the interior of the set { 1

n
: n ∈ N} in R?

3. What will by the closure of the set { 1
n

: n ∈ N} in R?
4. Write the interior and closure of the following set { 1

n
+ 1

m
: n,m ∈ N}.

5. Show that if U is open in X and A is closed in X, then U \A is open
in X, and A \ U is closed in X.

6. If A is a dense subset of a space X, and if O is open in X, show that
O ⊂ A ∩O.

7. Prove that τcc is in fact a topology on any uncountable space.
8. Prove that τcf is becomes discrete topology if the space is countable.

9. Verify each of the following for arbitrary subsets A, B of a topological
space X:

(a) A ∪B = A ∪B , (b) A ∩B ⊂A ∩B .
(c)int(A ∩B) = int(A) ∩ int(B), (d) int(A ∩B) ⊂ int(A) ∩ int(B).
Give examples where equality fails to hold in (b) and (d).
10. 2. Specify the interior and closure of the of the following subsets :
(a) {(x, y) : 1 < x2 + y2 ≤ 2},
(b) R2 with both axes removed,
(c) R2 − {(x, sin 1/x) : x > 0}.

1.2 Summary

This section has made us acquainted with open sets which are the main
foundations of Topological Spaces; seen some examples; learnt about the
continiuty of real functions in terms of open sets in the real line.
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Unit 7
Course Structure

1. Basis for a topology

2 Introduction

Many arguments with open sets in R reduce to looking at what happens
with open intervals since open sets are defined in terms of open intervals.
A similar statement holds for R2 and Rn with open disks and balls in place
of open intervals. In each case arbitrary open sets are unions of the special
open sets given by open intervals, disks, or balls. This idea is expressed by
the following terminology:

Definition 8. A collection B of open sets in a topological space X is called
a basis for the topology if every open set in X is a union of sets in B .

A topological space can have many different bases. Most common exam-
ple is that R with usual topology has the following two bases :

1. {(a, b) : a, b ∈ R},
2. {(a, b) : a, b ∈ Q}
In R2 another basis besides the basis of open disks is the basis of open

squares with edges parallel to the coordinate axes. Or we could take open
squares with edges at 45 degree angles to the coordinate axes, or all open
squares without restriction. Many other shapes besides squares could also
be used.

The following Lemma provides some neighbourhood like properties of
base.

Lemma 9. If B is a basis for a topology on X , then B satisfies the following
two properties:

(1) Every point x ∈ X lies in some set B ∈ B .
(2) For each pair of sets B1, B2 in B and each point x ∈ B1 ∩ B2 there

exists a set B3 in B with x ∈ B3 ⊂ B1 ∩B2 .

Proof. The first statement holds since X is open and is therefore a union of
sets in B . The second statement holds since B1 ∩B2 is open and hence is a
union of sets in B .
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The following properties shows that if a a class of subsets of a set X has
the above mentioned two properties then the class has the power to generate
a topology.

Proposition 10. If B is a collection of subsets of a set X satisfying (1) and
(2) then B is a basis for a topology on X.

Proof. Do yourself.

Exercise 11. (a) Prove that the collection {[a, b) : a, b ∈ R} is a basis for
some topology on R. This topology on R called the lower limit topology and
denoted by Rl. This is also called Sorgenfrey line.

(b) Prove that Rl has a basis each of whose member is closed as well as
open.

(c) Whether {[a, b) : a, b ∈ Q} generates the lower limit topology on R.
(d) Prove that every metric space is a topological spaces with the set

{B(x, r) : x ∈ R, r > 0} as a basis.

Definition 12. A neighborhood of a point x in a topological space X is any
set A ⊂ X that contains an open set O containing x. Dually x is said to be
an interior point of A.

The more restricted kind of neighborhood can then be described as an
open neighborhood, that is neighborhoods which are open.

Definition 13. A topological space X is said to be Hausdorff if for any
two distinct points x, y there exists disjoint neighborhoods of x and y.

Exercise 14. (a) Prove that the space defined in Exercise 6 is not Hausdorff.
(b) Prove that every finite Hausdorff space is discrete.
(c) Prove that Ru, Rl, any metric spaces are Hausdorff.
(d) Proved that every finite set in a Hausdorff space is closed. Does there

exist any non Hausdorff space in whic every finite set is closed. (In fact such
sets are called T1-spaces).

From now on unless otherwise stated any space will be considered as
Hausdorff. We already defined that complements of open sets are called
closed sets. In the following discussions we introduce the notion of limit
points, closure.
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Definition 15. Let A be a subset of a topological space X and x ∈ X. Then
x is said to be a limit point of A if any neoghborhood of x meets A at a point
other that x. If x is not a limit point of A then it is an isolated point of A.
Hence isolated point of X is just an open set.

The set of all limit points of a set A is called derived set of A and denoted
by A′. By the closure of A we mean the set A along with its limit points,
that is A ∪A′ and denoted by A or c`XA. The set of all interior points of A
called interior of A and denoted by A◦.

Proposition 16. Let X be a topological and A ⊂ X. Then the followings
hold:

(1) A is open if and only if A = A◦.
(2) A◦ is the largest open set contained in A.
(3) A is closed if and only if A = A.
(4) A is the smallest closed set containing A.

Proof. Do yourself.

We can define convergency of sequence in topological spaces analogus to
metric space.

Definition 17. Let X be a topological space and x ∈ X. A sequence (xn)∞n=1

is said to converge at x if for any neighborhood Nx of x there exists some
n0 ∈ N such that (∀n ≥ n0)(xn ∈ Nx).

It is obvious that any sequence in any Hausdorff space may converge to
at most one point.

Example 18. (a) Give an example of non Hausdorff space where a sequence
may converge to more that one point.

(b) Construct an example of a topological space where convergency of a
sequence may not explain limit points.
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SELF ASSESMENT
1. Give examples of two dierent bases for the usual topology of R.
2. Show that the collection of all open rectangles form a base for R2.
3. Show that if B is a basis for a topology on X, then the topology

generated by B equals the intersection of all topologies on X that contain B.
4. Does topologies of R and Rl are comparable?
5. Prove that basic open sets in Sorjenfrey Line are also closed.
6. Let Y be a subspace of X. Given À ⊂ Y . Prove that intXA ⊂ intY (A)

and give an example to show the two may not be equal.
7. Prove that any metric gives a base for some topology on a set.
8. Does the intersection of lower and upper limit topologies equal with

usual topology on R?

Summary
In this section, we have learnt about the Basis of a topological space which
make up the open sets in them. For example, in the real line, the open sets
are countable union of disjoint open intervals, which in turn, serve as the
basis of the usual topology.We have also learnt about the Hausdorff property
of topological spaces.
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Unit 8
Course Structure

1. Subspace: Definition and example

2. Continuity and Homeomorphism

3 Introduction

We turn now to a topic which seems simple enough at first glance, but turns
out to be a source of many headaches until one finally becomes comfortable
with it. But once reader will be comfortable with it, can constract many
examples of topological spaces.

Given a topology O on a space X and a subset A ⊂ X, we would like to
use the topology on X to define a topology OA on A. There is an easy way
to do this: Just define a set O ⊂ X to be in OA if there exists an open set
O′ in O such that O = A ∩O′.

Exercise 19. Prove that OA is in fact a topology on A.

The topology OA on A is called the subspace topology, and A with this
topology is called a subspace of X. For example, if we take X to be R2 with
its usual topology, then every subset of R2 becomes a topological space. In
particular, geometric figures such as circles and polygons can now be viewed
as topological spaces. Likewise, geometric figures in R3 such as spheres and
polyhedra become topological spaces, with the subspace topology from the
usual topology on R3.

In case the space X is a metric space, any subset A ⊂ X becomes a
metric space by restricting the metric X × X −→ R to A × A , since the
three defining properties of ametric obviously still hold for the restricted
distance function. The following Proposition gives some strong evidence
that the subspace topology is a natural topology to use on subsets.

Proposition 20. The metric topology on a subset A of a metric space X is
the same as the subspace topology.

Proof. Do yourself.
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For a subspace A ⊂ X, a subset of A which is open or closed in A need
not be open or closed in X. However, we have the following fact.

Lemma 21. For a subspace Y ⊂ X which is open (resp. closed) in X, a
subset A ⊂ Y is open in Y (resp. closed) if and only if it is open (resp.
closed) in X.

Proof. Do youeself.

Exercise 22. Give an example of a topological space to establish that open
or closed for the subspace Y in the above example can not be removed.

Proof. Closures behave nicely with respect to subspaces:

Theorem 23. Given a space X, a subspace Y , and a subset A ⊂ Y , then
the closure of A in the space Y is the intersection of the closure of A in X
with Y . That is a point y ∈ Y is a limit point of A in Y (i.e. using the
subspace topology on Y ) if and only if y is a limit point of A in X.

Proof. For a point y ∈ Y to be a limit point of A in X means that every
open set O in X that contains y meets A. Since A ⊂ Y , this is equivalent
to O ∩ Y meeting A, or in other words, that every open set in Y containing
y meets A.

Exercise 24. Show by an example that analogus statement of the above
theorem is not true for interiors.

4 Continuity and Homeomorphisms

Recall the definition: a function f : X → Y between topological spaces is
continuous if f−1(O) is open in X for each open set O in Y . For brevity,
continuous functions are sometimes called maps.

Proposition 25. A function f : X → Y is continuous if and only if f−1(C)
is closed in X for each closed set C in Y .

Proof. Do yourself.

The following proposition shows that continuous maps behave well under
formation of closure.
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Proposition 26. A function f : X → Y is continuous if and only if
f(c`XA) ⊂ c`Y f(A) for any A ⊂ X.

Proof. If x is a limit point of A then f(x) is a limit point of f(A) (verify).
Hence f(c`XA) ⊂ c`Y f(A).

Conversely let K be a closed set in Y and A = f−1(K). Thenf(c`XA) ⊂
c`Y f(A) = c`Y f((f−1(K)). This implies that f(c`XA) ⊂ c`YK = K, so that
A ⊂ c`XA ⊂ f−1(K) = A. Hence c`XA = f−1(K), that is f−1(K) is closed
and therefore f is continuous.

The following fact again shows that information about base is sufficiant
for any topological spaces.

Lemma 27. Given a function f : X → Y and a basis B for Y , then f is
continuous if and only if f−1(B) is open in X for each B ∈ B.

Proof. Left as exercise.
The following lemma shows that continuous maps behave well under com-

position.

Lemma 28. If f : X → Y and g : Y → Z are continuous, then their
composition g ◦ f : X → Zis also continuous.

Proof. Obvious.

Lemma 29. If f : X → Y is continuous and A is a subspace of X, then the
restriction f/A of f to A is continuous as a function A → Y . Further the
inclusion map iA : A ↪→ X is also continuous.

Proof. Obvious.
We introduce the following definition in comtrust to continuous mapping.

Definition 30. A function f : X → Y between topological spaces is said
to be open if for any open (resp. closed) set A, in X, f(A) is open (resp.
closed) in Y .

Example 31. (a) Give an example of a continuous function which is neither
open nor closewd.

(b) Give an example of a open map which is not continuous.
(c) Give an example of a closed map which is not continuous.
(d) Give an example of a open map which is not closed.
(b) Give an example of a closed map which is not open.
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Now we are in a situation to define structure preserving mapping for
topological spaces.

Definition 32. A continuous map f : X → Y between topological spaces is
said to be homeomorphism if there exists a continuous map g : Y → X such
that g ◦ f = 1X and f ◦ g = 1Y .

Theorem 33. A mapping f : X → Y between topological spaces is a home-
omorphism if and only if it is continuous and open or closed.

Exercise 34. (a) Prove that the circrle {(x, y) : x2 + y2 = 1} and {(x, y) :
x2 + y2 = 4} are homeomorphic.

(b) Prove that the unit disk {(x, y) : x2 + y2 ≤ 1} and the unit square
{(x, y) : 0 ≤ x, y ≤ 1} are homeomorphic.
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SELF ASSESMENT
1. Wheather [0, 1

2
) is an open set in the subspace topology on [0, 1] induced

from the usual topology from R.

2. Describe the basic open set on the unit circle in the subspace topology
induced from R2.

3. Describe the basic open set on the unit sphere in the subspace topology
induced from R3.

4. Show that if Y is a subspace of X, and A is a subset of Y , then the
topology A inherits as a subspace of Y is the same as the topology it inherits
as a subspace of X.

5. Prove that the set of rational numbers as a subspace of R is not discrete
but Z as a subspace of R is discrete.

6. Whether {0} ∪ { 1
n

: n ∈ N} is a discrete subspace of R?

7. Let Y be a subspace of X. If A is open (closed) in Y , and if Y is open
(closed) in X, show that A is open (closed) in X.

8. Give an example of two closed sets A and B in R such that A + B is
not closed in R.

9. Prove that all bounded closed intervals are homeomorphic.

10. Prove that open interval (0; 1) is homeomorphic to S1 \ {i}.
11. Let X denote the set of all real numbers with the finite-complement

topology, and dene f : R → X. Show that f is continuous, but is not a
homeomorphism.

12. Suppose f : X → Y is a homeomorphism and U ⊂ X is an open sub-
set. Show that f(U) is open in Y and the restriction f |U is a homeomorphism
from U to f(U).

13. There is a generalization of homeomorphisms that is often useful. We
say that a map f : X → Y between topological spaces is a local homeomor-
phism if every point x ∈ X has a neighborhood U ⊂ X such that f(U) is an
open subset of Y and f |U : U → f(U) is a homeomorphism. prove that

(a) Every homeomorphism is a local homeomorphism.
(b) Every local homeomorphism is continuous and open.
(c) Every bijective local homeomorphism is a homeomorphism.

14. A map f : X → Y is said to be open if f(O) is open in Y whenever
O is open in X. Similarly, f : X → Y is said to be closed if f(C) is closed in
Y whenever C is closed in X.
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(a) Give an example of a map that is open but not closed, and an example
of a map that is closed but not open.

(b) Determine whether the projection map R2 → R sending (x, y) to x is
open or closed.

(c) The exponential map x→ eix from the real line to the circle.
(d) The folding map f : R2 → R2 given by f(x, y) = (x, |ó|).
(e) The map which winds the plane three times on itself given, in terms

of complex numbers, by z → z3.

15. Show the twomaps R2 → R sending (x,y) to x + y and x · y are
continuous, using only definitions and results from this class, not results
from calculus for example.

16. Prove that Sn \ {N} is homeomorphic to Rn.

17. If f : R→ R is a map (i.e., a continuous function), show that the set
of points which are left fixed by f is a closed subset of R. If g is a continuous
real-valued function on X show that the set x : g(x) = 0 is closed.

18. Prove that the function h(x) = ex

1+ex
is a homeomorphism from the

real line to the open interval (0, 1).

Summary
In this unit, we have learnt that when can we call a subset of a topological
space, a subspace of it. This gives us an important tool to create noew
topological spaces from the existing ones with the help of the existing open
sets. ALso we have become acquainted with continuity and homeomorphism.
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Unit 9
Course Structure

1. Product Spaces: Definition and examples

5 Introduction

In this unit we will learn about an important tool to create new topological
spaces from existing ones by the simple operation of cartesian product of two
sets X and Y . The open sets in the resulting set will be defined likewise. We
give the formal definition of the product topology as follows:

5.1 Product Spaces

If X and Y are topological spaces, we can define a topology on X × Y by
saying that a basis consists of the subsets U × V as U ranges over open sets
in X and V ranges over open sets in Y . Verify that the collection is infact
a basis. The topology generated by this base is called the product topology
on X × Y .

More generally one can define the productX = X1 × . . .×Xn to consist
of all ordered n-tuples (x1, . . . , xn) with xi ∈ Xi for each i. A basis for the
product topology on X = X1× . . .×Xn consists of all products U1× . . .×Un
as each Ui ranges over open sets in Xi , or just over a basis for the topology
on Xi . Thus Rn with its usual topology is also describable as the product of
n copies of R, with basis the open ‘boxes’ (a1, b1)× . . .× (an, bn). The map
πi : X → Xi defined by πi(x1, . . . , xn) = xi is called i-th projection map. It
is easy to verify that projection maps are continuous.

Example 35. (a). If we view points in the unit circle S1 in R2 as angles θ,
then polar coordinates give a homeomorphism f : S1 × (0,∞) → R2 \ {0}
defined by f(θ, r) = (r cos θ, r sin θ). This is one-to-one and onto since each
point in R2, other than the origin has unique polar coordinates (θ, r). To see
that f is a homeomorphism, just observe that it takes a basis set U × V ,
where U is an open interval (θ0, θ1) of values and V is an open interval (r0, r1)
of r values, to an open polar rectangle and such rectangles form a basis for
the topology on R2 \ {0}. as a subspace of R2. By restricting f to a product
S1 × [a, b] for 0 < a < b we obtain a homeomorphism from this product to a
closed annulus in R2, the region between two concentric circles.

45

Unit 14



More generally, Rn \ {0} is homeomorphic to Sn−1× (0,∞) where Sn−1 is
the unit sphere in Rn . Using vector notation, a homeomorphism f : Sn−1 ×
(0,∞) → Rn \ {0} is given byf(v, r) = rv, with inverse f−1(v) = ( v

|v| , |v|).
The continuity of f and f−1 are clear.

Example 36. A product S1× [1, 2] is homeomorphic to a cylinder as well as
to an annulus. If we use cylindrical coordinates (r, θ, z) in R3 then a cylinder
is specified by taking r to be a constant 1, letting range over the circle S1,
and restricting z to an interval [1, 2].

Example 37. The product S1×S1 is homeomorphic to a torus, say the torus
T in R3 obtained by taking a circle C in the yz-plane disjoint from the z-axis
and rotating this circle about the z-axis. We can parametrize points on T by
a pair of angles (θ1, θ2) where θ1 is the angle between the horizontal radial
vector of C pointing away from the z-axis and the radial vector to a given
point of C and θ2 is the angle through which the yz-plane has been rotated
around z-axis (One can think of θ1 and θ2 as longitude and latitude on T).
A basic open set U × V in S1 × S1 is a product of two open arcs, and this
corresponds to an open curvilinear rectangle on T . Such rectangles form
a basis for the topology on T as a subspace of R3, so it follows that T is
homeomorphic to S1 × S1.

Definition 38. A product spaceX×Y has two projection maps p1 : X×Y →
X and p1 : X × Y → Y defined by p1(x, y) = x and p2(x, y) = y . These
maps are continuous since if U ⊂ X is open then so is p−1

1 (U) = U × Y , and
if V ⊂ Y is open then so is p−1

2 (V ) = X × V .

Theorem 39. A function f : Z → X × Y defined by f(z) = (f1(z), f2(z)) is
continuous if and only if its component functions f1 : Z → X and f2 : Z → Y
are both continuous.

Proof. Will be done in class.

Observe that the method we have used to construct for product topology
with two topological spaces can be easily generalised to any number of finite
topological spaces. One can observe that if we take countably many spaces
(Xn)∞n=1 the above method can still be generalised.

Definition 40. If (Xn)∞n=1 be a sequence of topological spaces then we define

X =
∞∏
n=1

Xn = {f : N→
∞⋃
n=1

Xn : f(i) ∈ Xi}.

46



Exercise 41. Let (Xn)∞n=1 be a sequence of topological spaces then B =
{
∏∞

n=1Bn : Bn is a basic open set in Xn} is a base for some topology on X.

In the following example we show that the topology created in Exercise
41 is not a successful generalization for infinite product.

Example 42. Let RN be endowded with the topology defined as in Exercise
41. And let f : R→ RN defined by

f(x) = (x, x, . . . , x) for all x ∈ R.

Now f(0) = (0, 0, . . . , 0) and U =
∞∏
n=1

(− 1
n
, 1
n
) is an open neighbourhood

of 0̄ = (0, 0, . . . , 0) by the topology defined as in Exercise 41. But f−1(U) =
{0}(verify) is not open in R. Hence f : R → RN is not continuous. (You
have to write in details the example).

The above example hints the necessity of a new definition for infinite
product so that Theorem 39 remains valid.

Definition 43. Let (Xα)α be a collection of topological spaces. We define
product of the collection (Xα)α∈Λ . . .modulo Zorn’s Lemma, which the reader
is kindly encouraged to accept as follows

X =
∏
α∈Λ

Xα = {f : Λ→
⋃
α∈Λ

Xα : f(α) ∈ Xα}.

For each α ∈ Λ, let Sα = {π−1
α (U) : U is open in Xα} and set S =

⋃
α∈Λ

Sα.

Observe that for each x ∈ X there exists some S ∈ S containing x. Let B
be the set of all possible finite intersections of members of S’s, that is

B =

{⋂
α∈F

Uα : where Uα is open in Xα and F is a finite subset of Λ

}
.

Remark 44. Observe that if U ∈ S then there exist some open set say Uα in
Xα such that U = π−1

α (Uα) and if B ∈ B then there exist α1, α2 . . . , αk ∈ Λ
such that

B = π−1
α1

(Uα1) ∩ π−1
α2

(Uα2) ∩ . . . ∩ π−1
αk

(Uαk
).
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For any α ∈ Λ and open set U in Xα, π−1
α (U) =

∏
β∈Λ

Uβ, where Uβ = U

when β = α, and Uβ = Xβ for β 6= α. This easily shows that
π−1
α1

(Uα1) ∩ π−1
α2

(Uα2) ∩ . . . ∩ π−1
αk

(Uαk
) =

∏
β∈Λ Uβ where Uβ = Uαi

for
β ∈ {α1, α2 . . . , αk} and Uβ = Xβ for β ∈ Λ \ {α1, α2 . . . , αk}.

Exercise 45. Prove that B is a basis for some topology on
∏
α∈Λ

Xα. The

topology described as above called the product topology.

Exercise 46. Prove that the topology described in Exercise 45 is the smallest

topology on
∏
α∈Λ

Xα which makes each projection map πα continuous.

Exercise 47. Let A be a topological space and (Xα)α be a collection of
topological spaces. Further let fα : A → Xα be continuous maps for each

α ∈ Λ. Define f : A→
∏
α∈Λ

Xα defined by f(a) = (fα(a))α∈Λ. Prove that f is

continuous if and only if each fα is continuous.

Proof. First part follows from the equality fα = πα ◦ f .
To prove the converse part it is sufficient to work with any open set of the

form π−1
α (U) (verify), where U is an open set in Xα. Now f−1(π−1

α (U)). But
f−1(π−1

α (U)) = (πα ◦ f)−1(U). But since fα = πα ◦ f we have f−1(π−1
α (U)) =

f−1
α (U) which is an open set in A since each fα is continuous. This completes

the proof.

Exercise 48. Let (Xα)α be a collection of Hausdorff topological spaces.

Prove that then
∏
α∈Λ

Xα is also Hausdorff.

Exercise 49. Let Aα ⊂ Xα where for each α ∈ Λ, Xαis a topological space.
Then prove that

c`(
∏
α∈Λ

Aα) =
∏
α∈Λ

c`Aα.
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SELF ASSESSMENT
1. Let f : R → R be a map and define its graph Gf : R → R2 by

Gf (x) = (x, f(x)). Show that Gf is continuous and that its image (taken
with the topology induced from R2) is homeomorphic to R1.

1. Prove that Rl × R are R× Rlare homeomorphic.
2. Prove that (X1 ×X2)×X3 are homeomorphic to X1 × (X2 ×X3).
3. Let A be an nn orthogonal matrix. Prove that A : Rn → Rn is a

homeomorphism.
4. Given sequence (an) and (bn) be two sequences of real numbers with

ai > 0 for all i. Dene h : Rω → Rω by h((an)) = ((anxn + bn)). If Rω is given
product topology prove that h is a homeomorphism.

5. What happens if we consider the box topology in the above example?
6. Whether every convergent sequence in Rω with product topology will

converge in box topology?
7. Whether every convergent sequence in Rω with box topology will

converge in product topology?
8. Show that the countable collection

{(a, b)× (c, d) : a < b and c < d and a, b, c, d are rationals}

is a basis for R2

Summary
In this unit we have learnt about product spaces from existing spaces and
related important properties and examples.
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Unit 10
Course Structure

1. Metrizable Spaces: Definition and properties

6 Introduction

The concepts we are going to introduce now, arise from a deeper study of
topology itself. Such problems as imbedding a given space in a metric space
basically problems of topology rather than analysis. In the study of metric
space we have observed that a point is a limit point of a set if and only if the
the set in question contains a sequence which converges to that point, called
sequence lemma. Let us start with the following example which shows that
this fact may not hold for arbitrary topological space.

Example 50. An uncountable product of R with itself is does not posses
sequence lemma.

Proof. Let Λ be an uncountable index set; we show that RΛ does not satisfy
the sequence lemma (in the product topology). Let A be the subset of RΛ

consisting of all points (xα)α∈Λ such that xα = 1 for all but finitely many
values of α. Let 0 be the "origin" in RΛ, the point each of whose coordinates
is 0. We assert that 0 belongs to the closure of c`A. Let

∏
Uα be a basis

element containing 0. Then Uα = R, for only finitely many values of α say for
α = α1, α2 . . . , αk. Let (xα)α∈Λ be the point of A defined by letting xα = 0 for
α = α1, α2 . . . , αk and xα = 1 for all other values of α; then (xα) ∈ A∩

∏
Uα

and therefore 0 is a limit point of A.
But we claim that there is no sequence of points of A converging to 0.

For let (an)∞n=1 be a sequence of points of A. Given n, let Λn = {α ∈ Λ :
πα(an)) 6= 1. The union of all the sets Λn is a countable union of finite sets
and therefore countable. Because Λ itself is uncountable, there is an index,
say β in Λ, such that β 6∈ ∪n∈NΛn. This means that πβ(an) = 1 for all n ∈ N.

Now let Uβ be the open interval (−1/2, 1/2) in R, and consider the open set
π−1
β (Uβ) in RΛ. The set π−1

β (Uβ) is a neighbourhood of 0 that contains none

of the points an; therefore, the sequence (an)∞n=1 cannot converge to 0.
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6.1 Metrizable Space

One of the important class of topological spaces are those which are gener-
ated by some metric. In this section we shall investigate some properties of
such topological spaces. We assume that readers already have been already
introduced with the definition of metric space (X, d), open ball B(x, r) =
{y ∈ X : d(x, y) < r}, closed ball Bd(x, r) = {y ∈ X : d(x, y) < r}. So let
us start with the following proposition.

Proposition 51. Let (X, d) be a metric space. Then the set {B(x, r) : r > 0}
forms a base for some topology on X.

Proof. Do yourself.

Definition 52. A topological space X is said to be metrizable if there exist
a metric d on X such that the basis {B(x, r) : x ∈ X, r > 0} generates the
topology of the given topological space X.

Let us first observe that metrizability is a topological invariant.

Theorem 53. Metrizability is a topological invariant.

Proof. Let f : X → Y be a homeomorphism and d be a metric on X which
generates the topology of X. For any two points u, v in Y we define a metric
ρ on Y such that ρ(u, v) = d(x, y) where u = f(x) and v = f(y). It is easy
to verify that ρ is a metric on Y . Hence it remains to show that ρ generates
the topology of Y . For this let V be an open set in Y and v ∈ V . Then
f−1(v) ∈ f−1(V ). Since d generates the topology of X there exist r > 0 such
that f−1(v) ∈ Bd(f

−1(v), r) ⊆ f−1(V ). This implies that v ∈ Bρ(v, r) ⊆ V .
This proves that the metric ρ generates the topology of Y .

Remark 54. Recall that an isometric or rigid motion between two metric
spaces (X, d) and (Y, ρ) is a bijection f : X → Y which preserves distance
between them that is for any x, y ∈ X we have ρ(f(x) f(y)) = d(x, y).
In the construction of the above proof the given homeomorphism becomes
an isometry. But it is not true in general that homemorphism between two
metrizable spaces will always be an isometry, which will be clear from the
following discussions.
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Definition 55. A subset A of a metric space (X, d) is said to be bounded
if there exists some r > 0 such that d(x, y) ≤ r for all x, y ∈ A. If A is a
bounded and non-empty subset of X then diameter of A is defined to be the
number

diamA = sup{d(x, y) : x, y ∈ A}

Theorem 56. Given a metric space (X, d), the d̄ : X ×X � X defined by
d̄(x, y) = min{d(x, y), 1} is a metric on X which generates the same topology
on X as d.

Proof. Do yourself.

Remark 57. Justify yourself by the fact that Theorem ?? proves that metriz-
able spaces may be homeomorphic but not isomorphic.

Example 58. Produce a concrete example of two homeomorphic spaces
which are not isometric.

We know that well known euclidean metric on Rn is defined by the formula

d(x, y) =

(
n∑
i=1

|xi − yi|2
) 1

2

. If we replace 2 by any p ≥ 1 we again get a

metric Rn that is dp(x, y) =

(
n∑
i=1

|xi − yi|p
) 1

p

defines a metric on Rn(verify).

Rn with this metric is generally denoted by lnp .

Example 59. Prove that the Euclidean metric d and the metric dp defined
as above generates same topology Rn.

Definition 60. Let us define another metric ρ, Rn by the formula ρ(x, y)=max{|x1−
y1|, |x2 − y2|, . . . , |xn − yn||}. This is called square metric on Rn.

Example 61. Verify that ρ is infact a metric on Rn.

Observe that on R both the above metric generate the usual topology of
R. The following Theorem shows that this fact can be generalized for any
n ∈ N.

Theorem 62. Both the metrics d and ρ generates the product topology on
Rn.

Proof. See Munkresh for the complete proof.
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SELF ASSESSMENT

1. Let 1 ≤ p <∞. Consider the set of all sequences (xn)n in R such that

∞∑
n=1

|xn|p <∞

Denote this set by lp. For x = (xn)n and y = (yn)n in lp, define

dp(x, y) =

{
∞∑
n=1

|xn − yn|p
} 1

p

.

Prove that (X, dp) is a metric space.

2. Let l∞ be the set of all bounded sequences in R; that is,

l∞ = {(xn)n ⊂ R : sup1≤n≤∞|xn| <∞}.

For x , y ∈ l∞, define d∞(x, y) = sup1≤n≤∞|xn − yn|. Then Prove that
d∞ is a metric on l∞.

3. Let C[a, b] be the set of all real valued continuous functions defined on
[a, b]. For x , y ∈ C[a, b], define

d∞(x, y) = sup t∈[a,b]|x(t)− y(t)|.

Then prove that (C[a, b] , d∞) is a metric space.

4. For x , y ∈ C[a, b], define

d1(x, y) =

b∫
a

|x(t)− y(t)|dt.

Then prove that (C[a, b] , d1) is a metric space.

5. For x , y ∈ C[a, b], define

dp(x, y) =

{∫ b

a

|x(t)− y(t)|pdt
} 1

p

.

Then prove that (C[a, b] , dp) is a metric space.
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6. Let (X, d) be a metric space. For x , y ∈ X, define

d∗(x, y) =
d(x, y)

1 + d(x, y)
.

Proved that d∗ is a metric on X.

7. Let (X, d) be a metric space. Prove that for any A ⊆ X and x ∈ X
the real valued function defined by f(x) = d(x,A), where d(x,A) =
inf{d(x,A) : x ∈ A} is a continuous function.

Summary
In this unit, we have got to know about the metrizability of topological spaces
and related properties.
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Unit 11
Course Structure

1. Countability Axioms.

7 Introduction

Countability axioms is the common name used to refer to a set of properties
of a topological space which have to do with the existence of countable sets,
or countable families of open sets, satisfying certain conditions.

They are not axioms in the strict sense of the word, but they are usually
named as such because one may think of them as additional basic properties
that one can ask from a topological space.

7.1 The Countability Axioms

Definition 63. A space X is said to have a countable basis at x if there is a
countable collection B of neighbourhoods of x such that each neighbourhood
of x contains at least one of the elements of B . A space that has a countable
basis at each of its points is said to satisfy the first countability axiom, or to
be first-countable.

Exercise 64. Give an example of a first countable space which is not second
countable.

It is clear that every metrizable space satisfies this axiom for example
{B(x, 1/n);n ∈ N} is a countable basis at x. The most useful fact concerning
spaces that satisfy this axiom is the fact that in such a space, convergent
sequences are adequate to detect limit points of sets and to check continuity
of functions.

Theorem 65. Let X be a topological space.
(a) Let A be a subset of X. If there is a sequence of points of A converging

to x, then x is a limit point of A; the converse holds if X is first-countable.
(b) Let f : X → Y . If f is continuous, then for every convergent sequence

(xn)n converging to x in X, the sequence f(xn) converges to f(x). The
converse holds if X is first- countable.
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Proof. The main idea of the proof of this theorem is to construct a decreasing
sequence of basis at each point x. This follows from the first-countability
axioms. In fact let Bx = {U1, U2, . . . , } be a countable base at x. Let V1 = U1

and let V1, V2, . . . , Vn be constructed such that V1 ⊇ V2 ⊇ . . . ,⊇ Vn. Now
take Vn+1 = V1 ∩ V2 ∩ . . . ,∩Vn. Then by induction hypothesis we get a
decreasing sequence of neighbourhoods (Vn)n.

Theorem 66. A subspace of a first-countable space is first countable, and
a countable product of first countable spaces is first-countable. A subspace
of a second- countable space is second countable, and a countable product of
second-countable spaces is second-countable.

Proof. Do yourself.

We can observe that, Rn has a countable dense subset for any n ∈ ω.
This leads to us the following definition.

Definition 67. A topological space is called separable if it has a countable
dense subset.

Example 68. Give an example of a non separable metric space a separable
space which is non metrizable.

Proposition 69. Prove that any separable metric space is second countable.

Proof. Let (X, d) be a separable metric space and let us take A = {a1, a2, . . .}
as a countable dense subset of X. Let B = {B(ai, r) : i ∈ N and r ∈∈ Q+}.
Then B is countable and will be the required countable basis of X (Complete
the proof).

Exercise 70. Whether the above proposition holds for all separable first
countable space?

Does it happen for all separable first countable space also?

It is known that Rn is Lindeloff, that is every open cover of Rn has
a countable subcover. Observe that this property does not hold for every
topological space, even not for all metric space. For example uncountable
discrete metric space is not Lindeloff.

Definition 71. A topological space X is said to be a Lindeloff space if every
open cover of it self has a countable sub-cover.
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For example each Rn is Lindeloff space but uncountable discrete met-
ric space is not Lindeloff. The following theorem shows that every secod
countable space satisfies all the countability axioms.

Theorem 72. If X is a secountable space the the following holds:
(a) X is first countable;
(b) X is separable;
(c) X is Lindeloff.

Proof. (a) It is obvious.
(b) Take a countable base {B1,B2, . . . ,Bn, . . .} and construct a set say A

choosing a point from each Bi.
(c) Let A be an open covering of X and

J = {n ∈ N : there exists A ∈ A, with A ⊇ Bn}.

If n ∈ J , let us denote the corresponding element of A by An and let
A′ be the collection of this form. Since J is countable A′ is countable..
Furthermore, it covers X: given a point x ∈ X, we can choose an element A
of A, containing x. Since A is open, there is a basis element Bn such that
x ∈ Bn ⊂ A. Because Bn lies in an element of A, the index n belongs to
the set J , so An is defined; since An contains Bn, it contains x. Thus A′ is
a countable subcollection of A, that covers X.

The following proposition shows that Lindeloffness is closed hereditary
property.

Proposition 73. Closed subspace of Lindeloff space is Lindeloff.

Proof. Done in the class.

In the following discussion we shall show that Rl satisfies all the count-
ability axioms except the second.

First Countability : [x, x+ 1/n) : n ∈ N} is a countable local base at x.
Second countability : Let B be a basis of Rl and x 6= y in R. Consider

basic open sets [x, x + 1) and [y, y + 1). Then there exist Bx and By such
that x ∈ Bx ⊂ [x, x + 1) and y ∈ By ⊂ [y, y + 1). Obviously Bx 6= By and
x = inf Bx and y = inf By.
Rl is Lindeloff : It will suffice to show that every open covering of

Rl by basic open sets contains a countable subcollection covering Rl. Let
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{[aα, bα) : α ∈ J} be a basic open cover of Rl. Let C = ∪α∈J(aα, bα). Then
{(aα, bα) : α ∈ J} becomes an open cover of C in the usual topology of R.
Since any subspace of R is Lindeloff we have C is Lindeloff. Hence there
exists a countable subcover say {(an, bn) : n ∈ N} of {(aα, bα) : α ∈ J}. It
remains to show that R \ C is countable.

Let x be a point of R \ C. We know that x does not belong to any
open interval (aα, bα); therefore x = aα for some index β. Choose such a β
and then choose qx be a rational number belonging to the interval (aα, bα).
Because (aα, bα) is contained in C, so is the interval (aα, qx) = (x, qx). It
follows that if x and y are two points of R \ C with x < y, then qx < qy.
(For otherwise, we would have x < y < qy = qx, so that y would lie in lhe
interval (x, qx) and hence in C.) Therefore the map x → qx of R \ C into Q
is injective, so that R \ C is countable.

Example 74. Using Proposition 73 prove that Linedeloffness is even finitely
productive.
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SELF ASSESSMENT:

1. A Gδ set in a space X is a set A that equals a countable intersection of
open sets of X. Show that in a first-countable T1 space, everyone-point
set is a Gδ set. There is a familiar space in which everyone-point set
is a Gδ set, which nevertheless does not satisfy the first countability
axiom. What is it ?

2. Show that if X has a countable basis {Bn}, then every basis C for X
contains a countable basis for X. (Hint: For every pair of indices n,m
for which it is possible, choose Cn,m ∈ C such that Bn ⊂ Cn,m ⊂ Bm).

3. Let X have a countable basis; let A be an uncountable subset of X.
Show that uncountably many points of A are limit points of A.

4. Show that every compact metrizable space X has a countable basis.
(Hint: Let An be a finite covering of X by 1/n-balls.).

5. (a) Show that every metrizable space with a countable dense subset
has a countable basis.
(b) Show that every metrizable Lindelof space has a countable basis.

6. Let A be a closed subspace of X. Show that if X is Lindelof, then A
is Lindelof. Show by example that if X has a countable dense subset,
A need not have a countable dense subset.

7. Show that if X is a countable product of spaces having countable dense
subsets, then X has a countable dense subset.

8. Let f ;X → Y be continuous. Show that if X is Lindelof, or if X has
a countable dense subset. then f(X) satisfies the same condition.

9. Let f ;X → Y be a continuous open map. Show that if X satisfies
the first or the second countability axiom, then f(X) satisfies the same
axiom.

10. Show that if X has a countable dense subset, every collection of disjoint
open sets in X is countable.
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Summary
In this unit, we have mainly learnt about countability axioms and related
properties. We have also seen various applications.
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Unit 12
Course Structure

1. Regularity of metrizable spaces.

2. Normal Spaces.

8 Introduction

We have already introduced the notion of Hausdorff property. T1 property
is also a separation property in topological spaces. In fact it can be easily
observed that a space X is T1 if and only if for any two distinct points there
exist open sets, such that each contains one but not the other. In this section
we will introduce some other stronger stronger separation axioms.

Definition 75. A T1 topological space X is said to be regular if for any
point x in X and a closed set K not containing x there exist disjoint open
sets U and V such that x ∈ U and K ⊂ V . Regular space is also called T3.

So any regular space has this separation property and as well as it is
T1. Since in a T1 space every singletoned set is closed every regular space is
Hausdorff.

The following gives another formulation of regularity in terms of closed
neighbourhood.

Proposition 76. Let X be a T1 topological space. Then X is regular if
and only if given a point x of X and a neighbourhood U of x, there is a
neighbourhood V of x such that x ∈ V ⊂ V ⊂ U .

Proof. Let X be a T1 space, which is regular and consider an open neigh-
bourhood U of x. Then K = X \U is a closed set not containing x. Now we
have to apply the definition of regularity.
For the converse let the given hypothesis be true and K be a closed set not
containing a point x. Then x ∈ X \K, and X \K is open. Then choose a
neighbourhood of x contained in X \K with it’s closure.

Theorem 77. Subspace of regular space is regular.
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Proof. Let X be a regular space and Y be a subspace of it. Y being a
subspace of T1 space X is T1. Now let y ∈ U where U is an open set in Y .
Then there exists an open set O in X such that U = O ∩ Y . Therefore by
regularity property there exists an open set V inX such that x ∈ V ⊂ V ⊂ O.
Then V ∩ Y is open in Y . Also clY (V ∩ Y ) = clXV ∩ Y ⊂ O ∩ Y = U . This
proves the claim.

Theorem 78. Product of regular spaces is regular.

Proof. Let {Xα : α ∈ Γ} be a collection of regular spaces and X =
∏

α∈ΓXα.
Since product of T1 spaces is T1, we have that X is T1. We use the regularity
criteria to prove this result. To prove that X is regular let B =

∏
α Uα be a

basic open set containing a point x = (xα)α. Then there exists α1, α2, . . . , αn
such that Uα = Xα for all α 6= α1, α2, . . . , αn. Therefore for each αi there
exist there exists open sets Vαi

in Xαi
such that xαi

∈ Vαi
⊂ Vαi

⊂ Uαi
. Let

us put V =
∏

α Vα. Then we know that
∏

α Vα =
∏

α Vα. This proves that
x ∈ V ⊂ V ⊂ U .

It is easy to observe that every regular space is Hausdorff. Recall the
K-topology on R, where K = { 1

n
: n ∈ N} and the subset

(a, b) \K = {x ∈ (a, b) : x 6= 1

n
for any integer n ∈ N}

of the open interval (a, b): The collection

B1 = {(a, b) ⊂ R : a, b ∈ R} ∪ {(a, b) \K ⊂ R : a, b ∈ R}

is a basis for a topology on R.
We shall prove that 0 and the closed set K can not be strongly separated in
this topology. If so then there exist disjoint open sets U and V containing
0 and V respectively. Choose a basis element containing 0 and lying in U .
It must of the form (a, b) − K, since each basis element of the form (a, b)
containing 0 intersects K, choose n large enough that 1

n
∈ (a, b). Then choose

a basis element about 1
n

contained in V , it must be a basis element of the
form (c, d). Finally, choose z so that z < 1

n
and z > max{c, 1

n+1
}. Then z

belongs to both U and V , so they are not disjoint.

Example 79. IfX is the real line with the topology generated by the subbase
consisting of all the open intervals and the set Q, show that X is Hausdorff
but not regular.
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9 Regularity of metrizable spaces

To prove that every metrizable space is regular we need the following metric
space version of Urysohn lemma.

Lemma 80. If F is a closed subset of X and G is an open set containing
F , then there is a continuous function f : X → R such that 0 ≤ f(x) ≤ 1
for all x in X, f(x) = 1 when x ∈ F , and f(x) = 0 when x ∈ X \G.

Take f(x) = d(x,X\G)
d(x,F )+d(x,X\G)

.

Now assume we have a metric space (X, d). If F is closed and x 6∈ F , then
F and {x} are disjoint closed sets. By above Lemma there is a continuous
function f : X → R with f(x) = 1 and f(y) = 0 for every y in F . Hence
U = {y : f(y) > 1} and V = {y : f(y) < 1} are disjoint open sets that
separate x from F .

10 Normal space

Definition 81. A T1 topological space X is said to be normal if for any two
disjoint closed sets H and K there exist disjoint open sets U and V such that
H ⊂ U and K ⊂ V . Normal spaces are also called T4.

So any regular space has separation property for disjoint closed sets and
as well as as it is T1. Since in a T1 space every singletoned set is closed every
normal space is regular.
In a short while we shall produce examples of regular spaces which are not
normal. We shall also prove by examples that unlike other separation prop-
erties normality is not a productive property. The following gives another
handy formulation of Normality.

Lemma 82. Let X be a T1 topological space. Then X is normal if and only
if given a closed set K of X and an open set U containing K, there is an
open set V such that K ⊂ V ⊂ V ⊂ U .

Proof. Let X be a T1 space, which is normal and consider an open set U
containing K. Then H = X \ U is a closed set disjoint from K. Now we
have to use the definition.
For the converse let the given hypothesis be true and K and H be disjoint
closed sets. Then H ⊂ X \ K, and X \ K is open. Then choose open set
containing H contained in X \K with it’s closure.
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Example 83. The space Rl is an useful example of normal space which is not
metrizable. Since the topology of Rl is finer than that of Ru, it is immediate
that singleton sets are closed in Rl. To check normality, suppose that A and
B are disjoint closed sets in Rl. For each point a of A choose a basis element
[a, xa) not intersecting B, and for each point b of B choose a basis element
[b, xb) not intersecting A. The open sets

U =
⋃
a∈A

[a, xa) and V =
⋃
b∈B

[b, xb).

are disjoint open sets about A and B, respectively.

We now show that every Metrizable space is normal.
Let X be a metrizable and consider two disjoint closed sets A and B. For

each a ∈ A, choose ra so that the ball B(a, ra) does not meet B. Similarly,
for each b in B, choose rb so that the ball B(b, rb) does not intersect A. Define

U =
⋃
a∈A

B(a, ra) and V =
⋃
b∈B

B(b, rb).

Then U and V are open sets containing A and B, respectively. For if z ∈
U ∩V then there exist a ∈ A and b ∈ B such that z ∈ B(a, ra

2
)∩B(b, rb

2
). By

triangle inequality we have that d(a, b) < ra+rb
2

. If rb ≤ ra, then d(a, b) < ra,
so that the open ball B(a, ra) contains the point b, a contradiction. Hence U
and V are disjoint.
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SELF ASSESSMENT:

1. Prove that metric space is regular.

2. Let X be a Hausdorff space and each x ∈ X has a neighbourhood U
such that U is regular. Then prove that X is regular.

3. Give an example of non metrizable regular space.

4. If X is the real line with the topology generated by the subbase con-
sisting of all the open intervals and the set Q, show that X is Hausdorff
but not regular.

5. Show that if X is regular, every pair of points of X have neighbour-
hoods whose closures are disjoint.

6. Show that if X is normal, every pair of disjoint closed sets have neigh-
bourhoods whose closures are disjoint.

7. Show that every order topology is regular.

8. Let f, g : X 7→ Y be continuous; assume that Y is Hausdorff. Show
that {x : f(x) = g(x)} is closed in X.

Summary
This section has made us acquainted with a special property of the topological
spaces, namely the countability axioms which provide us with knowledge of
countable sets, countable open sets, etc.
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Unit 13
Course Structure

1. Heredity of Normality

2. Linearly Ordered topological space

11 Introduction

We start this section by showing that normality is closed heredity property.As
we go further, we will learn about linearly ordered topological spaces.

11.1 Heredity of Normality

Theorem 84. Closed subspace of a normal spaces is normal.

Proof. Let X be a normal space and Y be a closed subspace of X. Then any
two disjoint closed sets in Y is also closed in X. Then normality of X can
be used to prove the normality of Y .

In the following example we show that normality is not even finitely
productive property.

Example 85. In a previous example we have observed that Rl is normal.
Now we shall show that Rl2 is not normal. Which will further produce an
example of a regular space which is not normal, as product of regular spaces
is regular and Rl being normal is regular.

If possible let Rl2 be normal. Let L be the subspace of Rl2, consisting of
all points of the form (x,−x). Then L is closed in Rl2 and L has the discrete
topology.

Hence every subset A of L, being closed in L, is closed in Rl2. Because
L\A is also closed in Rl2, this means that for every non-empty proper subset
A of L, one can find disjoint open sets UA and VA containing A and L− A,
respectively. Let D = Q × Q. Then D is dense in Rl2. We define a map f
that assigns, to each subset of the line L, a subset of the set D, as follows :

f(A) = D ∩ UA ∅  A  L
f(∅) = ∅
f(L) = D

.
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We claim that f : P(L)→ P(D) is injective.
Let A be a proper non-empty subset of L. Then f(A) = D ∩ UA is neither
empty as UA is open and D is dense in Rl2, nor all of D since D∩ VA is non-
empty. It remains to show that if B is another proper non-empty subset of
L, then f(A) 6= f(B). One of the sets A, B contains a point not in the other;
suppose that x ∈ A and x 6∈ B. Then x ∈ L−B, so that x ∈ UA ∩ VB; since
the latter set is open and non-empty, it must contain points of D. These
points belong to UA and not to UB; therefore, D ∩UA 6= D ∩UB, as desired.
Thus f is injective.

Next as D is countable and L has cardinality of the continuum, there
exist a bijection ϕ : P(D) → L. Then ϕ ◦ f : P(L) → L is an injective
mapping, which is a contradiction.

12 Linearly ordered topological space

Theorem 86. Every order space is normal.

Proof. We assert that every interval of the form (x, y] is open in a well-
ordered set X. In fact if X has a largest element and y is that element, (x, y]
is just a basis element about y. If y is not the largest element of X, then
(x, y] equals the open set (x, y) , where y is the immediate successor of y.
Now let A and B be disjoint closed sets in X, assume for the moment that
neither A nor B contains the smallest element a0 of X. For each a ∈ A,
there exists a basis element about a disjoint from B it contains some interval
of the form (x, a], as a is not the smallest element of X. Choose, for each
a ∈ A, such an interval (xa, a] disjoint from B. Similarly, for each b ∈ B,
choose an interval (yb, b] disjoint from A. The sets

U =
⋃
a∈A

(xa, a] and V =
⋃
b∈B

(yb, b].

are open sets containing A and B, respectively; we claim that they are dis-
joint. In fact if z ∈ U ∩V . Then z ∈ (xa, a]∩ (yb, b] for some a ∈ A and some
b ∈ B. Assume that a < b. Then if a ≤ yb, the two intervals are disjoint,
while if a > yb, we have a ∈ (yb, b], contrary to the fact that (yb, b] is disjoint
from A. A similar contradiction occurs if b < a.
Finally, assume that A and B are disjoint closed sets in X and A contains
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the smallest element a0 of X. The set {a0} is both open and closed in X.
Then by above there exist disjoint open sets U and V containing the closed
sets A − {a0} and B, respectively. Then U ∪ {a0} and V are disjoint open
sets containing A and B, respectively.

In the coming section we shall see that Linearly ordered topological spaces
satisfies more stronger separation property called completely normal. One
of the useful properties of the set N of positive integers is the fact that each
of its nonempty subsets has a smallest element. This property leads to the
following definition.

Definition 87. A set X with an order relation ≤ is said to be well-ordered
if every nonempty subset of X has a smallest element.

Theorem 88. Every nonempty finite ordered set has the order type of a
section {1, 2, . . . , n} of N, so it is well-ordered.

Theorem 89. (Well-ordering theorem). If A is a set, there exists an order
relation on A that is a well-ordered.

Corollary 90. There exists an uncountable well-ordered set.

For any well ordered set X and given α ∈ X, let Sα let us denote the set
Sα = {β ∈ X : β < α}. It is called the section of X by α.

Theorem 91. There exists a well-ordered set A having a largest element Ω,
such that the section SΩ of A by Ω is uncountable but every other section of
A is countable.

In fact if B be an uncountable well-ordered and S be the well-ordered set
{1, 2} × B in the dictionary order; then some section of C is uncountable.
Let Ω be the smallest element of C for which the section of C by Ω is un-
countable. Then let A consist of this section along with the element Ω.

Note that SΩ is an uncountable well-ordered set every section of which
is countable. Its order type is in fact uniquely determined by this condition.
We shall denote the well-ordered set A = SΩ ∪ {Ω} by the symbol SΩ + 1.

The most useful property of the set SΩ for our purposes is expressed in
the following theorem:

Theorem 92. If A is a countable subset of SΩ, then A has an upper bound
in SΩ.

With these few properties of ordinal numbers, which will be useful for us
for further discussions, we end this section.

68



SELF ASSESSMENT:

1. Prove that every finite Hausdorff space is normal.

2. Prove that a metric space is normal space.

3. Give an example of non metrizable normal space.

4. Is normality preserved in a finer topological space?

5. Let p : X 7→ Y be a closed continuous surjective map. Show that if X
is normal, then so is Y .

6. Let Y be normal and F1, F2, . . . , Fn be closed subsets such that ∩ni=1Fi =
∅. Prove that there exist open sets Vi ⊃ Fi such that ∩ni=1Vi = ∅.

7. Let X be normal, A ⊂ X be closed, and U an open set containing A.
Prove that there exists an open Fσ-set V such that A ⊂ V ⊂ X.

8. Let X be the upper half of R2 including x-axis. Give the portion
{(x, y) : y > 0} the subspace topology induced from Euclidean topol-
ogy. Let us define the neighbourhood points of (x, 0) to be {(x, 0)} ∪
{(x, y) : y > 0} tangent to the x-axis at (x, 0). Prove that this space is
normal.

Summary
In this unit, we have mainly seen properties of normality; linearly ordered
topological spaces and their properties.
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Unit 14
Course Structure

1. Product of Normal Spaces

13 Introduction

We have already proved that Rl × Rl is not normal. In the following we
shall provide another example to show product of normal spaces may not be
normal. This example is taken from J. R. Munkres.

Example 93. Consider the well-ordered set SΩ + 1, in the order topology,
and consider the subset SΩ, in the subspace topology (which is the same as
the order topology). Both spaces are normal, as linearly ordered topological
spaces are normal. We wish to prove that (SΩ + 1)× SΩ is not normal.

First, we consider the space (SΩ + 1) × (SΩ + 1), and its “diagonal”
4 = {(x, x) : x ∈ SΩ + 1}. Because SΩ + 1 is Hausdorff, 4 is closed in
(SΩ + 1) × (SΩ + 1). If U and V are disjoint neighbourhoods of x and y,
respectively, then U × V is a neighbourhood of x× y that does not intersect
4. Therefore, in the subspace SΩ × (SΩ + 1), the set

A = 4∩ (SΩ × (SΩ + 1)) = 4− {Ω× Ω}

is closed. Similarly the set B = SΩ × {Ω} is closed in SΩ × (SΩ + 1). The
sets A and B are disjoint.

Assuming there exist disjoint open sets U and V of SΩ×(SΩ+1) containing
A and B, respectively, we shall derive a contradiction.
Given x ∈ SΩ, consider the vertical slice x× (SΩ + 1). We assert that there
is some point β with x < β < Ω such that (x, β) lies outside U . In fact if U
is contained all points (x, β) for x < β < Ω then the top point (x,Ω) of the
slice would be a limit point of U , which it is not because V is an open set
disjoint from U containing this top point
Choose β(x) to be such a point; just to be definite, let β(x) be the smallest
element of S(Ω) such that x < β(x) < Ω and (x, β(x)) lies outside U .

70

Unit 19



Let us define a sequence of points of S(Ω) as follows: Let x1 be any point
of S(Ω). Let x2 = β(x1), and in general,xn+1 = β(xn). We have

x1 < x2 < . . . ,

because β(x) > x for all x.
The set {xn} is countable and therefore has an upper bound in S(Ω); let

b ∈ SΩ be its least upper bound. Because the sequence is increasing, it must
converge to its least upper bound; thus xn → b. But β(xn) = xn + 1 so that
β(xn) −→ b also. Then

(xn, β(xn) −→ (b, b)

in the product space. Now we have a contradiction, for the point (b, b)
lies in the set A, which is contained in the open set U ; and U contains none
of the points (xn, β(xn).

Now we shall enter into some deeper study of normal spaces. Two impor-
tant Theorems to note here are Urysohn Lemma ant Tietz extension lemma.
The first one gives information about rich source of continuous functions and
the second one tells about the extension of continuous functions. Let us start
with the following theorem

Theorem 94. Every regular space with a countable basis is normal.

Proof. Let X be a regular space with a countable basis say B = {Bn;n ∈
N}. Let A and B be disjoint closed subsets of X. The idea of the proof
is to cover A with some basic open sets and to cover B with some basic
open sets and then to to eliminate the overlapped parts. Each point x of
A has a neighbourhood U not intersecting B. Using regularity, choose a
neighbourhood V of x whose closure lies in U ; we can do these operations
taking elements from B. By choosing such a basis element for each x in A,
we construct a countable covering of A by open sets whose closures do not
intersect B. Since this covering of A is countable, we can index it with the
positive integers; let us denote it by {Un}. Similarly, choose a countable
collection {Vn} of open sets covering B, such that each set Vn is disjoint from
A. The sets U =

⋃
n Un and V =

⋃
n Vn are open sets containing A and B.

Given n ∈ N, define

U ′n = Un \

(⋃
n

V n

)
and V ′n = Vn \

(⋃
n

Un

)
.
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Then each U ′n and V ′n are open sets. It is easy to observe that {U ′n} is a cover
of A and {V ′n} is a cover of B. The collection {U ′n} is a cover of A because
each x in A belongs to Un for some n, and x belongs to none of the sets V i.
Similarly, the collection {V ′n} covers B. Now let us set

U ′ =
⋃
n

U ′n and V ′ =
⋃
n

V ′n.

It remains to show that U ′ and V ′ are disjoint. For if x ∈ U ′ ∩ V ′ then
x ∈ U ′j ∩ V ′k for some j and k. Suppose that j < k. It follows from the
definition of U ′ that x ∈ Uj, and since j ≤ k it follows from the definition of
V ′k that x 6∈ U j. A similar contradiction arises if j ≥ k.

As an immediate application of the above Theorem we can say that real
line with usual topology is normal.

Quite same construction like the above Theorem proves the following
Theorem.

Theorem 95. Every regular Lindelöf space is normal.

Next we shall introduce another notion of separability. We know that
normality is not heredity property. But there are normal spaces all whose
subspaces are normal. This motivates the following definition.

Definition 96. A space X is said to be completely normal if every subspace
of it is normal.

Definition 97. In a space X two sets A and B will be said separable if
A ∩B = ∅ and A ∩B = ∅.

Theorem 98. A space is completely normal iff every pair of separated subsets
can be separated by neighbourhoods.

Proof. Suppose A and B is a pair of separated subsets of X. Then Y =
X− (A∩B) is an open subset of X that contains both A and B. AY ∩BY =
Y ∩A∩B = ∅. Thus, AY and BY can be separated by open neighbourhoods
in Y . Since Y is open, these neighbourhoods are also open in X .
Conversely take a set Y ⊂ X and two disjoint subsets A,B ⊂ Y closed in Y .
AX ∩ B = AX ∩ Y ∩ B = AY ∩ B = ∅ . Similarly, BX ∩ A = ∅. Therefore,
A and B can be separated by neighbourhoods in X and their intersections
with Y separate A and B in Y .
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In the following we shall examine the complete normality of some spaces.

Exercise 99. Does every subspace of a completely normal space is com-
pletely normal?

Let Y be a subspace of a completely normal space X. Then any subspace
of Y is a subspace of the completely normal space X therefore, is normal.
This means that Y is completely normal.

Exercise 100. Is every well-ordered set is Completely normal in the order
topology.

If a set is well-ordered then every element has a successor and {(a, x]} is a
basis at x where a < x or a = −∞. Therefore, for a pair of separated sets we
can cover each set with such neighbourhoods that do not intersect the other
set. Moreover, the neighbourhoods belonging to one set do not intersect the
neighbourhoods belonging to the other set.

Exercise 101. Is Rl Completely normal?

Indeed, the proof of the fact that Rl is Completely normal, is extremely
similar to the previous example: both use the fact that there is a basis at x
with sets of the form [x, a). This shows that every point in one closed set has
such a neighbourhood that does not intersect the other set. Then coverings
by such basis sets are disjoint automatically. So, we obtain the disjoint open
neighbourhoods for any pair of sets such that neither one contains limit points
of the other one.

Exercise 102. Does every metric space Completely normal?

Every subspace is metrizable as well, therefore, normal

Exercise 103. Does every regular space with a countable basis is completely
normal?

Every regular second-countable space is normal. Also every its subspace is
also regular and second-countable. Therefore, every regular second-countable
space is completely normal.

Exercise 104. The product of two completely normal spaces.

Rl is completely normal, but (Rl)2 is not even normal.
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SELF ASSESSMENT:

1. Prove that closed subspace of normal space is normal.

2. Prove if product is normal space then each factor space is normal.

3. Give an example of non metrizable normal space.

4. Prove that every regular Lindelöf space is normal.

5. Is Rω normal in product topology?

6. Is Rω normal in uniform topology?

7. Prove that unit interval [0, 1] is completely normal.

8. If J is an uncountable set prove that RJ is not normal. (This is an
extremely difficult question. See J. R. Munkres for proof)

Summary
In this unit, we have become acquainted with product of normal spaces and
various relevant properties.
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Unit 15
Course Structure

1. Urysohn’s Lemma

2. Completely Regular Space

14 Introduction

Now we shall gradually move to Urysohn Metrization Theorem. In this course
we shall require the famous Urysohn’s Lemma. We have already given a
version of Urysohn’s lemma for metric space. But that depends completely
on the metric. In this module we shall present a general version of Urysohn’s
lemma.

14.1 Urysohn’s Lemma

Theorem 105 (Urysohn’s Lemma). A space X is normal if and only if
for any two disjoint closed sets E and F there exists a continuous functions
f : X :→ R such that

f(E) = 0 and f(F ) = 0.

Proof. Set V = X \F , an open set containing E. Then by normality criteria
there exists an open set U 1

2
such that

E ⊂ U 1
2
⊂ U 1

2
⊂ V.

Successive application of normality open sets U 1
4

and U 3
4

such that

E ⊂ U 1
4
⊂ U 1

4
⊂ U 1

2
⊂ U 1

2
⊂ U 3

4
⊂ U 3

4
⊂ V.

Continuing in this manner, we have for each dyadic rational number r ∈
(0, 1), an open set Ur such that

Ur ⊂ Us, 0 < r < s < 1,

E ⊂ Ur, 0 < r < 1,

75

Unit 20



Ur ⊂ V, 0 < r < 1.

With this information we shall now go to define the function f .

f(x) =

{
0 if x ∈ Ur for all r > 0

sup{r : x 6∈ Ur}

Evidently 0 ≤ f ≤ 1, f = 0 on E and f = 1 on F . It suffices to show
that f is continuous.

Let x ∈ X. For convenience, we assume that 0 < f(x) < 1, the case
f(x) = 0 and f(x) = 1 are not difficult. Let ε > 0. Choose dyadic rational
number 0 < r < s < 1 and

f(x)− ε < r < f(x) < f(x) + ε.

Then x 6∈ Ut for dyadic rational numbers between r and f(x), so that x 6∈ U r.
On the other hand x ∈ Us. Hence W = Us \ U r is an open neighbourhood
of x. If y ∈ W , then from the definition of f we see that r ≤ f(x) ≤ s. In
particular, |f(x)− f(y)| < ε for y ∈ W , so that f is continuous at x.

This is a deep Theorem, both from the point of view of its proof, which
involves really original idea, and also from the point of view of its application.

Recall that A is a Gδ set in a space X if A is the intersection of a countable
collection of open sets of X. In metric space all closed sets are Gδ sets. But
this is not true in general. In normal space we have the following Theorem.

Theorem 106. Let X be normal space. There exists a continuous function
f : X → [0, 1] such that f(x) = 0 for x ∈ A, and f(x) > 0 for x 6∈ A, if and
only if A is a closed Gδ set in X.

Proof. Suppose there exists a continuous function f : X → [0, 1] such that
f(x) = 0 for x ∈ A, and f(x) > 0 for x 6∈ A. Then A = f−1(0) must be
closed. Now A =

⋂
n f
−1(− 1

n
, 1
n
) and each f−1(− 1

n
, 1
n
) is an open set. Hence

A is a Gδ set also.
Conversely let A be a closed Gδ set. Then there exists a sequence (Un) of
open sets such that A =

⋂
n Un. Then for each n there exists a continuous

function fn which vanishes on A and equal to 1 on X − Un. Now take

f =
∑
n

|fn|
2n

.

Then clearly f is continuous and serves our purpose.
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Now we are in a position to prove the coveted Urysohn Metrization The-
orem.

Theorem 107. Every regular second countable space is metrizable.

Proof. We know that any regular second countable space X is normal so that
we can invoke Urysoh’s lemma. Let B = {Bn : n ∈ N} be a countable base.
Then for any m,n ∈ N if Bm ⊂ Bn there exists some f ∈ C∗(X) such that
f(Bm) = 0 and f(Bn) = 1. In this way we get a countable collention of
functions say {fn : n ∈ N} which does the above job. We define e : X → RN
to be πn (e(x)) = fn(x). We shall prove that e is an embedding. Continuity
follows from the fact that each factor map fn is continuous. If x 6= y then
there exists Bm, Bn ∈ B such that x ∈ Bm, y 6∈ Bn and Bm ⊂ Bn. So there
exists some fk such that fk(x) = 0 and fk(y) = 1. It’s remain to show that
e : X → e(X) is open. Let U be open in X, then we need to show that set
e(U) is open in e(X). Let v ∈ e(U). We have to find an open set W of e(X)
such that v ∈ W ⊂ e(U). Let u be the point of U such that e(u) = v. Choose
an index N for which fN(u) > 0 and fN(X − U) = {0}. Take the open ray
(0,+∞) in R, and let V be the open set π−1

N ((0,+∞)) of RN. We claim
that v ∈ W ⊂ e(U) First, v ∈ W because πN(u) = πN (e(u)) = fN(u) > 0.
Second, W ⊂ e(U). For if z ∈ W , then z = e(x) for some x ∈ X, and
πN(z) ∈ (0,+∞). Since πN(z) = πN (e(x)) = fN(x), and fN vanishes outside
U the point x must be in U . Then z = e(x) is in e(U) as desired.

Thus e is an imbedding of X in RN.

14.2 Completely Regular Space

Definition 108. If E and F be two disjoint closed sets in a spaceX and there
exists a continuous functions f : X :→ R such that f(E) = 0 and f(F ) = 0.
We say that E and F can be separated by a continuous function.

The Urysohn lemma says that if every pair of disjoint closed sets in X
can be separated by disjoint open sets, then each such pair can be separated
by a continuous function. The converse is trivial, for if

f(E) = 0 and f(F ) = 0.

is the function, then f−1[0, 1
3
) and and f−1(2

3
, 0] are disjoint open sets con-

taining A and B, respectively.
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Theorem 109. A subspace of a completely regular space is completely regu-
lar.

Proof. Let X be a completely regular space and let Y be a subspace of X.
Let x be a point of Y , and let K be a closed set of Y disjoint from x. We
choose a closed set in X such that K = H ∩ Y . Therefore, x /∈ H. Since
X is completely regular, we can choose a continuous function f : X → R
such that f(x) = 1 and f(H) = 0. The restriction of f to Y is the desired
continuous function on Y .

Theorem 110. Product of completely regular spaces is completely regular.

Proof. Let X =
∏
Xα be a product of completely regular spaces. Let x =

(xα) be a point of X and let U be an open set of X containing x. Then
U =

∏
Uα, where each Uα is open in Xα and Uα = Xα except for finitely

many α’s, say α1, α2, . . . , αk. Then for each αi, we can choose a continuous
function fi : X → R such that fi(xαi

) = 1 and fi(Xαi
\ Uαi

) = 0. Now,
let us set φi = fi ◦ παi

. Then each φi is continuous from X to R. If we set
φ = φi.φ2 . . . φk, then it is easy to observe that φ(x) = 1 and φ(X\U) = 0.
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SELF ASSESSMENT

1. Give a direct proof of Urysohn’s Lemma for metric spaces.

2. Give an example showing that a second countable Hausdorff space need
not satisfy Urysohn’s Lemma.

3. Give an example showing that a second countable space need not be
metrizable.

4. Is every regular Lindelöf space metrizable?

5. Give an example to show that a completely normal, first countable,
Lindelöf separable space need not be metrizable.

6. Prove that every Fσ subset of a normal space is normal.

7. Show that a regular Lindelöf space is metrizable if it is locally metriz-
able, where a space X is locally metrizable if each point x of X has a
neighbourhood that is metrizable in the subspace topology.

8. Show that a space X is completely regular if and only if it is homeo-
morphic to a subspace of [0, 1]J for some J .

Summary
In this unit, we have learnt about Urysohn’s Lemma and Completely regular
spaces along with their properties.
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Unit 1

Course Structure
• Preliminaries to continuum mechanics

• Body and surface force

• Analysis of stress, stress Vector and stress tensor

• Cauchy’s fundamental theorem for stress

• Equation of equilibrium

1.1 Notion of a continuum
Materials such as solids, liquids and gases are composed of molecules separated by “empty" space.
On a microscopic scale, materials have cracks and discontinuities. However, certain physical phe-
nomena can be modeled assuming that the materials exist as a continuum. Continuum means the
matter in the body is continuously distributed and fills the entire region of space it occupies with
no empty space. This ensures that it possesses unique physical properties such as unique density,
unique displacement, unique velocity at every point of space which can be expressed as continuous
functions of position and time. A continuum is a body that can be continually subdivided into in-
finitesimal elements with properties being those of the bulk materials.

Thus matter is idealized as a continuum, which has two properties:

• it is infinitely divisible and

• it is locally homogeneous, in other words if we subdivide it sufficiently many times, all subdi-
visions have identical properties (e.g. mass, density etc).

A continuum can be thought as an infinite set of vanishingly small particles connected together.

1



2 UNIT 1.

1.2 Continuum Mechanics
Continuum mechanics, a scientific discipline, is a branch of mechanics that deals with the analysis
of the kinematics and the mechanical behaviour of substances under the influence of external agents
that produce changes in the state of medium. These changes may appear in the form of contact forces
such as chemical, electrical, mechanical or any other type of disturbances.

The major areas of continuum mechanics are:

1.3 Configuration
The configuration of a solid is a region of space occupied by the solid. When we describe motion,
we namely choose some convenient configuration of the solid to use as reference. This is often the
initial, undeformed solid but it can be any convenient region that could be occupied by the solid.
The material changes its shape under the action of external loads and at some time t occupies a new
region which is called the deformed or current configuration of the solid.

1.4 Deformation
Let a continuum body occupies a certain region of space B0 at time t0. When external forces are
applied to the body, the material points of B0 move so that they occupy some other region of space
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B after time t. Consequently there are changes in the positions of all the material points of the body.
The body is then said to be deformed and the transformation of the body from its initial configuration
to subsequent configuration is called deformation. There are two types of deformations:

• rigid body deformation

• strain deformation

1.4.1 Rigid body deformation
When the deformation is such that there are no changes in the relative positions of constituent ma-
terial points of the continuum firmly bound together so that the length of any line joining any two
material points does not change, then the deformation is a combination of translation and rotation
about an axis at any point causing a change in configuration and orientation of the body only and is
called rigid body deformation and the body is called rigid body.

1.4.2 Strain deformation
When the deformation is such that there are changes in the relative positions of constituent material
points of the continuum body so that the length and orientation of any line joining any two points
changes, then the deformation causes a change in the shape of the body only and is called strain
deformation and the body is called deformed body. The existence of strain deformation depends on
the occurrence of relative displacement of points in the medium with respect to each other.

In a continuum body, a deformation field results from a stress field induced by applied forces or is
due to changes in temperature field inside the body. The relation between stresses and induced strains
is expressed by constitutive equations, e.g., Hooke’s law for linear elastic materials. Deformations
which are recovered after the stress field has been removed are called elastic deformation. In this
case, the continuum completely recovers its original configuration. On the other hand, irreversible
deformations remain even after stresses have been removed. One type of irreversible deformation is
plastic deformation, which occurs in material bodies after stresses have attained a certain threshold
value known as the elastic limit.

1.5 Linear elastic solid or Hookean solid
By linear elastic solid, we mean continuous materials which undergoes very small change of shape
when subjected to forces of reasonable magnitude. It has the property that the body recovers its
original shape upon the removal of forces causing deformation provided the forces are not too large.
It is restricted to the case in which the deformation and gradients are small. Linear elastic solid
shows the linear relations between the stress components and strain components.

1.6 Introduction to Stress
Stress is a measure of force intensity, either within or on the boundary surface of a body subjected
to loads. It should be noted that in continuum mechanics a body is considered to be stress free if
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the only forces present are those interatomic forces required to hold the body together. Therefore it
follows that the stresses that concern us here are those which result from the application of forces by
an external agent.

1.7 Body and Surfaces forces
The motion of a material body is produced by the action of externally applied forces which are
assumed to be of two kinds:

• body forces (FB),

• surface forces (FC).

1.7.1 Body force
Body forces are forces originating from sources outside of the body that act on all volume elements
(or mass) of the body and distributed throughout the body. These forces arise from the presence of
the body in force fields, e.g., gravitational field or electromagnetic field, from inertial forces when
bodies are in motion. Body forces are specified by vector fields which are assumed to be continuous
over the entire volume of the body i.e. acting on every point in it. The total body force applied to a
continuous body is expressed as

FB =

∫∫∫
V

ρb dV , (1.7.1)

where ρ denotes force per unit volume and b is force per unit of mass.

1.7.2 Surface force
The forces which act upon and are distributed in some fashion over a surface element of the body
regardless of whether that element is part of the bounding surface or an arbitrary element of surface
within the body are called surface forces or contact forces. Surface forces are expressed as force per
unit area.

The total contact force on the particular internal surface S is then expressed as the sum of the
contact forces on all differential surfaces dS as

FC =

∫∫
S

T (n) dS . (1.7.2)

Hence the total force F applied to a body on a portion of the body can be expressed as

F = FB + FC =

∫∫∫
V

ρb dV +

∫∫
S

T (n) dS . (1.7.3)

Examples of body forces are gravitational and magnetic forces, while that of surface forces are
hydrostatic pressure of liquid or pressures of one solid body on another due to contact.
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1.8 Stress vector and stress tensor
The concept of stress arises from the consideration of the internal forces which the particles of one
part of the deformed body exerts on the particles of the adjacent part through the separating bound-
ary surface in the form of restoring forces.

Consider a continuous medium B occupy a volume V
at some time t. Imagine a closed surface S within V . Let
dS be a small elementary area surrounding a point P of the
surface. Let us draw a normal ν⃗ at P to the surface element
dS in a specified sense. The components of surface force
across dS which the material on the side of dS towards
which normal ν⃗ is drawn exerts on the material on the other
side are expressed by τνx dS, τνy dS, τνz dS. These are the
components of forces along x, y, z axes respectively. If the
direction of ν⃗ is in the direction of x axis, the components
of surface force are τxx dS, τxy dS, τxz dS. If ν⃗ is drawn
in the direction of y axis, the components of surface force
are τyx dS, τyy dS, τyz dS. Similarly for z axis, the components are τzx dS, τzy dS, τzz dS. If
dS is unity, the components of surface force are τνx, τνy, τνz. These are called the component of
stress at a point P and the vector T⃗ (ν) of which these are the components is called the stress vector
corresponding to the unit area P is in normal in the direction of ν⃗. Therefore

T⃗ (ν) = τνxî+ τνy ĵ + τνzk̂ . (1.8.1)

Taking ν⃗ in the direction of x, y, z axes respectively, we have

T⃗ x = τxxî+ τxy ĵ + τxzk̂

T⃗ y = τyxî+ τyy ĵ + τyzk̂

T⃗ z = τzxî+ τzy ĵ + τzzk̂ . (1.8.2)

There are nine stress vector components on the right hand side of (1.8.2) which are the components
of a second order Cartesian tensor known as the stress tensor.

The matrix representation of stress tensor isτxx τxy τxz
τyx τyy τyz
τzx τzy τzz

 . (1.8.3)

The components perpendicular to the coordinate planes i.e., τxx, τyy, τzz are called normal stress
and those tangential to the plane i.e., non diagonal elements are called shear stress.

1.9 Cauchy’s fundamental theorem for stress
The stress vector at a point on any arbitrary plane surface is a linear function of three stress vectors
acting on any three mutually perpendicular planes through that point.
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Proof: Let us consider a tetrahedron of the continuum with one corner at the point O and edges
OA, OB, OC parallel to the coordinate axes and of infinitely small length and face ABC perpen-
dicular to the direction ν⃗ whose direction cosines are l, m, n and these direction are drawn outwards.

Let dS1, dS2, dS3 and dS be the areas of the faces
OBC, OCA, OAB and ABC respectively. Therefore

dS1 = l dS, dS2 = m dS, dS3 = n dS, . (1.9.1)

Let dV be the volume of the material in the tetra-
hedron. Also let fx, fy and fz be the component of
acceleration of the continuum in the direction of x, y
and z axes respectively and ρX, ρY, ρZ are the com-
ponents of body forces per unit volume of the mate-
rial.

Hence the x component of equation of motion of the material in the tetrahedron is

ρ dV fx = ρX dV + τνx dS − τxx dS1 − τyx dS2 − τzx dS3

⇒ ρ dV fx = ρX dV + (τνx − lτxx −mτyx − nτzx) dS

⇒ ρfx
dV
dS

= ρX
dV
dS

+ (τνx − lτxx −mτyx − nτzx) .

We now make the dimension of the tetrahedron tends to zero in such a manner that face ABC
remains parallel to itself i.e., the direction of normal remains itself and in the limit faceABC tends to
pass through O. Therefore τνx, τνy, τνz can be taken to be the values of the corresponding quantities
at the point O. Since the linear dimension of the tetrahedron dV

dS → 0, we have

τνx = lτxx +mτyx + nτzx. (1.9.2)

In a similar manner we can obtain

τνy = lτxy +mτyy + nτzy ,

τνz = lτxz +mτyz + nτzz . (1.9.3)

This is the relation between the component of the stress vector T⃗ ν with the components of stress
tensor at any point. Thus we conclude that the stress at any point O is completely determined by the
nine components of stress tensor at that point.

Example: Let the components of the stress tensor at P be given in matrix form by0 1 2
1 b 1
2 1 0


in units of mega-pascals, where b is a constant. Determine b so that stress vector on some plane at
the point will be zero. Also determine the direction cosines of the normal to the plane.
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Solution: Let l, m, n be the direction cosines of the normal to the plane. Then due to Cauchy’s
stress formula τνxτνy

τνz

 =

τxx τyx τzx
τxy τyy τzy
τxz τyz τzz

 lm
n


By the given condition 00

0

 =

0 1 2
1 b 1
2 1 0

  lm
n


For non trivial solution of the above system of linear equation, we have∣∣∣∣∣∣

0 1 2
1 b 1
2 1 0

∣∣∣∣∣∣ = 0 ⇒ b = 1 .

For b = 1, the system of linear equations reduces to

l

1
=

m

−2
=
n

1
.

Hence the direction cosines of the normal to the plane is given by ν⃗ = (l, m, n) = 1√
6
(1,−2, 1).

Example: The state of stress throughout a continuum is given with respect to cartesian axesOX1, OX2, OX3

by

(Tij) =

3x1x2 5x22 0
5x22 0 2x3
0 2x3 0

 .

Determine the stress vector acting at a point P (2, 1,
√
3) on the plane tangent to the cylindrical

surface x22 + x23 = 4 at the point P (2, 1,
√
3).

Solution: The cylindrical surface can be expressed as

ϕ(x1, x2, x3) ≡ x22 + x23 − 4 = 0 .

Then
∇ϕ(x1, x2, x3) = (0, 2x2, 2x3) = (0, 2, 2

√
3) at P (2, 1,

√
3) .

The unit normal to the surface at P (2, 1,
√
3) is given by

ν⃗ = (l,m, n) =
∇ϕ
|∇ϕ|

=
1

2
(0, 1,

√
3) .

At the point P , the state of stress throughout a continuum is given by

(Tij) =

3x1x2 5x22 0
5x22 0 2x3
0 2x3 0

 =

6 5 0

5 0 2
√
3

0 2
√
3 0

 at P (2, 1,
√
3) .
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Due to Cauchy’s stress formula, the stress vector at P on the plane perpendicular to ν⃗ = (l,m, n) =
1
2
(0, 1,

√
3) is given byτνxτνy

τνz

 =

τxx τyx τzx
τxy τyy τzy
τxz τyz τzz

 lm
n

 =
1

2

6 5 0

5 0 2
√
3

0 2
√
3 0

 0
1√
3

 =
1

2

 5
6

2
√
3

 .

1.10 Equation of equilibrium of a continuum
Consider a continuous body every portion of which is contained in the volume V and bounded by the
closed surface S is in equilibrium. Let P (x, y, z) be any point in the volume V . We consider a small
closed surface S̄ enclosing the point P and lie entirely within V . Let V̄ be the volume enclosed by
the surface S̄ and ν⃗ is drawn outward and normal to the surface whose direction cosines are l, m, n.

Let X, Y, Z be the components of body force per unit
mass. Hence ρX, ρY, ρZ are the components of body force
per unit volume where ρ denotes the density of the solid. For
equilibrium of the matter within volume V̄ , the resultant of
the body forces within V̄ and surface forces along S̄ must
vanish together. We consider the components of body and
surface forces along x direction and have∫∫∫

V̄

ρX d V̄ +

∫∫
S̄

τνx d S̄ = 0 . (1.10.1)

Now
τνx = lτxx +mτyx + nτzx .

Hence ∫∫
S̄

τνx d S̄ =

∫∫
S̄

(lτxx +mτyx + nτzx) d S̄ , using divergence theorem, we have

=

∫∫∫
V̄

[
∂

∂x
(τxx) +

∂

∂y
(τyx) +

∂

∂z
(τzx)

]
d V̄ . (1.10.2)

Using this in (1.10.1), we have∫∫∫
V̄

[
ρX +

∂

∂x
(τxx) +

∂

∂y
(τyx) +

∂

∂z
(τzx)

]
d V̄ = 0 .

We consider the dimension of S̄ tends to zero in such a manner that always encloses the point P and
we have

ρX +
∂

∂x
(τxx) +

∂

∂y
(τyx) +

∂

∂z
(τzx) = 0 . (1.10.3)

In a similar manner, considering the components of forces in y and z directions respectively we can
obtain

ρY +
∂

∂x
(τxy) +

∂

∂y
(τyy) +

∂

∂z
(τzy) = 0 , (1.10.4)
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ρZ +
∂

∂x
(τxz) +

∂

∂y
(τyz) +

∂

∂z
(τzz) = 0 . (1.10.5)

The above three equations are called equation of equilibrium of a continuum.

If the material within the volume V̄ enclosed by the surface S̄ be in equilibrium, then the moments
of the body and surface forces about x, y and z axes vanishes separately. We consider the moment
about x axis and have ∫∫

S̄

(yτνz − zτνy) d S̄ +

∫∫∫
V̄

(yρZ − zρY ) d V̄ = 0 . (1.10.6)

Now∫∫
S̄

(yτνz − zτνy) d S̄ =

∫∫
S̄

[y(lτxz +mτyz + nτzz)− z(lτxy +mτyy + nτzy)] d S̄

=

∫∫∫
V̄

[
∂

∂x
(yτxz − zτxy) +

∂

∂y
(yτyz − zτyy) +

∂

∂z
(yτzz − zτzy)

]
d V̄

=

∫∫∫
V̄

[
y

(
∂

∂x
τxz +

∂

∂y
τyz +

∂

∂z
τzz

)
− z

(
∂

∂x
τxy +

∂

∂y
τyy +

∂

∂z
τzy

)
+ (τyz − τzy)

]
d V̄

=

∫∫∫
V̄

[y{−ρZ − z(−ρY )}+ (τyz − τzy)] d V̄ , using (1.10.4), (1.10.5)

=

∫∫∫
V̄

[ρ(zY − yZ) + (τyz − τzy)] d V̄ . (1.10.7)

Substituting this result in (1.10.6), we obtain∫∫∫
V̄

[ρ(zY − yZ) + (τyz − τzy)] d V̄ +

∫∫∫
V̄

(yρZ − zρY ) d V̄ = 0

⇒
∫∫∫

V̄

(τyz − τzy) d V̄ = 0 . (1.10.8)

We consider the dimension of V̄ tends to zero in such a manner so that it always represents the point
P . Hence we have

τyz = τzy .

In a similar manner considering the moments of the forces about y and z axes respectively, we obtain

τzx = τxz , τxy = τyx .

Therefore, the matrix representation of the stress tensor

τxx τyx τzx
τxy τyy τzy
τxz τyz τzz

 is symmetric.
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Unit 2

Course Structure
• Transformation rule of stress components

• Principal stress and principal axes of stresses

• Stress invariants, Stress quadric of Cauchy

2.1 Rule of transformation of stress components
Let Ox,Oy,Oz be a set of rectangular axes and Ox′, Oy′, Oz′ are another set of rectangular axes
through O such that the direction cosines of these axes are (l1,m1, n1), (l2,m2, n2) and l3,m3, n3)
respectively with respect to Ox,Oy,Oz.

Let P be any point whose coordinate referred to Ox,Oy,Oz as axes are (x, y, z) and if (x′, y′, z′)
be the coordinates of the same point referred to Ox′, Oy′, Oz′ as axes, then the scheme of transfor-
mation from one set of coordinates to another is given by

x y z
x′ l1 m1 n1

y′ l2 m2 n2

z′ l3 m3 n3

We know that if we draw a unit area atO and draw the normal ν⃗ to the surface, then the force exerted
by the material on the side of the surface towards which normal ν⃗ is drawn to the material on the
other side of the surface across the unit area has its components τνx, τνy, τνz, where

τνx = lτxx +mτyx + nτzx ,

τνy = lτxy +mτyy + nτzy ,

τνz = lτxz +mτyz + nτzz , (2.1.1)

11
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where (l,m, n) are the direction cosines of the normal ν⃗. If we choose ν⃗ in the direction of Ox′ axis
then

τx′x = l1τxx +m1τyx + n1τzx

τx′y = l1τxy +m1τyy + n1τzy

τx′z = l1τxz +m1τyz + n1τzz . (2.1.2)

In matrix form it can be expressed asτx′x

τx′y

τx′x

 =

τxx τyx τzx
τxy τyy τzy
τxz τyz τzz

 l1m1

n1

 . (2.1.3)

If we choose ν⃗ in the direction of Oy′ axis then we haveτy′xτy′y
τy′x

 =

τxx τyx τzx
τxy τyy τzy
τxz τyz τzz

 l2m2

n2

 . (2.1.4)

If we choose ν⃗ in the direction of Oz′ axis then we haveτz′xτz′y
τz′x

 =

τxx τyx τzx
τxy τyy τzy
τxz τyz τzz

 l3m3

n3

 . (2.1.5)

Combining (2.1.3), (2.1.4) and (2.1.5), we haveτx′x τy′x τz′x
τx′y τy′y τz′y
τx′z τy′z τz′z

 =

τxx τyx τzx
τxy τyy τzy
τxz τyz τzz

 l1 l2 l3
m1 m2 m3

n1 n2 n3

 . (2.1.6)

Here τx′x, τx′y, τx′z are the components of force per unit area which the material on the positive side
of x′ axis exerts on the material on the negative side across the plane x′ = constant.

Now if τx′x′ be the component of the force per unit area
in the direction of x′ axis which the material on the positive
side of x′ axis exerts on the material on the negative side
across the plane x′ = constant. Then

τx′x′ = l1τxx′ +m1τyx′ + n1τzx′

τx′y′ = l1τxy′ +m1τyy′ + n1τzy′

τx′z′ = l1τxz′ +m1τyz′ + n1τzz′ . (2.1.7)

It can be expressed in the matrix formτx′x′

τx′y′

τx′z′

 =
[
l1 m1 n1

] τxx′ τxy′ τxz′
τyx′ τyy′ τyz′
τzx′ τzy′ τzz′

 . (2.1.8)
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In a similar manner we obtainτy′x′

τy′y′
τy′z′

 =
[
l2 m2 n2

] τxx′ τxy′ τxz′
τyx′ τyy′ τyz′
τzx′ τzy′ τzz′

 . (2.1.9)

τz′x′

τz′y′
τz′z′

 =
[
l3 m3 n3

] τxx′ τxy′ τxz′
τyx′ τyy′ τyz′
τzx′ τzy′ τzz′

 . (2.1.10)

Combining (2.1.8), (2.1.9) and (2.1.10), we getτx′x′ τy′x′ τz′x′

τx′y′ τy′y′ τz′y′
τx′z′ τy′z′ τz′z′

 =

l1 m1 n1

l2 m2 n2

l3 m3 n3

τxx′ τxy′ τxz′
τyx′ τyy′ τyz′
τzx′ τzy′ τzz′

 . (2.1.11)

Using (2.1.6) we haveτx′x′ τy′x′ τz′x′

τx′y′ τy′y′ τz′y′
τx′z′ τy′z′ τz′z′

 =

l1 m1 n1

l2 m2 n2

l3 m3 n3

τxx τyx τzx
τxy τyy τzy
τxz τyz τzz

 l1 l2 l3
m1 m2 m3

n1 n2 n3

 . (2.1.12)

These are the laws of transformation of stress tensor.

Example: The state of stress at a point with respect to Cartesian axes OX1, OX2, OX3 is given by

(Tij) =

 15 −10 0
−10 5 0
0 0 20

 .

Determine the stress tensor T ′
ij for related axes OX ′

1, OX
′
2, OX

′
3 for which transformation matrix is3/5 0 −4/5

0 1 0
4/5 0 3/5

 .

Solution: By using the stress transformation laws we getT ′
11 T ′

21 T ′
31

T ′
12 T ′

22 T ′
32

T ′
13 T ′

23 T ′
33

 =

l1 m1 n1

l2 m2 n2

l3 m3 n3

T11 T21 T31
T12 T22 T32
T13 T23 T33

 l1 l2 l3
m1 m2 m3

n1 n2 n3


=

3/5 0 −4/5
0 1 0
4/5 0 3/5

 15 −10 0
−10 5 0
0 0 20

 3/5 0 4/5
0 1 0

−4/5 0 3/5


=

 91/5 −6 −1/5
−6 5 −8

−12/5 −8 84/5

 .
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2.2 Principal stresses and principal axes of stresses
Generally, stress vector do not act in a direction perpendicular to the plane element on which it is
acting. Particularly when stress vector acts entirely in a direction perpendicular to the element of
plane on which it acts is called principal stress. The element of plane area on which principal stress
is acting is called principal plane and the direction of principal stress is called principal direction of
stress or principal axis of stress.

2.2.1 Determination of principal stress and principal direction of stress
Consider a unit area in a continuum and let ν⃗ be the unit vector in the direction of the normal to it in
a specified sense. Let the components of the stress vector T⃗ ν at a point are τνx, τνy, τνz. In general
the direction of T⃗ ν is different from the direction of ν⃗, but if the orientation of the unit area be such
that T⃗ ν is in the direction of ν⃗ then these directions are called principal direction of stress.

Thus for a principal stress direction,

T⃗ ν = σν⃗ ,

where σ is the magnitude of the stress vector and is called
principal stress value. Explicitly

T⃗ ν = σν⃗

⇒ τνx = σl, τνy = σm, τνz = σn

where l,m, n are the direction cosines of ν⃗. Therefore, we
have

lτxx +mτyx + nτzx = σl

lτxy +mτyy + nτzy = σm

lτxz +mτyz + nτzz = σn . (2.2.1)

It can be written as

l(τxx − σ) +mτyx + nτzx = 0

lτxy +m(τyy − σ) + nτzy = 0

lτxz +mτyz + n(τzz − σ) = 0 . (2.2.2)

The system of equation (2.2.2) has a non-vanishing solution l,m, n if and only if the determinant of
the coefficient vanishes i.e., ∣∣∣∣∣∣

τxx − σ τyx τzx
τxy τyy − σ τzy
τxz τyz τzz − σ

∣∣∣∣∣∣ = 0 . (2.2.3)

This is a cubic equation in σ and is called the characteristic equation. It has three roots σ1, σ2, σ3
which are called principal stress values.
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Corresponding to each of these principal stresses σ1, σ2, σ3 there are three principal stress direc-
tions l1,m1, n1; l2,m2, n2; l3,m3, n3 respectively such that

l1τxx +m1τyx + n1τzx = σ1l1

l1τxy +m1τyy + n1τzy = σ1m1

l1τxz +m1τyz + n1τzz = σ1n1 (2.2.4)

l2τxx +m2τyx + n2τzx = σ2l2

l2τxy +m2τyy + n2τzy = σ2m2

l2τxz +m2τyz + n2τzz = σ2n2 (2.2.5)

and another set of equations can be obtained by replacing l1,m1, n1 by l3,m3, n3 and σ1 by σ3 in
(2.2.4).

We now prove that the three principal stress values σ1, σ2, σ3 are real and that the corresponding
principal stress directions are mutually orthogonal.

Multiplying three equations of (2.2.4) by l2,m2, n2 respectively and adding we get

l1l2τxx +m1m2τyy + n1n2τzz + (m1n2 +m2n1)τyz + (n1l2 + n2l1)τzx + (l1m2 + l2m1)τxy

= σ1(l1l2 +m1m2 + n1n2) . (2.2.6)

Similarly, multiplying three equations of (2.2.5) by l1,m1, n1 respectively and adding we get

l1l2τxx +m1m2τyy + n1n2τzz + (m1n2 +m2n1)τyz + (n1l2 + n2l1)τzx + (l1m2 + l2m1)τxy

= σ2(l1l2 +m1m2 + n1n2) . (2.2.7)

Subtracting these two equations, we obtain

(σ1 − σ2)(l1l2 +m1m2 + n1n2) = 0 . (2.2.8)

In a similar manner we obtain other two equations

(σ2 − σ3)(l1l2 +m1m2 + n1n2) = 0 . (2.2.9)
(σ3 − σ1)(l1l2 +m1m2 + n1n2) = 0 . (2.2.10)

Let the roots of (2.2.3) are σ1, σ2, σ3 and assume that the equation has complex root. Since it is a
cubic equation with real coefficient, then another root must also be a complex which is the complex
conjugate of the former. Hence the set of roots can be written as

σ1 = α + i β , σ2 = α− i β , and σ3 . (2.2.11)

We consider the complex conjugate of (2.2.5) and obtain

l2τ̄xx +m2τ̄yx + n2τ̄zx = σ̄2l2

l2τ̄xy +m2τ̄yy + n2τ̄zy = σ̄2m2

l2τ̄xz +m2τ̄yz + n2τ̄zz = σ̄2n2 (2.2.12)
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Since σ̄2 = σ1 and τxx, τxy etc. are real, then the above equation becomes

l2τxx +m2τyx + n2τzx = σ1l2

l2τxy +m2τyy + n2τzy = σ1m2

l2τxz +m2τyz + n2τzz = σ1n2 (2.2.13)

The coefficient of l2,m2, n2 in (2.2.13) are the complex conjugate of the coefficient of l1,m1, n1 in
(2.2.4). Therefore, the values of l2,m2, n2 determined from (2.2.13) are the complex conjugate of
the values of l1,m1, n1 determined from (2.2.4). Hence if

l1 = a1 + i b1 ,m1 = a2 + i b2 , n1 = a3 + i b3

then
l2 = a1 − i b1 ,m2 = a2 − i b2 , n2 = a3 − i b3 .

Therefore
l1l2 +m1m2 + n1n2 = a21 + a22 + a23 + b21 + b22 + b23 ̸= 0 .

Then it follows from (2.2.8) that

σ1 = σ2

⇒ α + i β = α− i β
⇒ β = 0 , (2.2.14)

which contradicts the assumption that the roots are complex. Hence the roots of (2.2.3) are not com-
plex and σ1, σ2, σ3 are real. Now, if σ1 ̸= σ2 ̸= σ3 then from (2.2.8),(2.2.9),(2.2.10) we find that the
principal stress directions are mutually orthogonal. Again if σ1 = σ2 ̸= σ3 then l3,m3, n3 are fixed
and we can determine an infinite number of values of all direction cosines l1,m1, n1 and l2,m2, n2

orthogonal to l3,m3, n3. If σ1 = σ2 = σ3 then any set of orthogonal system may be taken as the
principal stress direction.

Example: For the state of stress

(Tij) =

0 1 1
1 0 1
1 1 0

 ,

determine the principal stress and their directions.

Solution: Let σ be the principal stress. Then it satisfy the characteristic equation∣∣∣∣∣∣
0− σ 1 1
1 0− σ 1
1 1 0− σ

∣∣∣∣∣∣ = 0 .

⇒ σ = −1,−1, 2 .

Since two principal stress values are equal i.e., σ1 = σ2 = −1, then the principal stress directions
corresponding to σ3 = 2 is unique and any two directions perpendicular to this direction are principal
stress directions associated with σ1 and σ2.



2.3. STRESS INVARIANTS 17

If l,m, n be the direction of principal stress corresponding to σ3 = 2, then

l(0− σ3) +m · 1 + n · 1 = 0

l · 1 +m(0− σ3) + n · 1 = 0

l · 1 +m · 1 + n(0− σ3) = 0

⇒ −2l +m+ n = 0

l − 2m+ n = 0

l +m− 2n = 0

⇒ l = m = n =
1√
3
.

Hence one principal direction is
(

1√
3
, 1√

3
, 1√

3

)
. Any pair of axes perpendicular to each other and

perpendicular to
(

1√
3
, 1√

3
, 1√

3

)
may serve as principal axes.

2.3 Stress invariants
Let Ox,Oy,Oz be a system of orthogonal axes with respect to which stress tensor isτxx τyx τzx

τxy τyy τzy
τxz τyz τzz

 .

Let ν⃗ be the direction of principal stress at O, then T⃗ ν is in the direction of ν⃗. If l,m, n be the
direction cosines of this line and σ be the magnitude of principal stress then

τνx = σl, τνy = σm, τνz = σn ,

where τνx, τνy, τνz are the components of T⃗ ν which are given by

τνx = lτxx +mτyx + nτzx

τνy = lτxy +mτyy + nτzy

τνz = lτxz +mτyz + nτzz .

Hence we have following three linear equations in l,m, n

l(τxx − σ) +mτyx + nτzx = 0

lτxy +m(τyy − σ) + nτzy = 0

lτxz +mτyz + n(τzz − σ) = 0 .

Eliminating l,m, n we have ∣∣∣∣∣∣
τxx − σ τyx τzx
τxy τyy − σ τzy
τxz τyz τzz − σ

∣∣∣∣∣∣ = 0 .
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This is a cubic equation in σ and can be expressed as

σ3 − J1σ
2 + J2σ − J3 = 0 , (2.3.1)

in which the coefficients have the following values

J1 = τxx + τyy + τzz , (2.3.2)

J2 =

∣∣∣∣τxx τxy
τxy τyy

∣∣∣∣+ ∣∣∣∣τyy τyz
τyz τzz

∣∣∣∣+ ∣∣∣∣τzz τzx
τzx τxx

∣∣∣∣
= τxxτyy + τyyτzz + τzzτxx − τ 2xy − τ 2yz − τ 2zx , (2.3.3)

J3 =

∣∣∣∣∣∣
τxx τyx τzx
τxy τyy τzy
τxz τyz τzz

∣∣∣∣∣∣ . (2.3.4)

All the three roots of (2.3.1) are real and they have the values of principal stresses σ1, σ2, σ3.
Since the principal stresses characterize the physical state of stress of a point, they are independent

of any coordinate of reference.
Therefore

J1 = τxx + τyy + τzz = σ1 + σ2 + σ3

is invariant under any coordinate transformation and it is called first invariant of stress.
Again

J2 = τxxτyy + τyyτzz + τzzτxx − τ 2xy − τ 2yz − τ 2zx
= σ1σ2 + σ2σ3 + σ3σ1

is also invariant under any coordinate transformation and it is called second invariant of stress.
Finally

J3 =

∣∣∣∣∣∣
τxx τyx τzx
τxy τyy τzy
τxz τyz τzz

∣∣∣∣∣∣ = σ1σ2σ3

is also invariant under any coordinate transformation and it is called third invariant of stress.

Example: Evaluate directly stress invariants from stress tensor

(Tij) =

 6 −3 0
−3 6 0
0 0 8

 .

Also determine the principal stresses for this state of stress. Verify that the stress invariants calcu-
lated from the principal stresses are same.

Solution: The stress invariants are given as follows.
The first stress invariant is

J1 = τxx + τyy + τzz = 6 + 6 + 8 = 20 .
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The second stress invariant is

J2 =

∣∣∣∣τxx τxy
τxy τyy

∣∣∣∣+ ∣∣∣∣τyy τyz
τyz τzz

∣∣∣∣+ ∣∣∣∣τzz τzx
τzx τxx

∣∣∣∣
=

∣∣∣∣ 6 −3
−3 6

∣∣∣∣+ ∣∣∣∣6 0
0 8

∣∣∣∣+ ∣∣∣∣8 0
0 6

∣∣∣∣
= 123 .

The third stress invariant is

J3 =

∣∣∣∣∣∣
τxx τyx τzx
τxy τyy τzy
τxz τyz τzz

∣∣∣∣∣∣ =
∣∣∣∣∣∣
6 −3 0
−3 6 0
0 0 8

∣∣∣∣∣∣ = 216 .

The characteristic equation is given by∣∣∣∣∣∣
6− σ −3 0
−3 6− σ 0
0 0 8− σ

∣∣∣∣∣∣ = 0

⇒ σ3 − 20σ2 + 123σ − 216 = 0

⇒ σ = 3, 8, 9 .

Therefore the values of principal stresses are σ1 = 3, σ2 = 8, σ3 = 9. Then the stress invariants
calculated from principal stresses are given by

J1 = σ1 + σ2 + σ3 = 3 + 8 + 9 = 20 .

J2 = σ1σ2 + σ2σ3 + σ3σ1 = 3 · 8 + 8 · 9 + 3 · 9 = 123

J3 = σ1σ2σ3 = 3 · 8 · 9 = 216

Hence the results are verified.

2.4 Few Probable Questions
1. Stress tensor at P are given in appropriate units.

(Tij) =

1 0 2
0 1 0
2 0 −2

 ,

Find the principal stresses and show that the principal directions which correspond to largest
and smallest principal stresses are both perpendicular to y-axis. [Ans: 2, 1, -3; 2, 0,1; 0,1,0;
1,0,-2]

2. Stress tensor at a point is given by

(Tij) =

5 0 0
0 −6 −12
0 −12 1

 ,
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Determine the maximum shear stress. [Ans: 12.5]

3. Stress tensor at a point P is given by

(Tij) =

 7 0 −2
0 5 0
−2 0 4

 ,

Determine stress vector on the plane at P whose unit normal is 2
3
, −2

3
, 1
3
. [Ans: 4, −10

3
, 0]

4. Stress tensor at a point P is given by

(Tij) =

−10 9 5
9 0 0
5 0 8

 ,

Find principal stresses and their directions.[
Ans:4, 10.08,−16.08; n

(1)
i =

(
4√
122
, 9√

122
,− 5√

122

)
; n

(2)
i = 9

4
n
(1)
i ; n

(3)
i = −5

4
n
(1)
i

]

5. Determine the principal stresses for

a) (Tij) =

0 1 1
1 0 1
1 1 0

 b) (Tij) =

2 1 1
1 2 1
1 1 2


and show that both have the same principal directions but do not have same principal stresses.
[Ans: (a) 2,-1,-1; (b) 4,1,1]



Unit 3

Course Structure
• Stress quadric of Cauchy

• Normal and shearing stress

• Mohr’s circle for stress

3.1 Stress quadric of Cauchy
Let Ox,Oy,Oz be a set of rectangular axes through O. We suppose a quadric surface

τxxx
2 + τyyy

2 + τzzz
2 + 2τyzyz + 2τzxzx+ 2τxyxy = ±k2 , (3.1.1)

where k is a constant and τxx, τxy etc. are the components of stress tensor at O referred to Ox,Oy
and Oz axes. The quadric surface is called stress quadric of Cauchy.

Let us make a transformation of axis according to the following scheme.

21
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x y z
x′ l1 m1 n1

y′ l2 m2 n2

z′ l3 m3 n3

Hence the equation of quadric referred to these new set of axes Ox′, Oy′ and Oz′ becomes

τxx(l1x
′ + l2y

′ + l3z
′)2 + τyy(m1x

′ +m2y
′ +m3z

′)2 + τzz(n1x
′ + n2y

′ + n3z)
2

+2τyz(m1x
′ +m2y

′ +m3z
′)(n1x

′ + n2y
′ + n3z

′) + 2τzx(n1x
′ + n2y

′ + n3z
′)(l1x

′ + l2y
′ + l3z

′)

+2τxy(l1x
′ + l2y

′ + l3z
′)(m1x

′ +m2y
′ +m3z

′) = ±k2 . (3.1.2)

We denote the coefficient of x′2 on the left hand side of (3.1.2) as τx′x′ and obtain

τx′x′ ≡ τxxl
2
1 + τyym

2
1 + τzzn

2
1 + 2τyzm1n1 + 2τzxn1l1 + 2τxyl1m1 .

In a similar manner we can obtain the coefficients of y′2 and z′2 on the left hand side of (3.1.2) which
are denoted by τy′y′ and τz′z′ respectively. Again we denote the coefficient of 2x′y′ on the left hand
side of (3.1.2) as τx′y′ and obtain

τx′y′ = l1l2τxx +m1m2τyy + n1n2τzz + τyz(m1n2 +m2n1) + τzx(n1l2 + n2l1) + τxy(l1m2 + l2m1) .

In a similar manner we can obtain the coefficients of 2y′z′ and 2z′x′ on the left hand side of (3.1.2)
which are denoted by τy′z′ and τz′x′ respectively. Hence the equation of quadric surface given by
(3.1.1) when referred to Ox′, Oy; , Oz′ axes takes the form

τx′x′x′2 + τy′y′y
′2 + τz′z′z

′2 + 2τy′z′y
′z′ + 2τz′x′z′x′ + 2τx′y′x

′y′ = ±k2 . (3.1.3)

It is clearly seen from (3.1.3) that the coefficients give the components of stress with respect to the
Ox′, Oy′, Oz′ axes. If the quadric were referred to its principal axes, the tangential stresses across
the coordinate planes would vanish. Hence the equation of the stress quadric referred to its principal
axes as the coordinate axes OX,OY and OZ takes the form

τxxX
2 + τyyY

2 + τzzZ
2 = ±k2 ,

which shows that the principal axes of the stress quadric will coincide with the principal stress
direction at O.

3.1.1 Properties of stress quadric of Cauchy

Property 1: The normal stress across any plane through its centre is inversely proportional to the
square of that radius vector of the quadric which is normal to the plane.

Consider any unit area through a point O and let ν⃗ be the unit normal to this elementary area
whose direction cosines are l,m, n.
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Let us draw the radius vector O⃗P to the quadric in this
direction such that P (x, y, z) is a point on the quadric and
OP = r. Therefore,

x

r
= l,

y

r
= m and

z

r
= n .

The stress exerted by the material on the side toward
which normal ν⃗ is drawn on the material on the opposite
side across the unit area has its components τνx, τνy and
τνz.

The component of the stress in the direction of normal ν⃗, i.e., the normal component of stress is
given by

lτνx +mτνy + nτνz

= l(lτxx +mτyx + nτzx) +m(lτxy +mτyy + nτzy) + n(lτxz +mτyz + nτzz)

= l2τxx +m2τyy + n2τzz + 2mnτyz + 2nlτzx + 2lmτxy

=
1

r2
[
τxxx

2 + τyyy
2 + τzzz

2 + 2τyzyz + 2τzxzx+ 2τxyxy
]

= ±k
2

r2
, using (3.1.1) ,

as (x, y, z) is a point on the quadric.

Hence, if the quadric surface with centre atO given by (3.1.1) can be drawn then the normal stress
on any unit area can easily be derived drawing the normal to the unit area. If the normal cuts the
quadric surface at a distance r from O then +k2

r2
is the normal stress.

Property 2: The normal to the quadric surface (3.1.1) at the end of the radius vector O⃗P is parallel
to the stress vector T⃗ ν atO where O⃗P is in the direction of ν⃗ and P (x, y, z) is a point on the quadric
surface.

First note that the stress exerted by the material on the side of ν⃗ across unit area at O of which
the normal ν⃗ to the material on the other side is T⃗ ν . Its components are τνx, τνy and τνz. Hence the
direction ratios of T⃗ ν are τνx, τνy and τνz.

Now the equation of the quadric surface can be expressed as

f(x, y, z) ≡ τxxx
2 + τyyy

2 + τzzz
2 + 2τyzyz + 2τzxzx+ 2τxyxy ∓ k2 = 0 .

Then the direction ratios of the normal to the surface at P (x, y, z) is given by

∂f

∂x
= 2(xτxx + yτyx+ zτzx)

= 2r(lτxx +mτyx+ nτzx)

= 2rτνx
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In a similar manner,
∂f

∂y
= 2rτνy ,

∂f

∂y
= 2rτνz .

This shows that the normal to the quadric surface at P is parallel to the stress vector T⃗ ν .

Example: Determine the Cauchy’s stress quadric at a point P for a state of stress

(Tij) =

a 0 0
0 b 0
0 0 c

 ,

where a, b, c are all of same sign.

Solution: Consider a point P (x, y, z) in the deformed state of a continuum body. The stress tensor
Tij at P with respect to a system of axes Ox,Oy,Oz fixed in space are given by

(Tij) =

a 0 0
0 b 0
0 0 c

 .

Since all the shearing stresses Tij (i ̸= j) vanishes, the coordinate axes are the principal axes of
stresses.

The equation of the stress quadric with respect to the principal axes is given by

T11x
2 + T22y

2 + T33z
2 = constant

⇒ ax2 + by2 + cz2 = k (say)

⇒ x2

k/a
+

y2

k/b
+

z2

k/c
= 1 ,

which is the required Cauchy’s stress quadric at P . It represents an ellipsoid.

3.2 Extreme normal and shearing stresses
To determine the extreme normal and shearing stresses at any point O of a continuum, we consider
the coordinate axes at O as Ox,Oy and Oz which are in the direction of principal stresses. Let
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σ1, σ2, σ3 be the corresponding stresses such that

τxx = σ1, τyy = σ2, τzz = σ3, τxy = τyz = τzx = 0 .

We consider any arbitrary unit area through O with normal ν⃗ determined by the direction cosines
l,m, n. The stress vector T⃗ ν at O has components τνx, τνy, τνz where

τνx = lτxx +mτyx + nτzx = σ1l

τνy = lτxy +mτyy + nτzy = σ2m

τνz = lτxz +mτyz + nτzz = σ3n (3.2.1)

The resultant stress is given by

(T⃗ ν)2 = l2σ2
1 +m2σ2

2 + n2σ2
3 . (3.2.2)

The normal stress N can be expressed as

N = lτνx +mτνy + nτνz

= l2σ1 +m2σ2 + n2σ3 . (3.2.3)

(i) (Extreme normal stress) The extremum values of normal stress at a point of a continuum are
principal stresses.

We choose principal stresses σ1, σ2, σ3 in such a manner that σ1 > σ2 > σ3. We are to extrem-
ize the value of N subject to the constraint

l2 +m2 + n2 = 1 . (3.2.4)

Construct a Lagrangian function

F (l,m, n) = N − λ(l2 +m2 + n2 − 1)

= l2σ1 +m2σ2 + n2σ3 − λ(l2 +m2 + n2 − 1) , (3.2.5)

where λ is a parameter. For extremum value of F , we have

∂F

∂l
= 0 ,

∂F

∂m
= 0 ,

∂F

∂n
= 0 .

⇒ l(σ1 − λ) = 0 , m(σ2 − λ) = 0 , n(σ3 − λ) = 0 . (3.2.6)

Therefore

l2(σ1 − λ) +m2(σ2 − λ) + n2(σ3 − λ) = 0

⇒ λ(l2 +m2 + n2) = l2σ1 +m2σ2 + n2σ3

⇒ λ = N . (3.2.7)

Hence
l(σ1 −N) = 0 , m(σ2 −N) = 0 , n(σ3 −N) = 0 . (3.2.8)
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The above equations determines three unknowns l,m, n for which N is extremum. The trivial zero
solution l = m = n = 0 of (3.2.8) is not compatible with the constraint (3.2.4). One type of
nontrivial solution can be considered as

l = m = 0, n ̸= 0 .

Then (3.2.4) gives
n2 = 1 ⇒ n = ±1 .

The first two equations of (3.2.8) are identically satisfied and the third equation gives N = σ3. In
a similar manner, for the solution l = 0,m ̸= 0, n = 0, (3.2.8) gives N = σ2 and for the solution
l ̸= 0,m = n = 0, (3.2.8) gives N = σ1. Since σ1 > σ2 > σ3, maximum value of the normal stress
N = σ1 and minimum value of N = σ3.

Therefore, extremum values of the normal stress at a point are always principal stresses acting
across planes for which shearing stress components vanishes identically.

(ii) (Extreme shearing stress) The maximum shearing stress acts on the plane that bisects the angle
between the greatest and the smallest principal stress planes. Its value is one half the difference
between the greatest and the smallest principal stresses.

Let S be the magnitude of the shearing stress. Then

S2 +N2 = (T⃗ ν)2

⇒ S2 = (T⃗ ν)2 −N2

⇒ S2 = l2σ2
1 +m2σ2

2 + n2σ2
3 − (l2σ1 +m2σ2 + n2σ3)

2 . (3.2.9)

Since l2 +m2 + n2 = 1, the expression for shearing stress can be written in terms of two variables l
and m only. We use

n2 = 1− l2 −m2

in relation (3.2.9) and obtain

S2 = (σ2
1 − σ2

3)l
2 + (σ2

2 − σ2
3)m

2 + σ2
3 − [(σ1 − σ3)l

2 + (σ2 − σ3)m
2 + σ3]

2 . (3.2.10)

The maximum value of shearing stress can be obtained by equating the partial derivatives of S with
respect to l and m to zero. At the values of l and m, for which S is maximum, S2 will also be
maximum. Hence

∂S2

∂l
= 0 and

∂S2

∂l
= 0 ,

which implies

(σ2
1 − σ2

3)l − 2[(σ1 − σ3)l
2 + (σ2 − σ3)m

2 + σ3](σ1 − σ3)l = 0 (3.2.11)

(σ2
2 − σ2

3)m− 2[(σ1 − σ3)l
2 + (σ2 − σ3)m

2 + σ3](σ2 − σ3)m = 0 (3.2.12)

First, we consider the most general case σ1 ̸= σ2 ̸= σ3.
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Dividing (3.2.11) by (σ1 − σ3) and (3.2.12) by (σ2 − σ3), we get

{(σ1 − σ3)− 2[(σ1 − σ3)l
2 + (σ2 − σ3)m

2]}l = 0 (3.2.13)
{(σ2 − σ3)− 2[(σ1 − σ3)l

2 + (σ2 − σ3)m
2]}m = 0 . (3.2.14)

We have two equations of degree three in l and m and accordingly we shall obtain three solutions.
The simplest one is l = 0,m = 0, n = 1. Corresponding to these set of values, we find from (3.2.10)

S = 0 .

This merely verified the known fact that plane element normal to the principal direction is shear
stress free. Therefore the minimum value of |S| is associated with the principal stress direction. As
we are seeking for maximum shearing stress, so we discard these values of l,m, n and have other
three possibilities

(i) l ̸= 0,m = 0, (ii) l = 0,m ̸= 0, (iii) l ̸= 0,m ̸= 0 .

The last case is impossible as then cancelling l and m from (3.2.14) and (3.2.14) respectively
and subtracting the resulting equations, we obtain σ1 = σ2, which contradicts our assumption
σ1 ̸= σ2 ̸= σ3.

Now consider the first case i.e., l ̸= 0,m = 0. Then from (3.2.14), we get

(σ1 − σ3)(1− 2l2) = 0 ⇒ l = ± 1√
2
.

Hence
l = ± 1√

2
, m = 0 and n = ± 1√

2
, as l2 +m2 + n2 = 1 . (3.2.15)

Considering the second case i.e., l = 0,m ̸= 0, we get from (3.2.14)

(σ2 − σ3)(1− 2m2) = 0 ⇒ m = ± 1√
2
.

Hence
l = 0, m = ± 1√

2
and n = ± 1√

2
. (3.2.16)

If at the outset we eliminate m instead of n from (3.2.9) and repeat the same analysis, we can obtain
one more solution

l = ± 1√
2
, m = ± 1√

2
, n = 0 . (3.2.17)

Hence the extremum values of shearing stresses can be obtained by substituting these values in
(3.2.10). Then from (3.2.10) and (3.2.15), we have

(S2
1)extremum =

σ2
1 − σ2

3

2
+ σ2

3 −
[
σ1 − σ3

2
+ σ3

]2
=
σ2
1 + σ2

3

2
−
[
σ1 + σ3

2

]2
=

[
σ1 − σ3

2

]2
(S1)extremum = ±1

2
(σ1 − σ3) .
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In a similar manner, from (3.2.16), (3.2.10) and (3.2.17), (3.2.10) we have

(S2)extremum = ±1

2
(σ2 − σ3) and

(S3)extremum = ±1

2
(σ1 − σ2) .

Now if σ1 > σ2 > σ3, the maximum value of |S| is

|S|max =
1

2
(σ1 − σ3) .

In this case we find from (3.2.15) that the maximum shearing stress acts on the plane containing the
y axis and bisecting the angle between x and z axis.

Therefore, we conclude that the maximum shearing stress is equal to the half of the difference
between the greatest and least of σ1, σ2, σ3 and acts on the plane which bisects the angle between the
direction of largest and smallest.

Example: Let the components of the stress tensor at P be given in the matrix form

(Tij) =

3 1 1
1 0 2
1 2 0

 .

Determine principal stresses and principal directions. Also find the magnitude of the maximum
shearing stress.

Solution: The principal stresses σ1, σ2, σ3 at the point P are the roots of the characteristic equa-
tion ∣∣∣∣∣∣

3− σ 1 1
1 0− σ 2
1 2 0− σ

∣∣∣∣∣∣ = 0

⇒ σ3 − 3σ2 − 6σ + 8 = 0

⇒ σ = −2, 1, 4 .

The principal direction of stress at P are given by the set of equations

(3− σ)l +m+ 2n = 0

l − σn+ 2n = 0

l + 2m− σn = 0 .

For σ = −2, the above system of equations becomes

5l +m+ 2n = 0

l + 2m+ 2n = 0

l + 2m+ 2n = 0 .
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The solution is
(l,m, n) = (0, 1,−1) .

For σ = 1, the above system of equations becomes

2l +m+ 2n = 0

l −m+ 2n = 0

l + 2m− n = 0 .

The solution is
(l,m, n) = (1,−1,−1) .

For σ = 4, the above system of equations becomes

−l +m+ 2n = 0

l − 4m+ 2n = 0

l + 2m− 4n = 0 .

The solution is
(l,m, n) = (2, 1, 1) .

Thus the principal directions are given by

1√
2
(0, 1,−1),

1√
3
(1,−1, 1),

1√
6
(2, 1, 1) .

As 4 > 1 > −2, σ1 = 4 is the largest and σ3 = −2 is the smallest principal stress value.

Thus the maximum value of the shearing stress is given by

|S| = 1

2
(σ1 − σ3) =

1

2
{4− (−2)} = 3 .

Finally, the maximum value of the normal stress is the maximum principal stress value which is 4.

Example: At point P , there are three principal stresses σ1, σ2, σ3 such that 2σ2 = σ1 + σ3. Deter-

mine the unit normal for the plane on which normal stress is σ2 and shearing stress is
1

4
(σ1 − σ3).

Solution: Let l,m, n be the direction cosines of the unit normal for the plane on which normal
and shearing stresses are given. Since σ1, σ2, σ3 are the principal stresses, then normal stress N is
given by

N = l2σ1 +m2σ2 + n2σ3

⇒ σ2 = l2σ1 +m2σ2 + n2σ3

⇒ (1−m2)σ2 = l2σ1 + n2σ3 . (3.2.18)

Let S be the magnitude of shearing stress, then

S2 = l2σ2
1 +m2σ2

2 + n2σ2
3 −N2

⇒
(
σ1 − σ3

4

)2

= l2σ2
1 + (m2 − 1)σ2

2 + n2σ2
3 . (3.2.19)
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Also
l2 +m2 + n2 = 1 , (3.2.20)

and

σ2 =
σ1 + σ3

2
. (3.2.21)

Eliminating σ2 from (3.2.18) and (3.2.21), we get

(1−m2)
σ1 + σ3

2
= l2σ1 + n2σ3

⇒ (l2 + n2)
σ1 + σ3

2
= l2σ1 + n2σ3

⇒ n2 − l2

2
σ1 +

l2 − n2

2
σ3 = 0

⇒ (l2 − n2)(σ3 − σ1) = 0

⇒ l = n .

Then
m2 = 1− l2 − n2 = 1− 2l2 = 1− 2n2 .

Again eliminating σ2 from (3.2.19) and (3.2.21), we get(
σ1 − σ3

4

)2

= l2σ2
1 + (m2 − 1)

(
σ1 + σ3

2

)2

+ n2σ2
3

⇒
(
σ1 − σ3

4

)2

= l2σ2
1 + l2σ2

3 + (1− 2l2 − 1)

(
σ1 + σ3

2

)2

, as l = n, m2 = 1− 2l2

⇒
(
σ1 − σ3

4

)2

=
l2

2
(σ1 − σ3)

2

⇒
(

1

16
− l2

2

)
(σ1 − σ3)

2 = 0

⇒ l2 =
1

8

⇒ l =
1

2
√
2
.

Hence

n =
1

2
√
2
,

and

m2 = 1− 2 · 1
8
=

3

4
⇒ m =

√
3

2
.

Hence the required unit normal is

(
1

2
√
2
,

√
3

2
,

1

2
√
2

)
.
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3.3 Mohr’s circles for stress
Mohr’s circle is a two dimensional graphical representation of the transformation law for the Cauchy
stress tensor and it is a useful technique for finding principal stresses and strains in materials.

3.3.1 Mohr’s circle for three dimensional state of stress
To construct the Mohr’s circle for a general three dimensional case of stresses at a point, the values
of the principal stresses σ1, σ2, σ3 must be evaluated.

Let the principal stresses be ordered according to σ1 > σ2 > σ3. If N and S denote the normal
and shear stress at P , then

N = l2σ1 +m2σ2 + n2σ3 , (3.3.1)

and
S2 = l2σ2

1 +m2σ2
2 + n2σ2

3 −N2 . (3.3.2)

Also
l2 +m2 + n2 = 1 . (3.3.3)

Using Gauss elimination method we obtain

l2 =
(N − σ2)(N − σ3) + S2

(σ1 − σ2)(σ1 − σ3)
, (3.3.4)

m2 =
(N − σ3)(N − σ1) + S2

(σ2 − σ3)(σ2 − σ1)
, (3.3.5)

n2 =
(N − σ1)(N − σ2) + S2

(σ3 − σ1)(σ3 − σ2)
. (3.3.6)

In the above three equations σ1, σ2, σ3 are known and N,S are functions of l,m, n.

We would like to interpret these equations graphically by representing conjugate pairs of N, S
values, which satisfy (3.3.4), (3.3.5) and (3.3.6) as a point on the stress plane having N as abscissa
and S as ordinate.

To develop the graphical interpretation of the three dimensional stress state in terms of N and S,
note that the denominator for the expression of l2 in (3.3.4) is positive since both σ1 − σ2 > 0 and
σ1 − σ3 > 0 and l2 ≥ 0. Therefore, we have

(N − σ2)(N − σ3) + S2 ≥ 0 . (3.3.7)

In case of equality, (3.3.7) can be written as

(N − σ2)(N − σ3) + S2 = 0

⇒ N2 − (σ2 + σ3)N + S2 + σ2σ3 = 0

⇒
(
N − σ2 + σ3

2

)2

+ S2 =

(
σ2 − σ3

2

)2

.
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It represents a circle in the N, S plane with its centre at
σ2 + σ3

2
on N axis having radius

σ2 − σ3
2

.
We label this circle by C1 as shown in figure. For the case in which the inequality sign holds for
(3.3.7), we observe that conjugate pairs of values of N and S which satisfy this relationship result in
stress points having coordinates exterior to circle C1. Thus combinations of N and S which satisfy
(3.3.4) lie on or exterior to circle C1.

Again from (3.3.5), note that the denominator is negative since σ2 − σ3 < 0 and σ2 − σ1 > 0.
Also m2 ≥ 0. Then we have

(N − σ3)(N − σ1) + S2 ≤ 0 . (3.3.8)

In case of equality, (3.3.8) can be written as

(N − σ3)(N − σ1) + S2 = 0

⇒ N2 − (σ1 + σ3)N + S2 + σ1σ3 = 0

⇒
(
N − σ1 + σ3

2

)2

+ S2 =

(
σ1 − σ3

2

)2

.

It represents a circle in the N, S plane with its centre at
σ1 + σ3

2
on N axis having radius

σ1 − σ3
2

.
We label this circle by C2 as shown in figure. The stress points which satisfy the inequality of (3.3.8)
lie interior to circle C2.

Following the same procedure, we obtain the third circle C3 extracting from (3.3.6) which is given
by (

N − σ1 + σ2
2

)2

+ S2 =

(
σ1 − σ2

2

)2

.

The admissible stress points in the N, S plane lie on or exterior to this circle. The three circles
defined above and shown in figure are called Mohr’s circles for stress. All possible pairs of values
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of N and S at P which satisfy (3.3.4), (3.3.5), (3.3.6) lie on these circles or within the shaded area
enclosed by them. In addition it is clear from Mohr’s circles diagram that the maximum shear stress

value at P is the radius of the circle C2 which confirms the result
σ1 − σ3

2
.

3.4 Few Probable Questions
1. The state of stress of a point is given by

(Tij) =

a 2 1
2 0 2
1 2 0

 ,

where a is a constant. Determine a such that there is atleast one plane through the point in
such a why that resultant stress on that plane is zero. Determine the direction cosines of the

normal to the plane.
[

Ans : 2; ± 2

3
, ∓ 1

3
, ∓ 2

3

]
.

2. The stress tensor at a point is

(Tij) =

−a 0 d
0 b c
d e e

 ,

Determine the unit normal of a plane parallel to z-axis on which the resultant stress vector is

tangential to the plane.

[
Ans :

√
b

a+ b
,

√
b

a+ b
, 0

]
.

3. The stress tensor at a point is given by

(Tij) =

0 1 2
0 b 1
2 1 0

 ,

where b is a constant. Find b so that stress vector on some place at the point will be zero.

Determine the direction cosines of the normal to the plane.
[

Ans : 1;

(
1√
6
,− 2√

6
,
1√
6

)]
.

4. The state of stress at a point is given by

(Tij) =

4 0 2
0 8 0
2 0 −12

 ,

Compute the magnitude of the maximum shearing stress.

5. At the point P , principal stresses are 4, 5, 6. Determine the unit normal for the plane upon

which normal stress is 5 and shearing stress is
1

2
.
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Course Structure
• Deformation, Method of description: Lagrangian & Eulerian

• Deformation gradient and finite strain tensor

4.1 Deformation
In a rigid body for all possible motion of it, the distances between any pair of particles of it remain
constant for all times. A deformable body is that in which the distance between any two particles
of it under the influence of external effect changes. Thus when the relative position of points in a
continuous body is altered, we say that the body is strained. The change in the relative position of
points is called deformation.

The deformations which are recovered after the stress field has been removed are called elastic
deformation. In this case, the continuum completely recovers its original configuration. Here we
will describe all motions and deformations by expressing positions of points in both undeformed
and deformed solids as components in a cartesian reference frame (which is also taken to be an in-
ertial frame). Thus xi will denote components of the position vector of a material particle before
deformation and Xi(xk) will be components of its position vector after deformation.

Mathematically, we describe a deformation as a 1:1 mapping which transforms points from the
reference configuration of a solid to the deformed configuration. More specifically, let ϵi be three
numbers specifying the position of some points in the undeformed solid (these could be the three
components of position vector in a Cartesian coordinate system). As the solid deforms, each the
value of the coordinates change to different numbers. We can write this in general form as

ηi = fi(ϵi, t). (4.1.1)

This is called deformation mapping.

34
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4.2 Method of Description
When analyzing the deformation or motion of solids, or the flow of fluids, it is necessary to describe
the sequence or evolution of configurations throughout time. There are two methods of analyzing
the properties of the deformation, viz.

• Lagrangian or material method,

• Eulerian or spatial method.

4.2.1 Lagrangian description or material method
In the material or Lagrangian method, our object of study is material points of a continuum body.
In this method, we identity individual material points and describe the motion of each individual
material point of fixed identity for all time by following its motin throughout its course. In this
approach, individual material points are possessed with physical properties, which may be changed
in two ways.

• They change as we pass form one material point to another and

• they change as time changes for a fixed material point.

In other words, these properties are considered as functions of time and data which identify the
material points. These are normally denoted by uppercase variablesX, Y and Z and are used to label
material particles. For such data we usually take the rectangular cartesian coordinates X1, X2, X3 of
the position of a material point of the continuum body in its initial undeformed state. We identify
the given material point by (X1, X2, X3). It is given a fixed identity by specifying its initial position.
All physical properties associated with this material point will then the functions of X1, X2, X3 and
time t. If (x1, x2, x3) be the rectangular cartesian coordinates of this position, then

xi = xi(X1, X2, X3, t), i = 1, 2, 3 . (4.2.1)

This equation describes motion of the material point completely in material method giving the sub-
sequent position at time t. The coordinates X1, X2, X3 are independent coordinates and are called
material coordinates or Lagrangian coordinates, whereas x1, x2, x3 are dependent coordinates and
are called spatial coordinates.

4.2.2 Eulerian description or spatial method
In the spatial or Eulerian method, our object of study strictly speaking, is not moving material points
but fixed spatial point. We identify the spatial points and describe the motion of the medium at each
spatial point at different times without considering the whereabouts of individual material points. We
focus our attention on a fixed spatial point in space occupied by different material points at different
times and observe that changes of various properties are taking place at the spatial point. In this
approach, the physical properties change in two ways.

• When we pass from one spatial point to another point and
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• with time at a fixed spatial point.

If a material point which was at a position (X1, X2, X3) in the undeformed state at t = 0 happens to
occupy the position (x1, x2, x3) at subsequent time t, then coordinates x1, x2, x3 identify the spatial
point in the deformed state. The physical properties will be functions of (x1, x2, x3) and time t. In
particular,

Xi = Xi(x1, x2, x3, t), i = 1, 2, 3 , (4.2.2)

which traces the material point occupying spatial position (x1, x2, x3).

The distinction between material and spatial description is basic, in the former X1, X2, X3, t are
independent variables whereas in the latter x1, x2, x3, t are independent variables. An elastic solid
has undeformed state to which it always return whenever loads are removed. To describe this prop-
erty of elasticity, the undeformed state must be marked by identifying material points. Thus material
description is natural for elastic body. On the other hand, the fluid has no past undeformed con-
figuration. The response of the fluid is determined solely by instantaneous values of time rates of
deformation. For this reason, it is natural to use spatial description for fluid.

4.3 Displacement

A change in the configuration of a continumm body results in a displacement. The displacement of a
body has two components, a rigid body displacement and a deformation . A rigid body displacement
consists of a simultaneous translation and rotation of the body about an axis without changing its
shape or size. Deformation implies the change of its configuration and orientation as well as in shape.

The displacement of a typical material point from its position (X1, X2, X3) in the undeformed
state at t = 0 to its position (x1, x2, x3) in the deformed state at time t is defined by

ui = xi −Xi, i = 1, 2, 3 . (4.3.1)

In the material description, ui and xi are regarded as functions of X1, X2, X3 and t so that displace-
ment

ui(X1, X2, X3, t) = xi(X1, X2, X3, t)−Xi . (4.3.2)

In the spatial description, ui andXi are regarded as functions of x1, x2, x3 and t so that displacement

ui(x1, x2, x3) = xi −Xi(x1, x2, x3, t) . (4.3.3)

4.4 Deformation gradients, Finite strain tensor

The deformation gradient is the fundamental measure of deformation. It is a second order tensor
which maps line elements in the reference configuration into line elements in the current configura-
tion.
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4.4.1 Lagrangian finite strain tensor (Change in the length of a line element
in material method)

Consider a material line element P0Q0, joining a pair of neighbouring points P0, Q0 of length dL
oriented in the direction N = (N1, N2, N3) in the initial underformed region B0 at time t = 0. If P0

has coordinates (X1, X2, X3) and Q0 has coordinates (X1+dX1, X2+dX2, X3+dX3) with respect
to an orthogonal set of coordinate axes fixed in space, then

dL2 = dX2
1 + dX2

2 + dX2
3

= dXi · dXi

= δij · dXi · dXj , (4.4.1)

and
Ni =

dXi

dL
, (4.4.2)

where δij is a Kronecker delta defined by

δij =

{
1, if i = j

0, if i ̸= j .

When the body undergoes deformation, the same material points which lie on P0Q0 at t = 0 will lie
on a new line element PQ of length dl oriented in the direction (n1, n2, n3) in current region B at
time t.

If P has coordinates x = (x1, x2, x3) and Q has coordinates (x1 + dx1, x2 + dx2, x3 + dx3) with
respect to the same fixed set of coordinate axes, then

dl2 = dx21 + dx22 + dx23
= dxk · dxk
= δkl dxk dxl (4.4.3)

and
ni =

dxi
dl

. (4.4.4)
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In material method, the deformation is characterized by the equation

xk = xk(X1, X2, X3, t) (4.4.5)

Since xk + dxk are coordinates of Q at the same time t, thus

dxk =
∂xk
∂X1

dX1 +
∂xk
∂X2

dX2 +
∂xk
∂X3

dX3

=
∂xk
∂Xj

dXj

=
∂xk
∂Xi

dXi

= xk,i dXi . (4.4.6)

The quantity xk,i = ∂xk

∂Xi
is called deformation gradient tensor or simply the deformation gradient

and is denoted by Fki. Sometimes the notation F is used to express the deformation gradient as

F =
∂x

∂X
= Grad x . (4.4.7)

The capital ‘G’ is used on“Grad" to emphasize that this is a gradient with respect to the material
coordinates, the material gradient. Now using Eq.(4.4.6) in Eq.(4.4.3) we have

dl2 = δkl
∂xk
∂Xi

dXi
∂xl
∂Xj

dXj

=
∂xk
∂Xi

∂xk
∂Xj

dXi dXj (as δkl = 1 , if k = l) . (4.4.8)

The difference dl2 − dL2 is a measure of change of length of line element. Therefore,

dl2 − dL2 =
∂xk
∂Xi

∂xk
∂Xj

dXi dXj − δijdXi dXj

=

[
∂xk
∂Xi

∂xk
∂Xj

− δij

]
dXi dXj

= 2rijdXi dXj , (4.4.9)

where

rij =
1

2

[
∂xk
∂Xi

∂xk
∂Xj

− δij

]
=

1

2
[cij − δij] , (4.4.10)

in which we have a symmetric tensor

cij =
∂xk
∂Xi

∂xk
∂Xj

i.e. , C = FT · F , (4.4.11)
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known as the Green’s deformation tensor. From this, we immediately define the Lagrangian finite
strain tensor rij as

2rij = cij − δij

⇒ 2R = C − I .

Therefore we can write,

dl2 − dL2

dL2
= 2rij

dXi

dL

dXj

dL
= 2rijNiNj . (4.4.12)

The deformation of a body is completely described by the displacement vector. It is possible to
express Lagrangian finite strain tensor rij in terms of the displacement. If ui be the displacement of
a material point from its position P0 to P , then

ui = xi −Xi . (4.4.13)

If ui + dui be the displacement of the material point from its position Q0 to Q, then

ui + dui = (xi + dxi)− (Xi + dXi) (4.4.14)
⇒ (xi −Xi) + dui = (xi −Xi) + (dxi − dXi)

⇒ dui = dxi − dXi

⇒ dxi = dui + dXi

⇒ dxk = duk + dXk

Therefore,

∂xk
∂Xi

=
∂uk
∂Xi

+
∂Xk

∂Xi

⇒ xk,i = uk,i + δki (4.4.15)

and

∂xk
∂Xj

=
∂uk
∂Xj

+
∂Xk

∂Xj

⇒ xk,j = uk,j + δkj . (4.4.16)

Therefore form Eq.(4.4.10), we have

rij =
1

2

[
∂xk
∂Xi

∂xk
∂Xj

− δij

]
=

1

2

[(
∂uk
∂Xi

+ δik

)
·
(
∂uk
∂Xj

+ δjk

)
− δij

]
=

1

2

[
∂uk
∂Xi

∂uk
∂Xj

+
∂uk
∂Xj

δik +
∂uk
∂Xi

δjk + δikδjk − δij

]
=

1

2

[
∂ui
∂Xj

+
∂uj
∂Xi

+
∂uk
∂Xi

∂uk
∂Xj

]
, (as δikδjk = δij)

=
1

2
[ui,j + uj,i + uk,i · uk,j] (4.4.17)
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The quantities rij’s are called Lagrangian strains expressed in terms of displacement components.
For infinitesimal deformation, ui’s are small. Therefore, the second order terms can be neglected

giving
uk,i · uk,j ≈ 0 .

Therefore,

rij ≈
1

2
[ui,j + uj,i] = eij (say) (4.4.18)

4.5 Change in the angle between two line elements in material
method

Here we consider change in angle between two material line elements P0Q0 and P0R0 at P0 inclined
at an angle Θ, where P0Q0 is of length dL oriented in the direction (N1, N2, N3) and P0R0 is of
length δL oriented in the direction (M1,M2,M3) in the region B. If Q0 has coordinates (Xi + dXi)
and R0 has coordinates Xi + δXi, then

Mi =
δXi

δL
, Ni =

dXi

dL
(4.5.1)

and
cosΘ =

dXi

dL

δXi

δL
= NiMi . (4.5.2)

when the body undergoes deformation, the two line elements P0Q0 and P0R0 at P0 will defrom into
two other line elements PQ and PR at P of length dl and δl, oriented in the direction (n1, n2, n3)
and (m1,m2,m3) and inclined at an angle θ is the region B0. If Q has coordinates (xi + dxi) and R
has coordinates (xi + δxi), then

mi =
δxi
δl
, ni =

dxi
dl

and cosθ =
dxi
dl

δxi
δl

= nimi . (4.5.3)

Also, we have

dxk =
∂xk
∂Xj

dXj, δxk =
∂xk
∂Xj

δXj . (4.5.4)

Therefore, we can write

δl2 − δL2

δL2
= 2rij

δXi

δL

δXj

δL
= 2rijMiMj , (4.5.5)

and
dl2 − dL2

dL2
= 2rij

dXi

dL

dXj

dL
= 2rijNiNj . (4.5.6)

Again

dxiδxi − dXiδXi = dxkδxk − dXiδXi

=
∂xk
∂Xi

dXi
∂xk
∂Xj

δXj − δijdXiδXj

= 2rijdXiδXj , (4.5.7)
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where rij is given by (4.4.17).
Hence

dxi
dL

δxi
δL

− dXi

dL

δXi

δL
= 2rij

dXi

dL

δXj

δL

⇒ dxi
dl

δxi
δl

dl

dL

δl

δL
− dXi

dL

δXi

δL
= 2rij

dXi

dL

δXj

δL

⇒ dl

dL

δl

δL
cos θ − cosΘ = 2rijNiMj . (4.5.8)

Now equation (4.4.12), (4.5.5) and (4.5.6) show that if rij = 0, then dl = dL, δl = δL, θ = Θ.
Thus when rij = 0, length of a line element and angle between two line elements remain unchanged
during deformation and the body has undergone only rigid body deformation. Therefore, the neces-
sary and sufficient condition for rigid body deformation at each point is rij = 0.

Note: From Eq.(4.4.12) we observe that 2rijNiNj is a scalar. But the product NiNj of two vector
components is known to be a tensor of order two. Therefore by quotient law of tensor rij is a second
order tensor known as Lagrangian finite strain tensor. Further,

rij =
1

2

[
∂uj
∂Xi

+
∂ui
∂Xj

+
∂uk
∂Xj

∂uk
∂Xi

]

=
1

2

[
∂ui
∂Xj

+
∂uj
∂Xi

+
∂uk
∂Xi

∂uk
∂Xj

]
= rji (4.5.9)

so that rij is symmetric.

Example: Given that displacement field x1 = X1+2X3, x2 = X2−2X3, x3 = X3−2X1+2X2.
Determine the deformation gradient. Green’s deformation tensor and Lagrangian finite strain tensor.

Solution: The deformation gradient F has the matrix form

(Fki) =

 ∂x1

∂X1

∂x1

∂X2

∂x1

∂X3
∂x2

∂X1

∂x2

∂X2

∂x2

∂X3
∂x3

∂X1

∂x3

∂X2

∂x3

∂X3

 =

 1 0 2
0 1 −2
−2 2 1

 (4.5.10)

The Green’s deformation Tensor C = F T · F has the matrix

(Cij) =

1 0 −2
0 1 2
2 −2 1

 ·

 1 0 2
0 1 −2
−2 2 1

 =

 5 −4 0
−4 5 0
0 0 9


The displacement components ui = xi −Xi of a material point are given by

u1 = x1 −X1 = X1 + 2X3 −X1 = 2X3

u2 = x2 −X2 = X2 − 2X3 −X2 = −2X3

u3 = x3 −X3 = X3 − 2X1 + 2X2 −X3 = −2X1 + 2X2
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Now the second order Lagrangian finite strain tensor rij are given by

r11 =
1

2

[
∂u1
∂X1

+
∂u1
∂X1

+
∂uk
∂X1

∂uk
∂X1

]

=
∂u1
∂X1

+
1

2

[(
∂u1
∂X1

)2

+

(
∂u2
∂X1

)2

+

(
∂u3
∂X1

)2]

= 0 +
1

2

[
02 + 02 + (−2)2

]
= 2

r22 =
1

2

[
∂u2
∂X2

+
∂u2
∂X2

+
∂uk
∂X2

∂uk
∂X2

]

=
∂u2
∂X2

+
1

2

[(
∂u1
∂X2

)2

+

(
∂u2
∂X2

)2

+

(
∂u3
∂X2

)2]

= 0 +
1

2

[
02 + 02 + 22

]
= 2

r33 =
1

2

[
∂u3
∂X3

+
∂u3
∂X3

+
∂uk
∂X3

∂uk
∂X3

]

=
∂u1
∂X1

+
1

2

[(
∂u1
∂X1

)2

+

(
∂u2
∂X1

)2

+

(
∂u3
∂X1

)2]

= 0 +
1

2

[
02 + 02 + (−2)2

]
= 2

r12 =
1

2

[
∂u1
∂X2

+
∂u3
∂X3

+
∂uk
∂X3

∂uk
∂X3

]

=
1

2

[
∂u1
∂X2

+
∂u2
∂X1

+
∂u1
∂X1

∂u1
∂X2

+
∂u2
∂X1

∂u2
∂X2

+
∂u3
∂X1

∂u3
∂X2

]

=
1

2

[
0 + 0 + 0 + 0 + (−2)2

]
= −4 = r21

r13 =
1

2

[
∂u1
∂X3

+
∂u3
∂X1

+
∂uk
∂X1

∂uk
∂X3

]

=
1

2

[
∂u1
∂X3

+
∂u3
∂X1

+
∂u1
∂X1

∂u1
∂X3

+
∂u2
∂X1

∂u2
∂X3

+
∂u3
∂X1

∂u3
∂X3

]

=
1

2

[
2 + (−2) + 0 · 2 + 0 · (−2) + (−2) · 0

]
= 0 = r31
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r23 =
1

2

[
∂u2
∂X3

+
∂u3
∂X2

+
∂uk
∂X2

∂uk
∂X3

]

=
1

2

[
∂u2
∂X3

+
∂u3
∂X2

+
∂u1
∂X2

∂u1
∂X3

+
∂u2
∂X2

∂u2
∂X3

+
∂u3
∂X2

∂u3
∂X3

]

=
1

2

[
(−2) + 2 + 0 · 2 + 0 · (−2) + 2 · 0

]
= 0 = r32

In matrix notation, the second order Lagrangian finite strain tensor rij are given by

(rij) =

 2 −2 0
−2 2 0
0 0 4

 =
1

2

 5 −4 0
−4 5 0
0 0 9

 =
1

2

1 0 0
0 1 0
0 0 1

 =
1

2
C − 1

2
I



Unit 5

Course Structure
• Eulerian finite strain tensor

• Infinitesimal strain component

• Infinitesimal rotation tensor

5.1 Eulerian finite strain tensor
In the spatial method of description of deformation (x1, x2, x3) are regard as independent variables
and the equation characterizing the defromation can be written as

Xk = Xk(x1, x2, x3, t); k = 1, 2, 3 (5.1.1)

where X1, X2, X3 represents the material coordinates of a material particle. SInce Xk + dXk are
co-ordinate of Q0 at the same time t, Therefore

dXk =
∂xk
∂xi

dxi =
∂xk
∂xj

dxj = Xk,jdxj (5.1.2)

The quantity xk,,j = ∂Xk

∂xj
is called deformation gradient tensor or simply the deformation gradient

and is dented by F−1
kj . Then

dX = F⃗ dx (5.1.3)

Also we have

dL2 = dxkdxk =
∂Xk

∂xi

∂Xk

∂xj
dxidxj (5.1.4)

44
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and

dl2 = dx · dx = dxi · dxi = δijdxidxj (5.1.5)

Therefore, a measure of change of length of a line element

= dl2 − dL2

= δijdxidxj −
∂xk
∂xi

∂xk
∂xj

dxidxj

=

[
δij −

∂xk
∂xi

∂xk
∂xj

]
dxidxj

= 2ηijdxidxj, (5.1.6)

where

ηij =
1

2

[
δij −

∂xk
∂xi

∂xk
∂xj

]
=

1

2
[δij − cij] (5.1.7)

in which we have a symmetric tensor

cij =
∂xk
∂xi

∂xk
∂xj

that is,
c = (F⃗ )TF−1

which is known as the Cauchy’s deformation tensor. From this, we immediately define the Eulerian
finite strain tensor ηij as

2ηij = δij − cij

or,
2n = I − C

Now, we can write
dl2 − dL2

dl2
= 2nij

dxi
dl

dxj
dl

= 2ηijninj (5.1.8)

The Eulerian finite strain tensor expressed by Eq. (5.1.7) is given in terms of the appropriate defor-
mation gradients. These same tensors may also be developed in terms of displacement gradients.

In Component notation, the material description is

ui = xi −Xi

The deformation of a body is completely described by the displacement vector. It is possible to
express ηij in terms of the displacement ui of a spatial point from its position from P0 to P , then

ui = xi −Xi, i.e., Xk = xk − uk
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If ui + dui be the displacement of the spatial point from its position Q0 to Q, then

ui + dui = (xi + dxi)− (Xi + dXi)

or, (xi −Xi) + dui = (xi −Xi) + (dxi − dXi)

or, dui = dxi − dXi

i.e, dXk = dxk − duk

Differentiating with respect to xi, we get

Xk,i =
∂Xk

∂xi

=
∂xk
∂xi

− ∂uk
∂xi

= δki −
∂uk
∂xi

= δki − uk,i

Similarly, differentiating with respect to xj , we get

Xk,j =
∂xk
∂xj

− ∂uk
∂xj

= δkj − uk,j

Then from (5.1.7), the expression for ηij in terms of the displacement ui of a material point from its
position P0 to P is given by

nij =
1

2

[
δij −

∂Xk

∂xi

∂Xk

∂xj

]
=

1

2
[δij −Xk,iXk,j]

=
1

2
[δij − (δki− uk,i)(δkj − uk,j)]

=
1

2
[δij − (δki− ∂uk

∂xi
)(δkj −

∂uk
∂xj

)]

=
1

2

[
δij − δkiδkj +

∂uk
∂xi

δkj +
∂uk
∂xj

δki −
∂uk
∂xi

∂uk
∂xj

]
=

1

2

[
∂ui
∂xj

+
∂uj
∂xi

− ∂uk
∂xi

∂uk
∂xj

]
as δkiδkj = δij

=
1

2
[ui,j + uj,i − uk,iuk,j] (5.1.9)

5.2 Change in the angle between two line elements in spatial
method

Here we consider change in angle between two material line elements P0Q0 and P0R0 at P0 inclined
at an angle Θ, where P0Q0 and is of length dL oriented in the direction (N1, N2, N3) and P0R0 is of
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length δL oriented in the direction (M1,M2,M3) in the region B0. If Q0 has coordinates (Xi+dXi)
and R0 has coordinates (Xi + δXi), then

Mi =
δXi

δL
, Ni =

dXi

dL
and cosΘ =

dxi
dL

δXi

δL
= NiMi (5.2.1)

when the body undergoes deformation the two line elements P0Q0 and P0R0 at P0 will deform into
two other line elements PQ and PR at P of length dl and δl, oriented in the direction (n1, n2, n3)
and (m1,m2,m3) and inclined at an angle θ in the region B0.

If Q has co-ordinantes (xi + dxi) and R has coordinates (xi + δxi), then

mi =
δXi

δL
, ni =

dXi

dL
, cos θ =

dxi
dl

δxi
δl

= nimi (5.2.2)

Also we have

dXk =
∂Xk

∂Xi

dxi, i.e., δXk
=
∂Xk

∂xi
δxi.

Therefore,

δl2 − δL2

δL2
= 2ηij

δxi
δL

δXj

δL
= 2ηijMiMj

dl2 − dL2

dL2
= 2ηij

dxi
dL

dXj

dL
= 2ηijNiNj

Again

dxiδxi − dXiδXi = δijdxiδxj − dxkδxk

= δijdxiδxj −
δXk

δXi

δxi
δXk

δXj

δXj

= 2ηijdxiδj where ηij =
1

2

[
δij −

∂Xk

∂Xi

∂Xk

∂Xj

]
Therefore,

dxi
dl

δxi
δl

− dXi

dl

δXi

δl
= 2ηij

dxi
dl

δxi
δl

⇒ dxi
dl

δxi
δl

− dXi

dL

dL

dl

δXi

δL

δL

δl
= 2ηijnimj

⇒ cos θ − cosΘ
dL

dl

δL

δl
= 2ηijnimj (5.2.3)

We observed that if ηij = 0, then dL = dl, δL = δl, θ = Θ. Thus, when ηij = 0, length of a line
element and angle between two line elements remain unchanged during deformation and the body
undergone only rigid body deformation.

• Thus the necessary and sufficient condition for rigid body deformation at each point is ηij = 0.
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• The knowledge of ηij at a point enables us to determine the change in length of a line element
and change in angle between two line elements. Therefore ηij can be taken as the measure of
strain deformation.

• It can be easily shown that ηij is a symmetric tensor of order two. It is known as Eulerian finite
strain tensor.

Example: Given the displacement field x1 = X1 + 2X3, x2 = X2 − 2X3, x3 = X−2X1 + 2X2.
Determine the deformation gradient, Cauchy’s deformation tensors and Eulerian finite strain tensor.

Solution: We have

x1 = X1 + 2X3, (5.2.4)
x2 = X2 − 2X3, (5.2.5)
x3 = X2X1 + 2X2 (5.2.6)

From (5.2.4) and (5.2.5), x1 + x2 = X1 +X2, (5.2.7)
From (5.2.5) and (5.2.6), x2 + 2x3 = −4X1 + 5X2, (5.2.8)

From (5.2.7) and (5.2.8)

4(x1 + x2) + (x2 + 2x3) = 4X2 + 5X2 ⇒ X2 =
1

9
[4x1 + 5x2 + 2x3] (5.2.9)

Therefore,

X1 = x1 + x2 −X2 From (5.2.7)

⇒ X1 = x1 + x2 −
1

9
[4x1 + 5x2 + 2x3]

⇒ X1 =
1

9
[5x1 + 4x2 − 2x3] (5.2.10)

and

X3 = x3 + 2x1 − 2x2

⇒ X3 = x3 +
2

9
[5x1 + 4x2 − 2x3]−

2

9
[4x1 + 5x2 + 2x3]

⇒ X3 =
1

9
[2x1 − 2x2 + x3] (5.2.11)

The deformation gradient F⃗ has the matrix form

(F⃗ki) =

 ∂x1

∂X1

∂x1

∂X2

∂x1

∂X3
∂x2

∂X1

∂x2

∂X2

∂x2

∂X3
∂x3

∂X1

∂x3

∂X2

∂x3

∂X3

 =
1

9

5 4 −2
4 5 2
2 −2 1


The Cauchy’s deformation tensor, C = (F⃗ T · F⃗ ) has the matrix form
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(C⃗ij) =
1

9

5 4 −2
4 5 2
2 −2 1

T

· 1
9

5 4 −2
4 5 2
2 −2 1

 =
1

81

45 36 0
36 45 0
0 0 9


The displacement components ui = xi −Xi of a material point are given by

u1 = x1 −X1 = x1 −
1

9
(5x1 + 4x2 − 2x3) =

1

9
(4x1 − 4x2 + 2x3),

u2 = x2 −X2 = x2 −
1

9
(4x1 + 5x2 + 2x3) =

1

9
(−4x+4x2 − 2x3),

u3 = x3 −X3 = x3 −
1

9
(2x1 − 2x2 + x3) =

1

9
(−2x1 + 2x2 + 8x3).

Now, the Eulerian finite strain tensor are given by

η11 =
1

2

[
∂u1
∂x1

+
∂u1
∂x1

− ∂uk
∂x1

∂uk
∂x1

]
=
∂u1
∂x1

− 1

2

[(
∂u1
∂x1

)2

+

(
∂u2
∂x1

)2

+

(
∂u3
∂x1

)2]

=
4

9
− 1

2

[(
4

9

)2

+

(
− 4

9

)2

+

(
− 2

9

)2]
=

2

9

η22 =
1

2

[
∂u2
∂x2

+
∂u2
∂x2

− ∂uk
∂x2

∂uk
∂x2

]
=
∂u2
∂x2

− 1

2

[(
∂u1
∂x2

)2

+

(
∂u2
∂x2

)2

+

(
∂u3
∂x2

)2]

=
4

9
− 1

2

[(
− 4

9

)2

+

(
4

9

)2

+

(
2

9

)2]
=

2

9

η33 =
1

2

[
∂u3
∂x3

+
∂u3
∂x3

− ∂uk
∂x3

∂uk
∂x3

]
=
∂u3
∂x3

− 1

2

[(
∂u1
∂x3

)2

+

(
∂u2
∂x3

)2

+

(
∂u3
∂x3

)2]

=
8

9
− 1

2

[(
2

9

)2

+

(
− 2

9

)2

+

(
8

9

)2]
=

4

9

η12 =
1

2

[
∂u1
∂x2

+
∂u2
∂x1

− ∂uk
∂x1

∂uk
∂x2

]
=

1

2

[
∂u1
∂x2

+
∂u2
∂x1

− ∂u1
∂x1

∂u1
∂x2

− ∂u2
∂x1

∂u2
∂x2

− ∂u3
∂x1

∂u3
∂x2

]

=
1

2

[(
− 4

9

)
+

(
− 4

9

)
−

(
4

9

)(
− 4

9

)
−

(
4

9

)(
− 4

9

)
−

(
2

9

)(
− 2

9

)]
= −2

9
= η21

η13 =
1

2

[
∂u1
∂x3

+
∂u3
∂x1

− ∂uk
∂x1

∂uk
∂x3

]
=

1

2

[
∂u1
∂x3

+
∂u3
∂x1

− ∂u1
∂x1

∂u1
∂x3

− ∂u2
∂x1

∂u2
∂x3

− ∂u3
∂x1

∂u3
∂x3

]

=
1

2

[(
2

9

)
+

(
− 2

9

)
−

(
4

9

)(
2

9

)
−

(
− 4

9

)(
− 2

9

)
−

(
− 2

9

)(
8

9

)]
= 0 = η31
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η23 =
1

2

[
∂u2
∂x3

+
∂u3
∂x2

− ∂uk
∂x1

∂uk
∂x3

]
=

1

2

[
∂u2
∂x3

+
∂u3
∂x2

− ∂u1
∂x2

∂u1
∂x3

− ∂u2
∂x2

∂u2
∂x3

− ∂u3
∂x2

∂u3
∂x3

]

=
1

2

[(
− 2

9

)
+

(
2

9

)
−

(
− 4

9

)(
2

9

)
−

(
4

9

)(
− 2

9

)
−

(
2

9

)(
8

9

)]
= 0 = η32

In matrix notation, the second order Eulerian finite strain tensors ηij are given by

(ηij) =
1

9

 2 −2 0
−2 2 0
0 0 4

 =
1

2

1 0 0
0 1 0
0 0 1

− 1

2

1

81

45 36 0
36 45 0
0 0 1


Hence, η =

1

2
I − 1

2
C.

5.3 Infinitesimal strain component
There are many important engineering problems that involve structural members or machine parts
for which the deformation is very small (mathematically treated as infinitesimal). In some common
materials, like metals, concrete, wood etc. undergo small changes of shape when forces of reason-
able magnitude are applied to them.

If the displacement gradients are small and the squares and products of the partial derivatives of
u′is are negligible then the Lagrangian finite strain tensor reduced to infinitesimal Lagrangian strain
tensor denoted by Eij, i, j = 1, 2, 3.

In this case we have,

Fij(X1, X2, X3) ≈
1

2
[ui,j + uj,i] =

1

2

[
∂ui
∂Xj

+
∂uj
∂Xi

]
Therefore, Normal strains are given by

F11 = u1,1 =
∂u1
∂X1

, F22 = u2,2 =
∂u2
∂X2

, F33 = u3,3 =
∂u3
∂X3

and shearing strains are given by

F23 =
1

2
[u2,3 + u3,2] =

1

2

[
∂u2
∂X3

+
∂u3
∂X2

]
,

F31 =
1

2
[u3,1 + u1,3] =

1

2

[
∂u3
∂X1

+
∂u3
∂X3

]
,

F12 =
1

2
[u1,2 + u2,1] =

1

2

[
∂u1
∂X2

+
∂u2
∂X1

]
,
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Similarly the Eulerian finite strain tensors reduced to infinitesimal Eulerian strain tensor denoted by
eij(i, j = 1, 2, 3).

Therefore,

eij(x1, x2, x3) ≈
1

2

[
∂ui
∂xj

+
∂uj
∂xi

]
Hence, the normal stains are given by

e11 =
∂u1
∂x1

, e22 =
∂u2
∂x2

, e33 =
∂u3
∂x3

,

and the shearing strains are given by

e23 =
1

2

[
∂u2
∂x3

+
∂u3
∂x2

]
, e31 =

1

2

[
∂u3
∂x1

+
∂u1
∂x3

]
, e12 =

1

2

[
∂u1
∂x2

+
∂u2
∂x1

]
We now show that both the displacement components are their gradient are small thenEij(X1, X2, X3)
and eij(x1, x2, x3) are identical.

We have xi = Xi + ui. By Taylor’s series,

ui(x1, x2, x3) = ui(X1 + u1, X2 + u2, X3 + u3)

= ui(X1, X2, X3) + ui
∂ui
∂Xj

+ · · ·

≈ ui(X1, X2, X3)

(Neglecting the product terms ui ∂ui

∂Xj
and small quantities of higher order)

Therefore,
∂ui
∂Xj

(X1, X2, X3) ≈ ∂ui
∂Xj

(x1, x2, x3)

=
∂ui
∂xk

(x1, x2, x3)
∂xk
∂Xj

=
∂ui
∂xk

(x1, x2, x3)

[
∂uk
∂Xj

+ δkj

]
(since xi = Xi + ui)

≈ ∂ui
∂xk

(x1, x2, x3)δkj (Neglecting the product term)

=
∂ui
∂xj

(x1, x2, x3)

Therefore in Cartesian co-ordinate

Eij =
1

2

[
∂ui
∂Xj

+
∂uj
∂Xi

]

=
1

2

[
∂ui
∂xj

+
∂uj
∂xi

]
= eij
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We observe that in infinitesimal deformation case the distinction between Lagrangian and Eulerian
strain components disappears. This is because of the fact that it is quite immaterial whether the
derivatives are to be evaluated at the position of a point before or after deformation.

Note: In matrix notation the infinitesimal Lagrangian Strain tensor E in terms of the components of
the displace gradients in rectangular cartesian coordinates is given by

[E] =


∂u1

∂X1

1
2

[
∂u1

∂X2
+ ∂u2

∂X1

]
1
2

[
∂u1

∂X3
+ ∂u3

∂X1

]
1
2

[
∂u1

∂X2
+ ∂u2

∂X1

]
∂u2

∂X2

1
2

[
∂u2

∂X3
+ ∂u3

∂X2

]
1
2

[
∂u1

∂X3
+ ∂u3

∂X1

]
1
2

[
∂u2

∂X3
+ ∂u3

∂X3

]
∂u3

∂X3


Exercise: Show that the expressions in Lagrangian and Eulerian description of deformation of a
continuous medium are identical in infinitesimal theory.

5.4 Infinitesimal Rotation tensor
Consider two neighbouring material points at the positions P0 and Q0 of the continuum in the un-
deformed state with cooordinates Xi and Xi + dXi respectively. As a result of deformation, the

material point at P0 undergoes a displacement ui and moves to the position P and let the material
point at positionQ0 experiences a displacement ui+dui and moves to the positionQ in the deformed
state. If we draw Q0Q

′ equal and parallel to P0P then the relative displacement of material point
originally at Q0 with respect to the material point originally at P0 will be represented by Q⃗′Q. Now,
⃗P0P = Q⃗0Q = u⃗, u⃗ and u⃗ + du⃗ being displacement of material points at P0 and Q0 respectively,

and Q⃗0Q = u⃗+ du⃗. Hence,

⃗Q0Q′ + Q⃗′Q = u⃗+ du⃗

⇒ u⃗+ Q⃗′Q = u⃗+ du⃗

⇒ Q⃗′Q = du⃗
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For material method of description

ui = Fi(X1, X2, X3) (5.4.1)

Therefore we can write

ui + dui = Fi(X1 + dX1, X2 + dX2, X3 + dX3)

Since P0 and Q0 are very closed together, dxi are small. Using Taylor’s series and neglecting higher
powers of dxi, we have

ui + dui = Fi(X1, X2, X3) +
∂Fi

∂X1

dX1 +
∂Fi

∂X2

dX2 +
∂Fi

∂X3

dX3

⇒ ui + dui = Fi(X1, X2, X3) +
∂Fi

∂Xj

dXj

⇒ ui + dui = ui +
∂Fi

∂Xj

dXj

⇒ dui =
∂Fi

∂Xj

dXj (5.4.2)

which can be expressed in the form

dui =
∂ui
∂Xj

dXj

=

[
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

)
+

1

2

(
∂ui
∂Xj

− ∂uj
∂Xi

)]
dXj

= (Rij + Eij)dXj

= RijdXj + EijdXj

= du
(1)
i + du

(2)
i (5.4.3)

where

Eij =
1

2

[
∂ui
∂Xj

+
∂uj
∂Xi

]
= Symmetric small strain tensor of order 2
= Eji

and

Rij =
1

2

[
∂ui
∂Xj

− ∂uj
∂Xi

]
= Skew-symmetric tensor of order 2
= −Rji

Thus, the relative displacement dui consists of two parts

du
(1)
i = RijdXj and du

(2)
i = EijdXj
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In order to study du(1)i we form a vector Ri by setting Ri = eijkRkj . Therefore

eijkRi = eijkeipqRqp

= (δjpδkq − δjqδkp)Rqp

= Rkj −Rjk = 2Rkj (since, Rjk = −Rkj)

where eijk is alternating symbol (or Levi-Civita symbol) defined by

eijk = 0, if any two of i, j, k are equal
= 1, if i, j, k are even permutation of 1, 2, 3

= −1, if i, j, k if i, j, k are odd permutation of 1, 2, 3

Therefore, Rkj =
1
2
eijkRi and du(1)k becomes

du
(1)
k = RkjdXj =

1

2
eijkRidXj

In general, du(1)k = 1
2
R⃗ × d⃗X , where dX⃗ is the vector connecting the position P0 and Q0 of the

continuum.

Now,

Ri = eijkRkj

=
1

2
eijk

[
∂uk
∂Xj

− ∂uj
∂Xk

]
=

1

2
(eijkuk,j − eijkuj,k)

=
1

2
(eijkuk,j − eikjuk,j) (In second term interchanging the dummy indices j and k)

=
1

2
(eijkuk,j + eijkuk,j)

Therefore, Ri = eijkuk,j = rot(u⃗)i. Hence R⃗ = rotu⃗. Therefore, the part du(1)i = RijdXj represents
a relative displacement involving small rigid body rotation of the neighbouring element of P0 through
and angle 1

2
R⃗ = 1

2
(rotu⃗). The R⃗ = rotu⃗ is called small rotation vector and Rij are called small

rotation vector and Rij are called small rotation tensor. Now pure rotation does not bring about any
strain deformation in the body. The part du(2)i = EijdXj represents a relative displacement involving
a strain deformation causing a change in shape in constrain to rigid body deformation. Therefore the
absolute displacement of a material point at Q0(Xi + dXi) in the nbd of P0(Xi) is given by

ui + dui = ui + du
(1)
i + du

(2)
i

= ui +RijdXj + EijdXj

which is decomposed into three parts, viz.

• The displacement due to rigid body translation which carries the element as a whole with the
displacement ui
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• The displacement due to rigid body rotation determined by Rij which rotates the element as a
whole through and angle 1

2
rotu⃗.

• The displacement due to straining determined by Eij which causes change in the length and
circulation of every line element causing a change in shape.

In particular when the displacement component du(1)i due to rotation vanishes, i.e., rotu⃗ = 0⃗, dis-
placement is called irrotational. In this case, there exists a scaler potential function ϕ, called dis-
placement potential, such that

u⃗ = −∇⃗ϕ

Example 5.4.1. The displacement field for small deformation theory is given by u1 = (X1 −X2)
2,

u2 = (X2 +X3)
2, u3 = −X1X2. Determine infinitesimal strain tensor, rotation tensor at the point

(0, 2,−1).

Solution: The infinitesimal strain tensor are given by

Eij =
1

2

[
∂ui
∂Xj

+
∂uj
∂Xi

]

Therefore, E11 =
∂u1
∂X1

= 2(X1 −X3), E22 =
∂u2
∂X2

= 2(X2 +X3) and E33 =
∂u3
∂X3

= 0.

E13 =
1

2

[
∂u1
∂X3

+
∂u3
∂X1

]
= −X1 −

X2

2
+X3 = E31

E23 =
1

2

[
∂u2
∂X3

+
∂u3
∂X2

]
= X2 −

X1

2
+X3 = E32

E12 =
1

2

[
∂u1
∂X2

+
∂u2
∂X1

]
= 0 = E21

Thus at the point (0, 2,−1) the infinitesimal strain tensors are given by

(Eij) =

 2 0 −2
0 2 1
−2 1 0


The infinitesimal rotation tensors are given by

Rij =
1

2

[
∂ui
∂Xj

− ∂uj
∂Xi

]
Therefore,

R11 =
1
2

[
∂u1

∂X1
− ∂u1

∂X1

]
= 0,

R22 =
1
2

[
∂u2

∂X2
− ∂u2

∂X2

]
= 0,
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R33 =
1
2

[
∂u3

∂X3
− ∂u3

∂X3

]
= 0,

R12 =
1
2

[
∂u1

∂X2
− ∂u2

∂X1

]
= 0 = R21

R13 =
1
2

[
∂u1

∂X3
− ∂u3

∂X1

]
= −X1 +

X2

2
+X3 = −R31

R23 =
1
2

[
∂u2

∂X3
− ∂u3

∂X2

]
= X1

2
+X2 +X3 = −R32

Thus at the points (0, 2, 1) the infinitesimal rotation tensor are given by

(Rij) =

0 0 0
0 0 1
0 −1 0



5.5 Geometrical Interpretation of infinitesimal strain components

A geometrical meaning for the strains is provided by considering the length and angle changes as
a result of the deformation. In analysing the state of strain in undeformed body, it is natural to
use the coordinates of the initial state as independent variables and follow the material description
of deformation throughout. To give a geometrical interpretation of strains E11, E22, E33. We first
consider the change in length of a material line element.

5.5.1 Diagonal element of (Eij)

Consider a material line element P0Q0 of length dL at P0(X1, X2, X3) oriented in the direction of
(N1, N2, N3) in the undeformed body. After deformation line element P0Q0 denotes into a line
element PQ of length dl at P (x1, x2, x3) in the deformed body. We know that

dl2 − dL2

dL2
= 2EijNiNj (5.5.1)

where Eij = 1
2

[
∂ui

∂Xj
+

∂uj

∂Xi

]
=Infinitesimal strain tensor at P0(X1, X2, X3). From Eq.(5.5.1) we

obtain

dl2

dL2
− 1 = 2EijNiNj

⇒ dl

dL
= (1 + 2EijNiNj)

1/2

⇒ dl

dL
= 1 + EijNiNj + · · ·
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When strain components are so small that we can neglect squares and products of Eij . Therefore,

dl

dL
= 1 + EijNiNj

⇒ dl

dL
− 1 = EijNiNj

⇒ dl − dL

dL
= EijNiNj (5.5.2)

Now left hand side of Eq.(5.5.2) is the extension per unit original length of a line element oriented
in the direction N1, N2, N3 and is called small extensional strain denoted by E(N).

The small extension strain E(N) = EijNiNj .

5.5.2 Geometrical interpretation of E11, E22, E33

Consider a line element initially parallel to X1−axis. Then we have N1 = 1, N2 = 0, N3 = 0.
Therefore, E(1) = E11.

Thus E11 is the extension per unit original length of a line element which is initially parallel to
X1−axis. Similarly, E22, E33 represent the extension of a line element per unit original length which
are initially parallel to X2− and X3− axes, respectively. These components E11, E22, E33 are called
extensional strain or normal strain.

To give the geometrical interpretation of strain E23, E31, E12 we consider the change in angle be-
tween orthogonal line elements.

5.5.3 The off diagonal elements of (Eij)

Consider two orthogonal material line elements P0Q0 and P0R0 of length dL and δL at P0(X1, X2, X3)
in the undeformed state of the body oriented in the direction (N1, N2, N3) and (M1,M2,M3) respec-
tively. After deformatin two line elements P0Q0 and P0R0 deform into another two line elements
PQ and PR at P of length dl and δl respectively inclined at an angle θ in the deformed state of the
body. We know that

dl

dL

δl

δL
cos θ − cos

(π
2

)
= 2EijNiMj

⇒ dl

dL

δl

δL
sin
(π
2
− θ
)

= 2EijNiMj

⇒ sin
(π
2
− θ
)

=
2EijNiMj

dl
dL

δl
δL

,

whereEij =
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

)
. Now

(π
2
−θ
)

is the decrease in right angle between two orthogonal

lines P0Q0 and P0R0 in the undeformed state and is called shear along two lines. If νNM denote



58 UNIT 5.

the shear along two orthogonal line elements initially oriented in the direction (N1, N2, N3) and
(M1,M2,M3), then

ν(NM) =
π

2
− θ

and sin ν(NM) =
2EijNiMj

dl
dL

δl
δL

(5.5.3)

If E1 denotes the extension of P0Q0 and E2 that of P0R0, then E1 =
dl − dL

dL
⇒ dl = (1 + E1)dL

and E2 =
δl−δL
δL

⇒ δl = (1 + E2)δL. Substituting these values in Eq.(5.5.3), we get

sin ν(NM) =
2EijNiMj

(1 + E1)(1 + E2)
(5.5.4)

⇒ sin ν(NM) = 2EijNiMj(1 + E1)
−1(1 + E2)

−1

⇒ sin ν(NM) = 2EijNiMj(1 + E1 + E2 + E1E2)
−1

⇒ ν(NM) = 2EijNiMj (5.5.5)

(since for small deformation, sin ν(NM) ≈ ν(NM) and neglecting squares and products of small
quantities.)

5.5.4 Geometrical Interpretation Of E23, E31, E12

If we consider a part of orthogonal line elements initially parallel to X2, X3 axes respectively, then
we have N1 = 0, N2 = 1, N3 = 0 and M1 = 0, M2 = 0, M3 = 1. Therefore,

ν(23) = 2E23

or, E23 =
1

2
ν(23)

Thus, E23 represents one half of the shear between two linear elements which are initially parallel to
X2 and X3 axes. Similar interpretations can be made in regard to E31 and E12. Also, E23, E31, E12

are called shearing strains. Thus, Eij denotes increase in length of a line element per unit original
length or decrease in right angle between two line lements.

Example 5.5.1. For the displacement field u1 = (X1 − X2)
2, u2 = (X2 + X3)

2, u3 = −X1X2,

determine the extension of a line lement in the direction of
(
8

9
,−1

9
,
4

9

)
and compute the change in

right angle between N⃗ =
1

9
(8ê1 − ê2 + 4ê3) and M⃗ =

1

9
(4ê1 − 4ê2 + 7ê3) at the point (0, 2,−1).

Solution: The infinitesimal strain tensor are given by

Eij =
1

2

[
∂ui
∂Xj

+
∂uj
∂Xi

]
Therefore, E11 =

∂u1

∂X1
= 2(X1 −X2) = −4
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E22 =
∂u2

∂X2
= 2(X2 +X3) = 2

E33 =
∂u3

∂X3
= 0

E12 =
1
2

[
∂u1

∂X2
+ ∂u2

∂X1

]
= 2 = E21

E13 =
1
2

[
∂u1

∂X3
+ ∂u3

∂X1

]
= −1 = E31

E23 =
1
2

[
∂u2

∂X3
+ ∂u3

∂X2

]
= 1 = E32

Thus at the point (0, 2,−1) the infinitesimal strain tensor are given by

(Eij) =

−4 2 −1
2 2 1
−1 1 0


The material line element at P0(0, 2,−1) is origented in the direction of N⃗ = (N1, N2, N3) =

(
8

9
,−1

9
,
4

9
). Then small extensional strain

E(N) = EijNiNj

= E11N
2
1 + E22N

2
2 + E33N

2
3 + 2(E12N1N2 + E13N1N3 + E23N3N3)

= −358

87

The change of right angle between N⃗ and M⃗ at the point (0, 2,−1) is given by

νMN = 2EijNiMj

= 2(E11N1M1 + E22N2M2 + E33N3M3 + 2E12(N1M2 +N2M1)

+2E13(N1M3 +N3M1) + 2E23(N1M3 +N3M2))

= −574

81

5.6 Few Probable Questions
1. Deduce the expression for Lagrangian strain components in the form 2rij = ui,j + uj,i +
uk,iuk,j, (i, j, k = 1, 2, 3), where ui’s are the components of displacement vector at a point of
the medium.

2. Deduce the expression for Eulerian strain components in a continuum medium in the form
2ηij = ui,j +uj,i+uk,iuk,j, (i, j, k = 1, 2, 3), where ui’s are the components of displacement
vector.
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3. The strain tensor at a point is given by

(Eij) =

5 3 0
3 4 −1
0 −1 2


Determine the extension of a line element in the direction of

1

3
(2, 2, 1). What is the change of

angle between two perpendicular line elements in the directions of
1

3
(2, 2, 1) and

1√
5
(1, 0,−2).

[Ans:
58

9
,

32

3
√
5
.]

4. The strain tensor at a point is

(Eij) =

 1 −3
√
2

−3 1 −
√
2√

2 −
√
2 4


Determine

(a) extension of a line element in the direction
(
1

2
,−1

2
,
1√
2

)
(b) shear between the directions

(
1

2
,−1

2
,
1√
2

)
and

(
−1

2
,−1

2
,
1√
2

)
and

(c) principal strains, maximum normal strain, maximum shearing strain and strain invariants.

[Ans: E(N) = 6, ν(MN) = 0, E1 = 6, E2 = 2, E3 = −2. Maximum normal strain=6, Maxi-
mum shearing strain=4, θ1 = 6, θ2 = −4, θ3 = −24]

5. For a given strain field

(Eij) =

K1X2 0 0
0 −K2X2 0
0 0 −K2X2


find the relation between K1 and K2 such that there will be no volume change. [Ans:K1 =
2K2].

6. The deformation of a body is defined by displacement components

u1 = k(3x21 + x2), u2 = k(2x22 + x3), u3 = k(4x3 + x1)

where k is a positive constant. Find the extension of a line element that passes through the

point (1, 1, 1) in the direction
1√
3
(1, 1, 1). [Ans:

17

3
k.]



Unit 6

Course Structure

• Strain quadric, Principal strains

• Strain Invariants, Geometrical Interpretatoin

• Compatibility equations

6.1 The Strain Quadric

The state of local deformations in the neighbourhood of a point P0 in undeformed state of a contin-
uum body can be understood more clearly by a geometrical treatment.

Consider a point P0(Xi) in the undeformed state of a continuum
body. Let Eij be the small strain tensor at P0 with respect to a sys-
tem of axes OX1, OX2, OX3 fixed in space. We introduce a local
system of axes P0ξ1, P0ξ2, P0ξ3 with the origin at P0 and axes paral-
lel to OX1, OX2, OX3 respectively. For a given set of strain tensor
Eij we can construct a quadric surface with its centre at P0 given
by Eijξiξj = 1. This quadric surface is known as strain quadric and
every straight line meets the quadratic surface in two points.

6.1.1 Properties of strain quadric

1. The extensional strain (E(N)) of a line element through the cen-
tre of a strain quadric in the direction of any central radius vector is equal to the inverse of the
square of the radius vector.

61
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Consider a point P0(Xi) in the undeformed state. Let Eij be the small tensor at P0 referred to
a fixed system of axes Xi. We introduce a local system of axes P0ξi parallel to OXi system with
origin at P . Let the equation of a strain quadric with its centre at P0 be

Eijξiξj = 1. (6.1.1)

Draw any line P0Q0 through the centre P0 to intersect the quadric surface at Q0. Let L denotes the
length P0Q0, (N1, N2, N3) be direction cosines of P0Q0. Let (ξ1, ξ2, ξ3) be the coordinates ofQ0 and
E(N) be the extension of line element P0Q0 in the direction of P0Q0. Therefore E(N) = EijNiNj .

Also for the point Q0, ξi = LNi ⇒ Ni =
ξi
L

. Therefore

E(N) = Eij
ξi
L

ξj
L

(6.1.2)

Again since Q lies on strain quadric, its coordinates ξ1, xξ2, ξ3 satisfy Eq.(6.1.1), i.e., Eijξiξj = 1.
Therefore we have, EN = 1

L2 . Thus the result follows.

2. The displacement of a material point at any point on the strain quadric relative to that at the
centre is directed along the normal to the surface of the quadric at that point.

Consider a point P0(Xi) in the undeformed state of a continuum body. Let Eij be the small
strain tensor at P0(Xi) with respect to a fixed system of axes OX1, OX2, OX3 fixed in space. We
introduce a local system of axes P0ξ1, P0ξ2, P0ξ3 with origin at P0(Xi) and parallel to the axes
OX1, OX2, OX3 respectively.

Let the equation of the strain quadric with its centre at P0(Xi) beEijξiξj = 1. Draw any line P0Q0

through the centre P0 to intersect the quadric surface at Q0(ξ1, ξ2, ξ3). Let ui be the displacement of
the material point at Q0(ξ1, ξ2, ξ3) relative to that at P0(X1, X2, X3) due to strain deformation only.
Now since (ξ1, ξ2, ξ3) are the relative coordinates of Q0 relative to that at P0(X1, X2, X3), we have
ui = Eijξj .

Let us consider the quadratic function

2G(ξ1, ξ2, ξ3) = Eijξiξj

So the strain quadratic reduces to

2G(ξ1, ξ2, ξ3) = 1
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It follows from the above result that

∂

∂ξi
[2G(ξ1, ξ2, ξ3)] =

∂

∂ξi
[Eklξkξl ]

= Ekl

[
∂ξk
∂ξi

ξl + ξk
∂ξl
∂ξi

]
= Ekl[δkiξl + ξkδli]

= Eklδkiξl + Eklξkδli

= Eilξl + Ekiξk

= Eijξj + Ejiξj

= 2Eijξj

Therefore,
∂

∂ξi
[G(ξ1, ξ2, ξ3)] = Eijξj = ui.

But
∂G

∂ξi
are direction ratios of the normal to the quadric surface 2G(ξ1, ξ2, ξ3) = 1 at the point

Q0(ξ1, ξ2, ξ3). It follows that relative displacement is directed along the normal to the quadric surface
at Q0(ξ1, ξ2, ξ3).

6.2 Principal strains and principal axis of strains
In general, a line element changes its direction due to strain deformation. In particular when the
direction of a line element at a given point of a continuum remains unchanged by strain deformation
then that direction is called principal direction of strain or principal axis of strain and the extension
that occurs along the direction is called principal strain.

Consider two neighbouring material points
at the positions P0(X1, X2, X3) and Q0(X1 +
dX1, X2 + dX2, X3 + dX3) of the continuum in
the undeformed state, with respect to an orthog-
onal set of coordinate axes fixed in space. The
material line element P0Q0 has the length dL ori-
ented in the direction (N1, N2, N3) in the initial
undeformed state of a continuum body, then

Ni =
dXi

dL
, i = 1, 2, 3 and NiNj = 1

Let Eij =
1
2

[
∂ui

∂Xj
+

∂uj

∂Xi

]
=Infinitesimal strain ten-

sor at P0(X1, X2, X3).
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When the body undergoes strain deformation, the material point at P0(X1, X2, X3) undergoes a
displacement ui and move to the position P (x1, x2, x3) and the material point Q0(Xi + dXi) under-
goes a displacement ui + dui and moves to the position Q(X1 + dX1, X2 + dX2, X3 + dX3). Also
the material points which form the line element P0Q0 in the initial state will form a new line element
PQ in the deformed state.

LetEij be the small strain tensor at P0(X1, X2, X3). If the line element P0Q0 is to be the principal
direction of strain at P0, then P0Q0 must be parallel to PQ. If ui be the displacement of P0 and
ui+ dui be the displacement of Q0 then dui lie along PQ, then dui will be proportional to dXi, i.e.,

dui = λdXi (6.2.1)

where λ is the constant of proportionality. Thus

λ =
dui
dXi

=
dxi − dXi

dXi

Here λ is the extension of the line element P0Q0 in the direction of P0Q0 and λ is called the principal
strain. We know that the strain vector is given by

E
(N)
i =

dui
dL

= λ
dXi

dL
= λNi (6.2.2)

Also the strain vector is related to the strain tensor by the equation

E
(N)
i = EijNj (6.2.3)

Thus from Eq.(6.2.2) and (6.2.3) we get

EijNj = λNi = λδijNj

⇒ (Eij − λδij)Ni = 0, j = 1, 2, 3 (6.2.4)

By expanding we get

(E11 − λ)N1 + E12N2 + E13N3 = 0

E21N1 + (E22 − λ)N2 + E23N3 = 0 (6.2.5)
E31N1 + E32N3 + (E33 − λ)N3 = 0

This is a set of three homogeneous linear equation for N1, N2, N3 which has to satisfy the condition

N2
1 +N2

2 +N2
3 = 1 (6.2.6)

The condition for the existence for a non-trivial solution of the Eq.(6.2.2) is∣∣∣∣∣∣
E11 − λ E12 E13

E21 E22 − λ E23

E31 E32 E33 − λ

∣∣∣∣∣∣ = 0 (6.2.7)

The above cubic equation is called the characteristic equation which has three roots λ1, λ2, λ3 are
called the principal strain. Corresponding to each λi we can solve the system of Eq.(6.2.5) subject
to (6.2.6) and find (N1, N2, N3) which gives the corresponding principal direction.
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Note 6.2.1. 1. Since Eij is symmetric the roots of the characteristic equation are real and hence
all principal strain and direction are real.

2. Also sinceEij is symmetric there exist at least three mutually perpendicular directionsN1, N2, N3

with respect to which the matrix Eij is diagonal. Geometrically, this means that infinitesimal
line elements in the principal directions remains mutually perpendicular after deformation.
These directions are known as principal directions.

3. The principal directions of strain corresponding to distinct principal strain are orthogonal to
each other.

4. When two roots are equal we calculate the principal axes corresponding to the third and any
two mutually perpendicular line which are perpendicular the third axis may be taken as prin-
cipal axes.

5. When all roots are equal any three mutually perpendicular lines through the point P0 may be
taken as principal axis.

Theorem 6.2.2. All principal strains are real.

Proof. Here we are to show that the three roots E1, E2, E3 of the Eq.(6.2.7) and corresponding Ni

vectors are all real.

Let one of the roots of Eq.(6.2.7), say E1 be complex. Since the coefficients of the Eq.(6.2.7) are
all real so the complex conjugate E∗

1 of E1 is also a root of Eq.(6.2.7). Corresponding to these roots
we obtain complex direction N (1)

i and its complex conjugate N∗(1)
i satisfying the system of linear

Eq.(6.2.5)
EijN

(1)
j = E1N

(1)
i (6.2.8)

and
EijN

∗(1)
j = E∗

1N
∗(1)
i , i = 1, 2, 3 (6.2.9)

Multiplying both sides of the Eq.(6.2.8) by N∗(1)
i and Eq.(6.2.9) by N (1)

i , we get

EijN
(1)
j N

∗(1)
i = E1N

(1)
i N

∗(1)
i (6.2.10)

and EijN
∗(1)
j N

(1)
i = E∗

1N
∗(1)
i N

(1)
i (6.2.11)

Now

EijN
∗(1)
j N

(1)
i = EjiN

∗(1)N
(1)
j , interchanging dummy indices

= EijN
∗(1)
i N

(1)
j , since Eij is symmetric

Thus it follows from (6.2.10) and (6.2.11) that

E1N
(1)
i N

∗(1)
i = E∗

1N
∗(1)
i N

(1)
i

⇒ (E1 − E∗
1)N

(1)
i N

∗(1)
i = 0 (6.2.12)
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Since N∗(1)
i N

(1)
i is a sum of squares of real number, it cannot be zero. Hence E1 = E∗

1 . Therefore,
E1 is real. Therefore, the roots E1, E2, E3 of the Eq.(6.2.7) are all real and the corresponding values
of N (1)

i of Eq.(6.2.5) are all real. Thus we have shown that at any point P0(X1, X2, X3) in the
undeformed body there exist three real directions of strain whose orientation is left unchanged by
strain deformation.

Theorem 6.2.3. Principal directions of strain corresponding to distinct principal strains are orthog-
onal to each other.

Proof. We consider the following three cases,

Case I: Three principal strains E1, E2, E3 are distinct.

First let E1 and E2 be any two distinct real roots of the characteristic Eq.(6.2.7); N (1)
i and N

(2)
i

be corresponding direction cosines obtained from Eq.(6.2.5). Thus we have

EijN
(1)
j = E1N

(1)
i and EijN

(2)
j = E2N

(2)
i , i = 1, 2, 3 (6.2.13)

Multiplying both sides of the first equation of (6.2.13) by N (2)
i and second by N (1)

i , we get

EijN
(1)
j N

(2)
i = E1N

(1)
i N

(2)
i , i = 1, 2, 3

and EijN
(2)
j N

(1)
i = E2N

(2)
i N

(1)
i , i = 1, 2, 3 (6.2.14)

But

EijN
(2)
j N

(1)
i = EjiN

(2)
i N

(1)
j (interchanging dummy indices)

= EijN
(2)
i N

(1)
j (since Eij is symmetric) (6.2.15)

Thus from Eq.(6.2.14) it follows that

E1N
(1)
i N

(2)
i = E2N

(2)
i N

(1)
i

⇒ (E1 − E2)N
(1)
i N

(2)
i = 0

⇒ N
(1)
i N

(2)
i = 0 (∵ E1 ̸= E2)

This shows that N (1)
i and N (2)

i are orthogonal. Thus two principal directions of strain corresponding
to two distinct principal strains are orthogonal.

Similar results are obtained for other set of pair of roots consequently three principal directions of
strain are mutually perpendicular provided three principal strains are distinct.

Case II: Two principal strains are equal.

Let the roots E1 and E2 of the characteristic equation (6.2.7) be equal so that we can write E1 = E2.
We know that Eq.(6.2.7) has at least one real root, say E3. For E = E3 the Eq.(6.2.5) has one real
solution N (3)

i . This solution defines the third principal direction of strain.
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Choose the associated direction as X3 axis and any pair of mutually perpendicular lines each of
which is perpendicular to X3 axis are taken as X1 and X2 axes.

In the new system of coordinates

N
(3)
1 = 0, N

(3)
2 = 0, N

(3)
3 = 0.

It follows from equation EijNj = ENi that

EijN
(3)
j = E3N

(3)
i .

Therefore,
E1jN

(3)
j = E3N

(3)
1 = 0, i = 1,⇒ E13 = 0.

Similarly E2jN
(3)
j = E3N

(3)
2 = 0, i = 2, i.e., E23 = 0 and E3jN

(3)
j = E3N

(3)
3 = E3, i = 3, i.e.,

E33 = E3.

Therefore the Eq.(6.2.7) reduces to∣∣∣∣∣∣
E11 − E E12 0
E21 E22 − E 0
0 0 E3 − E

∣∣∣∣∣∣ = 0

⇒ (E3 − E){(E11 − E)(E22 − E)− E12E21} = 0

Thus E = E3 is one of the root of the equation. The other two roots of this cubic equation are given
by

(E11 − E)(E22 − E)− E12E21 = 0

⇒ E2 − (E11 + E22)E + (E11E22 − E2
12) = 0 [∵ E12 = E21]

Since E1 = E3 the above equation would have equal roots if

(E11 + E22)
2 − 4(E11E22 − E2

12) = 0

⇒ (E11 − E22)
2 + 4E2

12 = 0

⇒ E11 − E22 = 0 and E12 = 0 (6.2.16)

Hence we have E13 = E23 = E12 = 0.

It follows that forE1 = E2 coordinate systemXi and in consequence any coordinate system contain-
ing the third principal axis N (3)

i corresponding to E3 as X3 defines one parameter family of systems
of principal directions of strain.

Thus when two roots are equal, any two mutually orthogonal directions lying in a plane perpendic-
ular to the principal direction corresponding to simple roots may be taken as corresponding principal
directions of strain.
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Case III: All the principal strains are equal.

Consider the case when all the three principal strains E1, E2, E3 are equal. When E1 = E2,
any system of coordinate axis with third principal axis N (3)

i corresponding to E3 as X3 defines a
system of principal directions of strain. When E2 = E3, any system of coordinate axis with third
principal axisN (1)

i corresponding toE1 asX1 defines a system of principal direction of strain. When
E3 = E1, any system of coordinate axis with third principal axis N (2)

i corresponding to E2 as X2

defines a system of principal directions of strain.

Therefore, for E1 = E2 = E3, every system of space is a principal direction of strain.

6.3 Strain Invariants
There are a number of constraints of strain tensors Eij which remains unaltered by the rotation of
the coordinate system. They are called strain invariants.

We know that the three principal strains E1, E2, E3 are roots of the characteristic equation∣∣∣∣∣∣
E11 − E E12 0
E21 E22 − E 0
0 0 E33 − E

∣∣∣∣∣∣ = 0 (6.3.1)

Expanding, we get
E3 − θ1E

2 + θ2E − θ3 = 0 (6.3.2)

where
θ1 = E11 + E22 + E33 (6.3.3)

θ2 =

∣∣∣∣E11 E12

E21 E22

∣∣∣∣+ ∣∣∣∣E22 E23

E32 E33

∣∣∣∣+ ∣∣∣∣E33 E31

E13 E11

∣∣∣∣ (6.3.4)

= E11E22 + E22E33E33E11 − E2
12 − E2

23 − E2
31 (6.3.5)

and

θ3 =

∣∣∣∣∣∣
E11 E12 E13

E21 E22 E23

E31 E32 E33

∣∣∣∣∣∣ (6.3.6)

The coefficients θ1, θ2 and θ3 are called the principal scalar invariants of the strain tensor.

Since E1, E2, E3 are the roots of Eq.(6.3.1), by the relation between the roots and coefficients of
the equation, we have

θ1 = E1 + E2 + E3

θ2 = E1E2 + E2E3 + E3E1

θ3 = E1E2E3
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Since the principal strains E1, E2, E3 at a point have a geometrical meaning independent of the
choice of coordinate system, it is clear from Eq.(6.3.1) that θ1, θ2 θ3 given by Eq.(6.3.3), (6.3.5) and
(6.3.6) are invariant with respect to orthogonal transformations of coordinates and are respectively
called first, second and third strain invariants as they have the same values in all coordinate system.

6.4 Geometrical Interpretation of the First Strain Invariants

Let us consider the change in volume element. Let P0 be a point in the initial state. Let E1, E2, E3

be three principal strains at P0. Consider a volume element of continuum occupying a rectangular
parallelopiped of volume dV0, with one of its vertices at P0, with edges parallel to the principal di-
rection of strains at P0 and of lengths of L1, L2, L3 so that dV0 = L1L2L3.

After deformation this element becomes again a rectan-
gular parallelopiped of volume dV because orienttation of
principal directions of strain remain unchanged. If l1, l2, l3
be the lengths of its edges then

dV = l1l2l3

Now,

l1 = (1 + E1)L1

l2 = (1 + E2)L2

l3 = (1 + E3)L3

Hence,

dV − dV0
dV0

=
l1l2l3 − L1L2L3

L1L2L3

=
(1 + E1)(1 + E2)(1 + E3)L1L2L3 − L1L2L3

L1L2L3

= (1 + E1)(1 + E2)(1 + E3)− 1

= E1 + E2 + E3

= E11 + E22 + E33

= θ1

Then the first strain invariant θ1 = E11+E22+E33 represents the change in volume per unit original
volume.

Note:

1. For small deformation θ1 = E1 + E2 + E3 =first principal scalar invariant
In general,
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θ1 = E1 + E2 + E3

= E11 + E22 + E33

=
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

= div u

This unit volume change is known as dilations.

2. If the change in volume element remains unaltered then the deformation is called Isochoric
deformation. Thus, for isochoric deformation,

E11 + E22 + E33 = 0

Example 6.4.1. Determine the principal direction and principal strains for

(Eij) =

e e e
e e e
e e e


Solution: The principal strainsE1, E2, E3 at the point P are the roots of the characteristic equation∣∣∣∣∣∣

e− E e e
e e− E e
e e e− E

∣∣∣∣∣∣ = 0 (6.4.1)

⇒ E2(3e− E) = 0

⇒ E = 0, 0, 3e

The principal directions of stain at P are given bye− E e e
e e− E e
e e e− E


N

(1)
1

N
(1)
2

N
(1)
3

 =

00
0

 (6.4.2)

For E = 3e, the above system of Eq.(6.4.2) becomese− 3e e e
e e− 3e e
e e e− 3e


N

(1)
1

N
(1)
2

N
(1)
3

 =

00
0


Hence

−2eN
(1)
1 + eN

(1)
2 + eN

(1)
3 = 0

eN
(1)
1 − 2eN

(1)
2 + eN

(1)
3 = 0

eN
(1)
1 + eN

(1)
2 − 2eN

(1)
3 = 0
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Therefore, N
(1)
1

N
(1)
2

N
(1)
3

 =
1√
3

11
1


For E = 0, the above system of Eq.(6.4.2) becomes

eN
(2)
1 + eN

(2)
2 + eN

(2)
3 = 0

eN
(2)
1 − 2eN

(2)
2 + eN

(2)
3 = 0

eN
(2)
1 + eN

(2)
2 + eN

(1)
3 = 0

These equations together with (N
(2)
1 )2 + (N

(2)
2 )2 + (N

(2)
3 )2 = 1 are insufficient to determine the

principal direction corresponding to E = 0. Since two principal strains are equal, any pair of lines

perpendicular to each other and each perpendicular to
( 1√

3
,
1√
3
,
1√
3

)
may be taken as principal

directions of strain.

Example 6.4.2. Given E11 = k(X2
1 −X2

2 ), E12 = −kX1X2, E22 = kX1X2, E13 = E33 = E23 =
0, a possible state of strain. Find the displacement components.

Solution: From the relation E11 = k(X2
1 −X2

2 ) we get

E11 =
∂u1
∂X1

= k(X2
1 −X2

2 )

⇒ u1 = k(
1

3
X3

1 −X1X
2
2 ) + f(X2), where f is arbitrary

Similarly from E22 = kX1X2, we get

E22 =
∂u2
∂X2

= kX1X2,

⇒ u2 =
k

2
X1X

2
2 + g(X1), where g is arbitrary

The functions f and g are to be determined. Now using the formula

2E12 =
∂u1
∂X2

+
∂u2
∂X1

⇒ −2kX1X2 = −2kX1X2 + f ′(X2) +
k

2
X2

2 + g′(X1)

⇒ g′(X1) + f ′(X2) = −k
2
X2

2

⇒ g′(X1) = −f ′(X2)−
k

2
X2

2 .

Since the left hand side is a function of X1 only and the right hand side is a function of X2 alone,
each side mus be constant equal to c, say. Thus

g′(X1) = c and − f ′(X2)−
k

2
X2

2 = c,

⇒ g(X1) = cX1 + c1 and f(X2) = −k
6
X3

2 − cX2 + c2
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where c1 and c2 are arbitrary constant. Finally the displacement components are given by

u1 = k(
1

3
X3

1 −X1X
2
2 )−

k

6
X3

2 − cX2 + c2,

u2 =
k

2
X1X

2
2 + cX1 + c1,

u3 = 0

Omitting the linear parts of the displacements (which corresponds to rigid motion), we have for pure
deformation

u1 = k(
1

3
X3

1 −X1X
2
2 )−

k

6
X3

2 ,

u2 =
k

2
X1X

2
2 ,

u3 = 0.

6.5 Compatibility equations for strain components
If the strain components Eij are given explicitly as functions of coordinates, the six independent
equations

Eij =
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

)
, i = 1, 2, 3

may be viewed as a system of six linear partial differential equations for determining three unknown
displacement components ui. The system of equations is an over determined system as number of
equations (six) is more than number of unknowns (three). To ensure the existence of single valued
displacement solutions, strain components cannot arbitrarily prescribed as function of coordinates
but must necessarily be subjected to additional restrictions or conditions.

The necessary and sufficient condition for the existence of single valued displacement is that strain
components must satisfy the compatibility equation

Eij,kl + Ekl,ij − Eik,jl − Ejl,ik = 0.

The above system has 34 = 81 equations but only six are algebraically independent. These six
equations are

E22,33 + E33,22 = 2E23,23

E33,11 + E11,33 = 2E31,31

E11,22 + E22,11 = 2E12,12

E11,23 = (−E23,1 + E31,2 + E12,3),1

E22,31 = (−E23,1 − E31,2 + E12,3),2

E33,12 = (E23,1 + E31,2 − E12,3),3
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6.6 Few Probable Questions
1. Calculate the strain invariants from strain tensor

(Eij) =

 5 −1 −1
−1 4 0
−1 0 4


Determine principal strains. Find strain invariants from them. Show the equivalence of strain
invariants. [Ans: θ1 = 13, θ2 = 54, θ3 = 72, E1 = 6, E2 = 4, E3 = 3].

2. Determine principal strains and corresponding direction from strain tensors

(a)(Eij) =

1 1 3
1 5 1
3 1 1


[Ans: 6, 3, 2;

1√
6
(1, 2, 1),

1√
3
(1, 1, 1),

1√
2
(1, 0,−1)]

(b)(Eij) =

5 2 2
2 2 −4
2 −4 2


[Ans: 6, 6, -3;

1√
3
(2, 2,−1),

1

3
(2,−1, 2),

1

3
(−1, 2, 2)]

3. The strain tensor at a point is given by

(Eij) =

a b 0
b −a 0
0 0 0


Find principal axes of strain and corresponding direction ratios of principal strains.
[Ans:E1, E2 =

√
a2 + b2, E3 = −

√
a2 + b2, (0, 0, 1),

(
a+

√
a2+b2

b
, 1, 0

)
,
(

a−
√
a2+b2

b
, 1, 0

)
.

4. A body undergoes deformation

x1 =
√
2X1 +

3

4

√
2X2

x2 = −X1 +
3

4
X2 +

√
2

4
X3

x3 = X1 −
3

4
X2 +

1

4

√
2X3

Find the direction after deformation of a line element with initial direction ratios 1 : 1 : 1.
[Ans: 7

√
2 :

√
2− 1 :

√
2 + 1].
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5. The displacement in an elastic solid is given by

u1 = k(X1 + 2X2 + 3X3)

u2 = k(−2X1 +X2)

u3 = k(X1 + 4X2 + 2X3)

where k is a small quantity. Find dilation, rotation, shear, principal strain and corresponding
principal axes.

6. Find rij and ηij for deformation

x1 = a1(X1 + αX2)

x2 = a2X2

x3 = a3X3

where a1, a2, a3 are constants.

Ans.

(rij) =
1

2

 a21 αa21 0
αa21 αa21 + a22 0
0 0 a23

− 1

2
δij

(ηij) =
1

2
δij −

1

2

 a−2
1 −αa−2

1 a−2
2 0

−αa−2
1 a−2

2 (1 + α2)a−2
2 0

0 0 a−2
3


7. The deformation of a body is given by

u1 = AX1 +BX1(X
2
1 +X2

2 )
−1

u2 = AX2 +BX2(X
2
1 +X2

2 )
−1

u3 = CX3

where A,B,C are constants. Find Eij and Rij . Find principal values and principal axes of
Eij .
Ans:

(Eij) =

A−B
X2

1−X2
2

(X2
1+X2

2 )
2 −2B X1X2

(X2
1+X2

2 )
2 0

−2B X1X2

(X2
1+X2

2 )
2 A+B

X2
1−X2

2

(X2
1+X2

2 )
2 0

0 0 C


Rij = 0, principal strains: A±B(X2

1+X
2)−1; C; direction ratios: (X2,−X1, 0), (X1, X2, 0), (0, 0, 1).

8. Show that E11 = k(X2
1 +X2

2 ), E22 = kX2
2 , E12 = kX1X2, E33 = E23 = E31 = 0 is a pos-

sible state of strain rate while E11 = kX3(X
2
1 +X2

2 ), E22 = kX2
2X3, E12 = kX1X2, E33 =

E23 = E31 = 0 is not a possible one.



Unit 7

Course Structure

• Motion of deformable bodies

• Lagrangian and Eulerian description

• Flow: Path line and stream line

• Boundary surface

• Conservation of mass: Equation of continuity

7.1 Introduction

In order to study the motion of the continuum are generally follow the one of the following
two methods.

(a) Lagrangian description of motion or material description of motion of a continuum.

(b) Eulerian description of motion or particle description of motion of a continuum.

7.2 Lagrangian description of motion of a continuum

We consider a fixed frame of reference OX1, OX2, OX3. Let a material particle which is
initially at P0(X1, X2, X3) move to another point P (x1, x2, x3) after time t. The coordinate
(x1, x2, x3) will be functions of their initial valuesX1, X2, X3 and t. Thus xi = fi(X1, X2, X3, t).
The components of velocity of particle at time t whose initial coordinates are (X1, X2, X3) are

75
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∂x1
∂t

,
∂x2
∂t

,
∂x3
∂t

and acceleration components
∂2x1
∂t2

,
∂2x2
∂t2

,
∂2x3
∂t2

.

It is to be understood that in the differentiation with respect to ′t′ the initial coordinated
(X1, X2, X3) of the particle are kept unaltered. Such a differentiation is frequently referred
to as particle differentiation or differentiation following the particle. Lagrangian description
or material description of motion is usually used in elastic solids. IF ui be the displacement
of the particle at time t then its coordinates after time t is xi = Xi + ui. The displacement

components are obviously functions of X1, X2, X3 and t so its velocity components are
∂xi
∂t

which are equivalent to
∂ui
∂t

and the acceleration components are
∂2ui
∂t2

.

7.2.1 Eulerian description of motion of a continuum

In the material description or Lagrangian description every particle is identified by its initial
coordinates at t = 0 and time t. This is not always convenient, when it describes the flow
of watch in a river we do not desire to identify the location from where every particle of wa-
ter comes. In this case we are generally interested in the instantaneous velocity field and its
change with time. In the Eulerian method a particle point in the space occupied by the fluid is
selected. We denote this point by its coordinates (x1, x2, x3). In this case x1, x2, x3 and t are
independent. So expressions like ẋ, ẍ, · · · etc do not occur.

In Eulerian method the velocity of fluid at a point is measured as follows:

Consider a fixed point P (x1, x2, x3) in space, at this point suppose an apparatus is placed to
record the velocity for different time t. This measurement yields velocity at P as a function
of t. However by locating the recording apparatus at all points of the medium and assembling
the resulting data we obtain the velocity yield as a function of t and x1, x2, x3. Therefore ve-
locity components v1, v2, v3 as a function of x1, x2, x3 and t are known. In order to obtain the
expression for acceleration in Eulerian method we assume that v1 = F (x1, x2, x3, t).

Let after an interval of infinitesimal time δt, the material point move on to a neighbouring
position (x1 + δx1, x2 + δx2, x3 + δx3). Thus

δx1 = v1 δt in x1 direction
δx2 = v2 δt in x2 direction
δx3 = v3 δt in x3 direction . (7.2.1)



7.2. LAGRANGIAN DESCRIPTION OF MOTION OF A CONTINUUM 77

If δv1 be the change in particle the x1 - component of velocity by this time then

v1 + δv1 = F (x1 + v1δt, x2 + v2δt, x3 + v3δt, t+ δt)

= F (x1, x2, x3) + δt

[
v1
∂F

∂x1
+ v2

∂F

∂x2
+ v3

∂F

∂x3
+
∂F

∂t

]
+ · · · the terms containing high power of δt

= v1 + δt

[
v1
∂F

∂x1
+ v2

∂F

∂x2
+ v3

∂F

∂x3
+
∂F

∂t

]
(7.2.2)

Hence the x1-component of acceleration

dv1
dt

= lim
δt→0

δv1
δt

= v1
∂v1
∂x1

+ v2
∂v1
∂x2

+ v3
∂v1
∂x3

+
∂v1
∂t

=

[
v1

∂

∂x1
+ v2

∂F

∂x2
+ v3

∂

∂x3
+
∂

∂t

]
v1

=
Dv1
Dt

where
D

Dt
≡ v1

∂

∂x1
+ v2

∂F

∂x2
+ v3

∂

∂x3
+
∂

∂t

=
∂

∂t
+ vk

∂

∂xk
=

∂

∂t
+ (v⃗ · ∇⃗) (7.2.3)

Similarly components of acceleration in x2 and x3 directions are respectively
Dv2
Dt

and
Dv3
Dt

.

Example: Motion of a particle is given by x1 = X1+X2t+X3t
2, x2 = X2+X3t+X1t

2, x3 =
X3 +X1t+X2t

2.
(i) Find at time t, the velocity and acceleration of a particle which was at (1, 1, 1) at t = 0.
(ii) Find at time t, the velocity and acceleration of a particle which is at (1, 1, 1) at time t.

Solution: Here xi = xi(X1, X2, X3, t). Therefore the velocity components of the particle
which was as (1, 1, 1) at t = 0 are given by

v1 =
∂x1
∂t

= X2 + 2X3t = 1 + 2t at (1, 1, 1)

v2 =
∂x2
∂t

= X3 + 2X1t = 1 + 2t at (1, 1, 1)

v3 =
∂x3
∂t

= X1 + 2X2t = 1 + 2t at (1, 1, 1)

The acceleration of a particle which was at (1, 1, 1) at t = 0 are given by

f1 =
∂2x1
∂t2

= 2X3 = 2 at (1, 1, 1)

f2 =
∂2x2
∂t2

= 2X1 = 2 at (1, 1, 1)

f3 =
∂2x3
∂t2

= 2X2 = 2 at (1, 1, 1)
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Now using the given relations we have

x1 − x2t = X1(1− t3)

⇒ X1 =
x1 − x2t

1− t3

Similarly, X2 =
x2 − x3t

1− t3
, X3 =

x3 − x1t

1− t3
.

Therefore,

v1 = X2 + 2X3t =
x2 + x3t− 2x1t2

1− t3
=

1 + t− 2t2

1− t3
at xi = 1

v2 = X3 + 2X1t =
x3 + x1t− 2x2t2

1− t3
=

1 + t− 2t2

1− t3
at xi = 1

v3 = X1 + 2X2t =
x1 + x2t− 2x3t2

1− t3
=

1 + t− 2t2

1− t3
at xi = 1

Now the acceleration components

f1 =
∂v1
∂t

+ v1
∂v1
∂x1

+ v2
∂v1
∂x2

+ v3
∂v1
∂x3

=
∂

∂t

[
x2 + x3t− 2x1t

2

1− t3

]
+ v1

[
− 2t2

1− t3

]
+ v2

[
1

1− t3

]
+ v3

[
t

1− t3

]

=
−4x1t+ x3

1− t3
+ (x2 + x3t− 2x1t

2)
3t2

(1− t3)2
+

1

1− t3
[v1 · (−2t2) + v2 + v3t]

=
−4t+ 1

1− t3
+

(1 + t− 2t2)3t2

(1− t3)2
+

1 + t− 2t2

(1− t3)2
(1 + t− 2t2) (as x1 = x2 = x3 = 1)

=
1− 4t

1− t3
+

1 + t− 2t2

(1− t3)2
[1 + t− 2t2 + 3t2]

=
(1− 4t)(1− t3) + (1 + t− 2t2)(1 + t+ t2)

(1− t3)2

=
2t4 − 2t3 − 2t+ 2

(1− t3)2
=

(1− t3)(2− 2t)

(1− t3)2
=

2− 2t

1− t3
.

Similarly

f2 = f3 =
2− 2t

1− t3

7.3 Flow

A deformable body is called a fluid if the deformation increases indefinitely with the continued
application of any force, how small it may be, on the body and can not return to its original
configuration when the force is withdrawn. This continuous shear deformation is called flow.



7.4. PATH LINE AND STREAM LINE 79

Geometrically, in the continuum physical properties including the velocity field is dependent
on time. The motion is then call unsteady. When the physical properties and the velocity field
does not change in time, the motion is said to be steady.

7.4 Path line and Stream line

A path line is a curve in the continuum followed by a given particle during tis motion.

Let v⃗ be the velocity of a given particle at any point P (x1, x2, x3) of the path line at time t and
r⃗ is the position vector of P . If v1, v2, v3 be components of v⃗ and dx1, dx2, dx3 be components
of dr⃗, then the differential equation of the path line is

v⃗ =
dr⃗

dt

i.e.,
dx1

v1(x1, x2, x3, t)
=

dx2
v2(x1, x2, x3, t)

=
dx3

v3(x1, x2, x3, t)
= dt

A stream line is a curve drawn in the continuum at any given instant of time such that tangent
at every point of it is in the instantaneous direction of the velocity of the particle at that point.
Therefore the differential equation of the stream line at any given instant t is

dx1
v1(x1, x2, x3, t)

=
dx2

v2(x1, x2, x3, t)
=

dx3
v3(x1, x2, x3, t)

The stream line shows how each particle is moving at a given instant of time while the path
line shows how a given particle is moving at each instant.

Experimentally, by dropping a small visible floating particle and taking a long time exposer,
we see the trace of the particle revealing its path line. A short time exposure of a fluid onto
which many floating particles are dropped will show the instantaneous direction of the veloc-
ity field, this revealing the stream lines.

Example: Find the stream line and path line of a continuum particle for the velocity field
v1 =

x1

1+t
, v2 = x2, v3 = 0.

Solution: The differential equation of the stream line at a given instant t is given by

dx1
v1

=
dx2
v2

=
dx3
v3

⇒ dx1
x1/(1 + t)

=
dx2
x2

=
dx3
0

where t is a constant.

(7.4.1)
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Therefore

(1 + t)
dx1
x1

=
dx2
x2

⇒ (1 + t) log x1 = log x2 + log c1

⇒ x
(1+t)
1 = c1x2

Also dx3 = 0 gives x3 = constant = c2 (say). Therefore the required equation of the stream-
line at a given instant t is

x2 =
x
(1+t)
1

c1
and x3 = c2.

(7.4.2)

The differential equation of the path line is given by

dx1
dt

= v1 =
x1

1 + t
,
dx2
dt

= v2 = x2 and
dx3
dt

= v3 = 0, where t is a variable.

(7.4.3)

Now

dx1
dt

=
x1

1 + t

⇒ log
(x1
c3

)
= log(1 + t)

⇒ x1 = c2(1 + t)

Now
dx2
dt

= x2 ⇒ x2 = c4e
t and

dx3
dt

= 0 ⇒ x3 = constant = c5

Similarly, the equation of path is x2 = c4e
(
x1
c3

−1) and x3 = c5.

7.5 Boundary Surface

A surface is a boundary surface when it always consists of the same set of particles.

Theorem: A necessary and sufficient condition for a given surface F (x1, x2, x3, t) = 0 to be
a boundary surface is that

Ḟ =
DF

Dt
=
∂F

∂t
+ v1

∂F

∂x1
+ v2

∂F

∂x2
+ v3

∂F

∂x3
= 0, i.e.,

∂F

∂t
+ vkF,k = 0

Proof: Necessary Part:
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Let F (x1, x2, x3, t) = 0 be a boundary surface. The necessary condition implies that the com-
ponent of the velocity of a particle on the surface along the normal to the boundary surface
must be equal to the normal velocity of the surface itself.

If vn be the velocity of the surface normal to itself at any point (x1, x2, x3) , n1, n2, n3 the
direction cosines of the normal to the surface and (v1, v2, v3) be the velocity components of
the particle intravenously occupying the point (x1, x2, x3), then mathematical formulation of
the condition is

vn = nivi

Since vn is the normal component of velocity, the displacement components (dx1, dx2, dx3)
of the point P (x1, x2, x3) of the surface are given by

dxi = nividt

At time t, let P (x1, x2, x3) be the position of the particle of the surface F (x1, x2, x3, t) = 0.
At time t + dt, the point moves to the position Q(x1 + dx1, x2 + dx2, x3 + dx3). Since the
particle continues to lie on the surface F (x1, x2, x3, t) = 0, we must have

F (x1 + dx1, x2 + dx2, x3 + dx3, t+ dt) = 0

⇒ F (x1, x2, x3, t) +
∂F

∂x1
dx1 +

∂F

∂x2
dx2 +

∂F

∂x3
dx3 +

∂F

∂t
dt = 0

[By Taylor series expansion]

⇒ ∂F

∂x1
dx1 +

∂F

∂x2
dx2 +

∂F

∂x3
dx3 +

∂F

∂t
dt = 0 (as F (x1, x2, x3, t) = 0)

⇒ ∂F

∂xi
dxi +

∂F

∂t
dt = 0

⇒

(
∂F

∂xi
ni

)
vndt+

∂F

∂t
dt = 0

⇒ vn =
−∂F

∂t

ni
∂F
∂xi
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But the direction cosines ni of the normal to the surface F (x1, x2, x3, t) = 0 are given by

ni =
1

R

∂F

∂xi
where R =

√√√√( ∂F
∂x1

)2

+

(
∂F

∂x2

)2

+

(
∂F

∂x3

)2

Therefore

vn =
−∂F

∂t
1
R

∂F
∂xi

∂F
∂xi

= −
∂F
∂t
R2

R

= − 1

R

∂F

∂t

Hence

− 1

R

∂F

∂t
= nivi =

1

R

∂F

∂xi
vi

⇒ ∂F

∂t
+ vi

∂F

∂xi
= 0

⇒ DF

Dt
= 0

Hence the condition is necessary.

Sufficient Part:

Let F (x1, x2, x3, t) = 0 satisfies the condition

DF

Dt
= 0

i.e,
∂F

∂t
+ v1

∂F

∂x1
+ v2

∂F

∂x2
+ v3

∂F

∂x3
= 0 (7.5.1)

which is the first order partial differential equation. The differential equation of the paths of
the particle is given by

dx1
v1

=
dx2
v2

=
dx3
v3

= dt

The integrals of these equation have the form xi = xi(X1, X2, X3, t) where Xi are three arbi-
trary constants which identify the particle.

Therefore the general solution of the Eq.(7.5.1) is given by F = Φ(X1, X2, X3) where Φ is
arbitrary function. This shows that when F = 0, a particle once on the surface remains on the
surface throughout the motion.

Example: Find the condition that
x2

a2
f1(t) +

y2

b2
f2(t) +

z2

c2
f3(t) = 1 is a possible form of a

boundary surface for an incompressible flow.
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Solution: The given surface can be written as

F (x, y, z, t) =
x2

a2
f1(t) +

y2

b2
f2(t) +

z2

c2
f3(t)− 1 = 0

Now the surface F (x, y, z, t) = 0 can be a possible boundary surface, if it satisfies the bound-
ary condition

∂F

∂t
+ u

∂F

∂x
+ v

∂F

∂y
+ w

∂F

∂z
= 0

⇒ x2

a2
f ′
1(t) +

y2

b2
f ′
2(t) +

z2

c2
f ′
3(t) + u

2x

a2
f1 + v

2y

b2
f2 + w

2z

c2
f3 = 0

⇒ 2x

a2
f1

(
u+

x

2

f ′
1

f1

)
+

2y

a2
f2

(
v +

y

2

f ′
2

f2

)
+

2z

c2
f3

(
w +

z

2

f ′
3

f3

)
= 0

This equation is identically satisfied if we take

u+
x

2

f ′
1

f1
= 0, v +

y

2

f ′
2

f2
= 0, w +

z

2

f ′
3

f3
= 0

⇒ u = −x
2

f ′
1

f1
, v = −y

2

f ′
2

f2
, w = −z

2

f ′
3

f3

which are the expressions for velocity components. Since the flow is incompressible, so u, v, w
satisfy the equation of continuity

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

⇒ −1

2

[
f ′
1

f1
+
f ′
2

f2
+
f ′
3

f3

]
= 0

⇒ log(f1f2f3) = constant = k (say).

7.6 Material derivative of volume integral

Let I(t) be the volume integral of a continuously derivable function A(x, y, z, t) which may
be density, pressure, components of velocity for any physical quantity defined over volume V
occupied by a given set of particles at time t. Therefore

I(t) =

∫∫∫
V

A(x, y, z, t) dx dy dz

The rate of change of I(t) w.r.t time denoted by
dI

dt
or
DI

Dt
is called the material derivative of

I and is defined for a given set of particles.

The expression of
DI

Dt
can be deduced as

I(t) =

∫∫∫
V

[
DA

Dt
+ A

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)]
dx dy dz
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7.7 Conservation of mass

Every material body, as well as every portion of such a body is possessed with a non-negative
scalar measure, called the mass of the body or of the portion under consideration. Physically,
the mass is associated with the inertial property of the body, i.e., its tendency to resist a change
in motion. The measure of mass may be a function of the space variables and time.

If ∆m is the mass of a small volume ∆V inn the current configuration and if we assume that
∆m is absolutely continuous, the limit

I(t) = lim
∆V→0

∆m

∆V

define the scalar field ρ = ρ(x, t) called the mass density of the body for that configuration at
time t. Therefore the mass m of the entire body is given by

m =

∫∫∫
V

ρ(x, t)dV

The law of conservation of mass asserts that the total mass of any portion of a continuum
medium remains unchanged during the motion, i.e., remains constant in every configuration.

7.8 Equation of continuity in Lagrangian Method

In this method the principle of conservation of mass in the form that the mass of a specific
portion of the moving continuum enclosed in a volume does not change as it move.

Consider a specific portion of the continuum occupying at the initial instant t = 0 an arbi-
trary volume V0 in the undeformed state. Let P0(X1, X2, X3) be any point in it and ρ0 =
ρ(X1, X2, X3) be the density at P0. Let dV0 be the element of the volume at P0 and mass of
this element is ρ0dV0. The total mass of the continuum which fills the volume V0 at t = 0
is
∫∫∫

V0
ρ0 dV0. At subsequent time t > 0, different particles of the continuum forming the

volume V0 move in such a manner that they form some other volume V in the deformed state.
Let the particle at the initial position P0 occupy the subsequent position P (x1, x2, x3) in V and
let ρ be the density of the medium at P .

In Lagrangian description we have

xi = xi(X1, X2, X3, t) and ρ = ρ(X1, X2, X3, t)

The total mass of the continuum which fills the volume V at time t is
∫∫∫

V
ρ dV . Also we

know that

dV = J dV0 =
∂(x1, x2, x3)

∂(X1, X2, X3)
dV0
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is the Jacobian. By principle of conservation of mass, the masses of the material within these
two volume must be equal. Therefore∫∫∫

V0

ρ0dV0 =

∫∫∫
V

ρdV

⇒
∫∫∫

V0

ρ0dV0 =

∫∫∫
V0

ρ
∂(x1, x2, x3)

∂(X1, X2, X3)
dV0

⇒
∫∫∫

V0

[
ρ0 − ρ

∂(x1, x2, x3)

∂(X1, X2, X3)

]
dV0 = 0

Since the volume V0 is arbitrary, it follows that

ρ0 − ρ
∂(x1, x2, x3)

∂(X1, X2, X3)
= 0

⇒ ρ0 = ρJ

which implies that ρJ is independent of time t. Therefore

d

dt
(ρJ) = 0

which is the equation of continuity in Lagrangian form.

7.9 Equation of continuity in Eulerian Method

In this method the principal of conservation of mass is expressed in the form that the rate at
which the mass of the continuum within any fixed closed surface increases is equal to the rate
at which the net mass of the continuum flows in across the boundary surface.

Let P (x1, x2, x2) be any point in the continuum and ρ be the density of the material at time
t, so that ρ = ρ(x1, x2, x3, t). Also let v⃗ be the velocity at this point with components v1, v2, v3.

Let us describe a closed surface ′s′ including the point P and let V be the volume within
S. Let n⃗ be the outward drawn normal to the surface S at any point on it. Then the normal
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component of velocity v⃗ along the direction of n⃗ is n⃗ · v⃗. Therefore, the rate at which the
material is entering within the volume bounded by S across the boundary surface is equal to

−
∫∫

S

ρn⃗ · v⃗ dS

Also the rate at which the material is accumulating within the volume is
∫∫∫

V

∂ρ

∂t
dV where

dV is the elementary volume. Now from the principle of conservation of mass these two rates
are equal. Therefore,∫∫∫

V

∂ρ

∂t
dV = −

∫∫
S

ρn⃗ · v⃗dS

⇒
∫∫∫

V

∂ρ

∂t
dV = −

∫∫
S

n⃗ · (ρv⃗)dS

⇒
∫∫∫

V

∂ρ

∂t
dV = −

∫∫∫
V

∇⃗ · (ρv⃗)dV (Applying Gauss divergence theorem)

⇒
∫∫∫

V

[
∂ρ

∂t
+ ∇⃗ · (ρv⃗)

]
dV = 0

This is true for any volume V which contains the point P in its interior. Making the dimension
of the volume tends to zero in a manner so as to enclose the point P always. Therefore the
integrated must vanish at P . Hence

∂ρ

∂t
+ ∇⃗ · (ρv⃗) = 0

⇒ ∂ρ

∂t
+ v⃗ · (∇⃗ρ) + ρ∇⃗ · v⃗ = 0

⇒

[
∂ρ

∂t
+ v1

∂ρ

∂x1
+ v2

∂ρ

∂x2
+ v3

∂ρ

∂x3

]
+ ρ

[
∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

]
= 0

⇒ Dρ

Dt
+ ρ

[
∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

]
= 0 (7.9.1)

where
D

Dt
≡ differentiation following the motion of the continuum.

This Eq.(7.9.1) is the Euler’s equation of motion, known as equation of continuity sometimes
called equation of conservation of mass.

For incompressible material, the material derivaive of the density is zero i.e.,
Dρ

Dt
= 0. In this

case the equation of continuity becomes

∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

= 0

⇒ ∇⃗ · v⃗ = 0
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7.10 Equivalence of equation of continuity in Lagrangian
and Eulerian form

In Lagrangian form the equation of continuity is

d

dt
(ρJ) = 0 where J =

∂(x1, x2, x3
∂(X1, X2, X3)

⇒ J
dρ

dt
+ ρ

dJ

dt
= 0 (7.10.1)

If we want to pass from Lagrangian to Eulerian form we replace
d

dt
by

D

Dt
and ẋ1, ẋ2, ẋ3 by

v1, v2, v3 respectively. Now

dJ

dt
=

d

dt

∣∣∣∣∣∣
∂x1

∂X1

∂x2

∂X1

∂x3

∂X1
∂x1

∂X2

∂x2

∂X2

∂x3

∂X2
∂x1

∂X3

∂x2

∂X3

∂x3

∂X3

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
∂

∂X1

(
dx1

dt

)
∂x2

∂X1

∂x3

∂X1

∂
∂X2

(
dx1

dt

)
∂x2

∂X2

∂x3

∂X2

∂
∂X3

(
dx1

dt

)
∂x2

∂X3

∂x3

∂X3

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
∂x1

∂X1

∂
∂X1

(
dx2

dt

)
∂x3

∂X1

∂x1

∂X2

∂
∂X2

(
dx2

dt

)
∂x3

∂X2

∂x1

∂X3

∂
∂X3

(
dx2

dt

)
∂x3

∂X3

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
∂x1

∂X1

∂x2

∂X1

∂
∂X1

(
dx3

dt

)
∂x1

∂X2

∂x2

∂X2

∂
∂X2

(
dx3

dt

)
∂x1

∂X3

∂x2

∂X3

∂
∂X3

(
dx3

dt

)
∣∣∣∣∣∣∣∣∣(7.10.2)

Putting dx1

dt
= v1, first determinant of (7.10.2) becomes

∂(v1, x2, x3)

∂(X1, X2, X3)
=

∂(v1, x2, x3)

∂(x1, x2, x3)
· ∂(x1, x2, x3)

∂(X1, X2, X3)

= J ·

∣∣∣∣∣∣
∂v1
∂X1

0 0
∂v1
∂X2

1 0
∂v1
∂X3

0 1

∣∣∣∣∣∣
= J · ∂v1

∂x1

Similarly 2nd and 3rd determinant of (7.10.2) are J ∂v2
∂x2
, J ∂v3

∂x3
respectively. So equation (7.5.1)

becomes

J
Dρ

Dt
+ ρJ

(
∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

)
= 0

⇒ Dρ

Dt
+ ρ

(
∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

)
= 0 (7.10.3)

which is the equation of continuity in Eulerian form.
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7.11 Few Probable Questions

(a) Given Eulerian velocity distribution at any time t in a fluid is

q = (−z + cos at)j + (y + sin at)k,

a is a constant (̸= ±1). Find the streamlines and pathlines. Discuss the

(Eij) =

 5 −1 −1
−1 4 0
−1 0 4


Determine principal strains. Find strain invariants from them. Show the equivalence of
strain invariants. [Ans: θ1 = 13, θ2 = 54, θ3 = 72, E1 = 6, E2 = 4, E3 = 3].

(b) Show that
x2

a2
f(t) +

y2

b2
ϕ(t) +

z2

c2
ψ(t) = 1

is a possible form of the boundary surface if f(t)ϕ(t)ψ(t) = 1.

(c) Show that
x2

a2
tan2 t+

y2

b2
cot2 t = 1

is a possible form for the boundary surface of a liquid. Find an expression for the normal
velocity.

(d) Show that the variable ellipsoid

x2

a2e−t cos(t+ π/4)
+

y2

b2et sin(t+ π/4)
+

z2

c2 sec 2t
= 1

is a possible form of boundary surface of a liquid at any time t. Determine the velocity
q of any particle on this velocity. Show that the equation of continuity is satisfied.

(e) Show that the ellipsoid

x2

a2k2t2n
+ ktn

{(
y2

b2
+
z2

c2

)}
= 1

is a possible form of the boundary surface of a liquid.



Unit 8

Course Structure

• Momentum principles and equation of motion

• Energy balance, laws of thermodynamics

• Constitutive equation: Generalised Hooke’s law

• Isotropy and elastic moduli, Stress-Strain relation

8.1 Momentum principles and equation of motion

The principle of balance of linear momentum states that the time rate of change of linear
momentum of any portion of a continuum in motion is equal to the total applied force acting
on that portion.

8.1.1 Equation of motion of a continuum applying the principle of linear
momentum:

Let a given set of material particle of a continuum occupy the volume V0 at time t0 which
now occupy the volume V at time t. Let S be the boundary surface of V . Let (v1, v2, v3) be
the components of the velocity and ρ be the density at any point (x1, x2, x3) within V at time
t. Let ρX1, ρX2, ρX3 be the components of the body force per unit volume of the material
within V and τνx1 , τνx2 , τνx3 are the components of surface force at any point on S where ν⃗ is
the outward drawn normal to the surface whore direction cosines are l,m, n.
By Newton’s 2nd law the rate of change of components of the linear momentum of material

89
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within V in any direction must be equal to the resultant of the forces on the material in V in
that direction. By considering components in the x-direction we have

D

Dt

∫∫∫
V

ρv1dV︸ ︷︷ ︸
Change in momentum in x1−direction

=

∫∫∫
V

ρX1dV︸ ︷︷ ︸
Body force

+

∫∫
S

τνx1dS︸ ︷︷ ︸
Surface force

(8.1.1)

⇒
∫∫∫

V

[
D

Dt
(ρv1) + ρv1

(
∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

)]
dV =

∫∫∫
V

ρX1dV

+

∫∫
S

(lτx1x1 +mτx2x1 + nτx3x1)dS (8.1.2)

Now by Gauss Theorem∫∫
S

(lτx1x1 +mτx2x1 + nτx3x1)dS =

∫∫∫
V

[
∂

∂x1
(τx1x1) +

∂

∂x2
(τx2x1) +

∂

∂x3
(τx3x1)

]
dV

Also

D

Dt
(ρv1) + ρv1

[
∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

]

=

[
∂

∂t
(ρv1) + v1

∂

∂x1
(ρv1) + v2

∂

∂x2
(ρv1) + v3

∂

∂x3
(ρv1)

]
+ ρv1

[
∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

]

= ρ

[
∂v1
∂t

+ v1
∂v1
∂x1

+ v2
∂v1
∂x2

+ v3
∂v1
∂x3

]
+ v1

[
∂ρ

∂t
+ v1

∂ρ

∂x1
+ v2

∂ρ

∂x2
+ v3

∂ρ

∂x3

]

+ ρv1

[
∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

]

= ρ
Dv1
Dt

+ v1

[
∂ρ

∂t
+

∂

∂x1
(ρv1) +

∂

∂x2
(ρv2) +

∂

∂x3
(ρv3)

]
= ρ

Dv1
Dt

(As the quantity in the third bracket is zero by the equation of continuity)
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The equation (8.1.2) becomes∫∫
V

[
ρ
Dv1
Dt

− ρX1 −

(
∂τx1x1

∂x1
+
∂τx2x1

∂x2
+
∂τx3x1

∂x3

)]
dV = 0

Since the equation holds for any arbitrary volume V , so the integral must vanish. Therefore

ρ
Dv1
Dt

=
∂τx1x1

∂x1
+
∂τx2x1

∂x2
+
∂τx3x1

∂x3
+ ρX1 (8.1.3)

Similarly considering momentum and forces in x2 and x3 directions respectively, we obtain
other two relations as below

ρ
Dv2
Dt

=
∂τx1x2

∂x1
+
∂τx2x2

∂x2
+
∂τx3x2

∂x3
+ ρX2 (8.1.4)

ρ
Dv3
Dt

=
∂τx1x3

∂x1
+
∂τx2x3

∂x2
+
∂τx3x3

∂x3
+ ρX3 (8.1.5)

Equations (8.1.3), (8.1.4), (8.1.5) are called the Eulerian equation of motion of continuum or
the stress equation of motion of continuum. Writtin τ11, τ22, τ12 etc. for τx1x1 , τx2x2 , τx1x2 etc.
equations (8.1.3), (8.1.4), (8.1.5) together can be written as

ρ
Dvi
Dt

=
∂τji
∂xj

+ ρXi (i, j = 1, 2, 3) (8.1.6)

This equation is known as the Cauchy equation of motion for a continuum.

8.2 Energy balance, Laws of Thermodynamics

8.2.1 Principle of conservation of Energy

Let a given set of material particles of the continuum which occupied the volume V0 at time
t = 0, occupy the volume V at time t. Let S be the boundary surface of V .

Let v1, v2, v3 be the components of velocity and ρ be the density at any point (x1, x2, x3) with
in V at time t. ρX1, ρX2, ρX3 are the components of body force. (ρF⃗ ) per unit volume of the
material within V and τν1 , τν1 , τν1 are the components of surface stress vector at any point on
S where ν⃗ is the outward drawn normal to the surface S with direction cosines l,m, n.

The principle of conservation of energy, also known as first law of thermodynamics, states that
time rate of change of kinetic and internal energy (total energy) of the material within V must
be equal to the rate of work done by the body and surface forces plus any non-mechanical
energy supplied to the material within V per unit time. (Non-mechanical energy may include
thermal, chemical or eletromagnetical energy, but we shall only consider the thermal energy
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change.) So if K and E be the K.E and internal energy respectively of the material within V
then energy principle gives

DK

Dt
+
DE

dt
= rate of work done by the body and surface forces (8.2.1)

+ rate of increase of total heat within the material in V.

Now

DK

Dt
=

D

Dt

∫∫∫
V

1

2
ρq2dV where q2 = v21 + v22 + v23

=

∫∫∫
V

[
D

Dt

(
1

2
ρq2

)
+

1

2
ρq2

(
∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

)]
dV

=

∫∫∫
V

[
1

2
q2
Dρ

Dt
+
ρ

2

D

Dt
(q2) +

1

2
q2ρ

∂vi
∂xi

]
dV

=

∫∫∫
V

[
1

2
q2

{
Dρ

Dt
+ ρ

∂vi
∂xi

}
+
ρ

2

D

Dt
(v21 + v22 + V 2

3 )

]
dV

=

∫∫∫
V

ρ

[
v1
Dv1
Dt

+ v2
Dv2
Dt

+ v3
Dv3
Dt

]
dV, since by equation of continuity

Therefore,

DK

Dt
=

∫∫∫
V

ρ

[
vj
Dvj
Dt

]
dV (8.2.2)
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Let e be the internal energy per unit mass. Therefore,

DE

Dt
=

D

Dt

∫∫∫
V

ρedV

=

∫∫∫
V

[
D(ρe)

Dt
+ ρe

{
∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

}]
dV

=

∫∫∫
V

[
e

{
Dρ

Dt
+ ρ

∂vi
∂xi

}
+ ρ

De

Dt

]
dV

=

∫∫∫
V

ρ
De

Dt
dV since by equation of continuity

Dρ

Dt
+ ρ

∂vi
∂xi

= 0 (8.2.3)

Now the rate of work done by body and surface forces on the material within V

=

∫∫∫
V

[(ρX1)v1 + (ρX2)v2 + (ρX3)v3]dV +

∫∫
S

[τν1v1 + τν2v2 + τν3v3]dS

=

∫∫∫
V

XjvjρdV +

∫∫
S

[(lτ11 +mτ21 + nτ31)v1 + (lτ12 +mτ22 + nτ32)v2

+ (lτ13 +mτ23 + nτ33)v3]dS

=

∫∫∫
V

XjVjρdV +

∫∫
S

[l(τ11v1 + τ12v2 + τ13v3) +m(τ21v1 + τ22v2 + τ23v3)

+ n(τ31v1 + τ23v2 + τ33v3)]dS

=

∫∫∫
V

XjvjρdV +

∫∫
S

[lτ1jvj +mτ2jvj + nτ3jvj]dS

=

∫∫∫
V

XjvjρdV +

∫∫∫
V

∂

∂xi
(τij)dV (By Gauss theorem)

=

∫∫∫
V

XivjρdV +

∫∫∫
V

[
vj
∂τij
∂xi

+ τij
∂vj
∂xi

]
dV (8.2.4)

If h be the body heat energy or radiant heat energy generated per unit mass per unit time and
c⃗ = c1î+ c2ĵ+ c3k̂ represents the flow of heat per unit area across a surface per unit time then
the rate of increase of total heat energy in to the continuum enclosed in V is equal to∫∫∫

V

ρhdV −
∫∫

S

(lc1 +mc2 + nc3)dS

=

∫∫∫
V

ρhdV −
∫∫∫

V

∂ci
∂xi

dV (By Gauss Theorem) (8.2.5)

Substituting the results of (8.2.2),(8.2.3),(8.2.4),(8.2.5) in equation (8.2.1) we get,∫∫∫
V

vj
Dvj
Dt

dV +

∫∫∫
V

ρ
De

Dt
dV =

∫∫∫
V

ρvjXjdV +

∫∫∫
V

[
vj
∂τij
∂xi

+ τij
∂vj
∂xi

]
dV

+

∫∫∫
V

ρhdV −
∫∫∫

V

∂ci
∂xi

dV (8.2.6)
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⇒
∫∫∫

V

vj

[
ρ
Dvj
Dt

− ρXj −
∂τij
∂xi

]
dV +

∫∫∫
V

[
ρ
De

Dt
− ρh+

∂ci
∂xi

− τij
∂vj
∂xi

]
dV = 0(8.2.7)

⇒
∫∫∫

V

[
ρ
De

Dt
− ρh+

∂ci
∂xi

− τij
∂vj
∂xi

]
dV = 0 (8.2.8)

[Since ρDvj
Dt

= ρXj +
∂τij
∂xi

by Cauchy equation of motion for a continuum]

Since integral is zero, for an arbitrary volume V so we must have

ρ
De

Dt
= ρh− ∂ci

∂xi
+ τij

∂vj
∂xi

(8.2.9)

Now τij
∂vj
∂xi

=
1

2
τij

(
∂vj
∂xi

+
∂vi
∂xj

)
+

1

2
τij

(
∂vj
∂xi

− ∂vi
∂xj

)
(8.2.10)

= τijdij + 0 (8.2.11)

where dij =
1

2

(
∂vj
∂xi

+
∂vi
∂xj

)
is the strain rate tenor. The last term on the R.H.S of (8.2.10)

vanishes because it is the product of a symmetric tensor and with an antisymmetric tensor.
Using the result (8.2.11) in equation (8.2.9) we obtain the final form of the energy equation

ρ
De

Dt
= ρh− ∂ci

∂xi
+ τijdij (8.2.12)

The scalar quantity τijdij is called stress power.

8.3 Constitutive Equations

As equation which describes a property of a material is called a constitutive equation of that
material. A stress strain relation describes a mechanical property of the material and therefore
this relation is constitutive equation.

8.3.1 Generalized Hooke’s Law

In a continuous medium, the state of stress is completely determined by the stress tensor τij
and the state of deformation by the strain tensor eij .
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In general it may be expressed as

T = f(e)

i.e, τij = fij(ekl), i, j, k, l = 1, 2, 3

where, f is a symmetric tensor valued function of various strain tensor e.

This is the generalized Hooke’s law, which stated that at each point of a continuous medium
at a fixed temperature each of the six components is a function of the six strain components.

Expanding the equation by Taylors series theorem, we obtain

τij = fij(0, 0, · · · , 0) +

(
∂fij
∂ekl

)
ekl + · · ·

= bij + aijklekl + · · ·

For linear elastic body, the stresses are liner function of infinitesimal strains, the constitutive
equation can be written as

τij = bij + aijklekl (8.3.1)

Since in the initial unstrained state, the body will be unstressed, τij = 0 when all eij = 0.
Therefore we must have fij(0, 0, · · · , 0) = bij = 0 for i, j = 1, 2, 3. Thus the constitutive
equations for a linear elastic solid takes the form

τij = aijklekl, i, j, k, l = 1, 2, 3 (8.3.2)

i.e,

τ11 = a1111e11 + a1112e12 + · · ·+ a1133e33

τ12 = a1211e11 + a1212e12 + · · ·+ a1233e33

· · · · · · · · · · · · · · · · · · · · · (8.3.3)
· · · · · · · · · · · · · · · · · · · · ·
τ33 = a3311e11 + a3312e12 + · · ·+ a3333e33

where the tensor of elastic coefficients aijkl has 34 = 81 components.

However, due to the symmetry of both the stress and strain tensors, it is clear that

aijkl = ajikl = aijlk

which reduces the 81 possibilities to 36 distinct coefficients at most.

The constitutive linear law for the relation (8.3.2) between stress and strain is known as the
generalized Hooke’s law for linear elastic solid. The coefficients aijkl are called the elastic
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constant or elastic moduli and they are describing the elastic properties of the body.

Note: A particular case of relation (8.3.2) is

τ11 = Ee11

If the coefficient E is a constant then the above relation state that for a linear elastic solid the
normal stress in x1 direction is directly proportional to the normal strain in the same direction
(within the strain limit). This relation is known as Hooke’s law.

8.4 Isotropy and Elastic moduli

8.4.1 Constitutive equation of linearly elastic isotropic solid

A linearly elastic solid is said to be isotropic if it exhibits same elastic symmetry in all direc-
tions. For such materials, the constitutive equation has only two elastic constants.

Now for a linear elastic solid we have from generalized Hooke’s law

τij = aijklekl; i, j, k, l = 1, 2, 3 (8.4.1)

where aijkl are elastic constants. Now aijkl can be written as

aijkl =
1

2
(aijkl − aijlk) +

1

2
(aijkl + aijlk)

= bijkl + cijkl

where bijkl =
1

2
(aijkl − aijlk) and cijkl = 1

2
(aijkl + aijlk).

Now

bijkl =
1

2
(aijkl − aijlk)

= −1

2
(aijkl − aijlk)

= bijlk,

and cijkl =
1

2

1

2
(aijkl + aijlk) = cijlk. Hence bijkl is skew-symmetric and cijkl is symmetric.

Therefore we have

τij = aijklekl

= bijklekl + cijklekl

= 0 + cijklekl

Therefore

τij = cijklekl i, j, k, l = 1, 2, 3 (8.4.2)
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Since τij and eij are second order tensors, therefore cijkl must be a tensor of order 4. Now
for isotropic elastic medium the elastic constant cijkl remains the same under all orthogonal
transformation of the coordinate axes. Now any fourth order tensor can be represented in the
form

cijkl = αδijδkl + βδikδjl + γδilδjk where α, β, γ are scalars. (8.4.3)

Also

cijlk = αδijδlk + βδilδjk + γδikδjl (8.4.4)

Since cijkl is symmetric therefore using the relation cijkl = cijlk, we have

αδijδkl + βδikδjl + γδilδjk = αδijδlk + βδilδjk + γδikδjl

⇒ (β − γ)(δikδjl − δilδjk) = 0 (8.4.5)

The relation (8.4.5) is true for all values of i, j, k, l. If we take i = k = 1 and j = l = 2, the
equation (8.4.5) becomes

(β − γ)(δ11δ22 − δ12δ21) = 0

⇒ (β − γ)(1− 0) = 0

⇒ β = γ

Thus equation (8.4.3) can be written as

cijkl = αδijδkl + β(δilδjk + δikδjl) (8.4.6)

Therefore from equation (8.4.2) we can write

τij = αδijδklekl + β(δilδjk + δikδjl)ekl

= αδijekk + β(δilejl + δikekj)

= αδijekk + β(eji + eij)

= αδijekk + 2βeij [as eij = eji]

This can be written as

τij = λθδij + 2µeij (8.4.7)

where θ = ekk = e11 + e22 + e33, λ = α and µ = β. These relation represents the generalized
Hooke’s law for a linear isotropic elastic solid. The constants λ and µ are called Lame constant
or Lame moduli. The relation (8.4.7) can also be rewritten in the form of a matrix equation as
follows 

τ11
τ22
τ33
τ12
τ23
τ31

 =


λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ




e11
e22
e33
e12
e23
e31
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Also we can write

τ11 = λθ + 2µ
∂u1
∂x1

τ22 = λθ + 2µ
∂u2
∂x2

τ33 = λθ + 2µ
∂u3
∂x3

τ12 = µ

(
∂u1
∂x2

+
∂u2
∂x1

)

τ23 = µ

(
∂u1
∂x3

+
∂u1
∂x3

)

τ31 = µ

(
∂u1
∂x3

+
∂u1
∂x3

)
(8.4.8)

where θ =
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

.

Example 8.4.1. Find the strain and stress components for the displacement field given by
u1 = 3x1x

2
2, u2 = 2x1x3, u3 = x23 − x1x2.

Solution: Let us take the principle direction of strain at some point of the body as coordinate
axes. Let eij be strain tensor and τij be stress tensor at that point. Then

e11 =
∂u1
∂x1

= 3x21, e22 =
∂u2
∂x2

= 0, e33 =
∂u3
∂x3

= 2x3,

e23 =
1

2

(
∂u2
∂x3

+
∂u3
∂x2

)
= x1,

e31 =
1

2

(
∂u1
∂x3

+
∂u3
∂x1

)
= −x2,

e12 =
1

2

(
∂u1
∂x2

+
∂u2
∂x1

)
= 6x1x2 + 2x3 (8.4.9)

Therefore θ = e11 + e22 + e33 = 3x22 + 2x3.

The constitutive equation for isotropic elastic body given by the following equation

τij = λθδij + 2µeij

where λ and µ are Lame’s constant.
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Therefore, the stress components are

τ11 = λθδ11 + 2µe11 = (3λ+ 6µ)x22 + 2λx3

τ22 = λθδ22 + 2µe22 = λ(3x22 + 2x3)

τ33 = λθδ33 + 2µe33 = 3λx22 + (2λ+ 4µ)x3

τ12 = λθδ12 + 2µe12 = 2µe12 = 2µ(6x1x2 + 2x3

τ23 = λθδ23 + 2µe23 = 2µe23 = 2µx1

τ31 = λθδ31 + 2µe31 = 2µe31 = −2µx2

Note 8.4.2. The principle directions of strain at each point of a linearly elastic isotropic body
are coincident with the principle directions of stress.

Proof: Let us take the principle direction of strain at some point of the body as coordinate axes.
Let eij be strain tensor and τij be stress tensor at that point. Then e31 = 0, e12 = 0, e23 = 0.

Now from constitutive equation for isotropic linearly elastic solid body is

τij = λθδij + 2µeij

Thus

τ12 = 2µe12 = 0

τ23 = 2µe23 = 0

τ31 = 2µe31 = 0

Hence coordinate axes must be along the principle directions of stress.

8.5 Strains in terms of Stresses

From stress-strain relations for isotropic linear elastic solid, we have

τij = λθδij + 2µeij (8.5.1)

where λ and µ are Lame’s constant.

Putting j = i and summing for i = 1, 2, 3 we get

τij = 3λθ + 2µeii

= 3λθ + 2µθ

Θ = (3λ+ 2µ)θ

Hence
θ =

Θ

(3λ+ 2µ)
(8.5.2)
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where Θ = τkk =sum of normal stresses=τ11 + τ22 + τ33. Also we have

eij =
τij
2µ

− λθδij
2µ

⇒ eij =
τij
2µ

− λ

2µ

(
Θ

3λ+ 2µ

)
δij (8.5.3)

for µ ̸= 0 and 3λ+ 2µ ̸= 0; Θ = τkk

Equation (8.5.3) is the inversion of Hooke’s law and give us the strain stress relation.

8.6 Elastic Moduli

In order to find the physical meaning of the elastic constants/moduli appearing in the Hooke’s
law, we consider the following particular cases.

Suppose that the stress tensor has only one non zero component τ11. Such a stress system
occurs in a beam placed along the x1 axis and subjected to a longitudinal stress. Then from
stress strain relations,

eij =
1

2µ

[
τij −

λ

3λ+ 2µ
δijτkk

]
we have

e11 =
1

2µ

[
τ11 −

λ

3λ+ 2µ
δ11τ11

]
=

λ+ µ

µ(3λ+ 2µ)
τ11

e22 =
1

2µ

[
τ22 −

λ

3λ+ 2µ
δ22(τ11 + τ22 + τ33)

]
= − λ

2µ(3λ+ 2µ)
τ11

e33 =
1

2µ

[
τ33 −

λ

3λ+ 2µ
δ33(τ11 + τ22 + τ33)

]
= − λ

2µ(3λ+ 2µ)
τ11

e12 = e23 = e31 = 0
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If we set

E =
µ(3λ+ 2µ)

λ+ µ
(8.6.1)

and σ =
λ

2(λ+ µ)
(8.6.2)

Then we have

τ11
e11

= E and
e22
e11

=
e33
e11

= −σ

Since τ11 represents tension, τ11 > 0 also tensile stress will produce an extension in the di-
rection of the axis of cylinder and a contraction in the cross-section. Thus τ11 > 0 implies
e11 > 0 and e22, e33 < 0. It follows that E > 0 and σ > 0.

Therefore, E =
τ11
e11

=
longitudinal stress
longitudinal strain

This constant E is called Young’s Modulus.

Also

σ =

∣∣∣∣∣e22e11
∣∣∣∣∣ =

∣∣∣∣∣e33e11
∣∣∣∣∣ = ratio of the contraction of the linear element

is a transverse direction to the corresponding extension in the longitudinal direction. This ratio
is known as Poissons ratio.

Note: Solving the relation (8.6.1) and (8.6.2) for λ and µ we get

1 + σ = 1 +
λ

2(λ+ µ)
=

3λ+ 2µ

2(λ+ µ)
=

E

2µ

⇒ µ =
E

2(1 + σ)
> 0, since E, r > 0.

Now

1− 2σ = 1− 2λ

2(λ+ µ)
=

µ

λ+ µ
, 1 + σ =

3λ+ 2µ

2(λ+ µ)

(1− 2σ)(1 + σ) =
µ

λ+ µ

3λ+ 2µ

2(λ+ µ)
=

E

2µ

µ

λ+ µ
=
E

λ
σ ⇒ λ =

Eσ

(1 + σ)(1− 2σ)
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8.7 Stress-Strain relation in terms of E and σ

We know that

τij = λθδij + 2µeij (8.7.1)

But λ =
Eσ

(1 + σ)(1− 2σ)
and µ =

E

2(1 + σ)

Therefore τij =
Eσ

(1 + σ)(1− 2σ)
θδij +

E

(1 + σ)
eij

⇒ τij =
E

(1 + σ)

[
eij +

σ

1− 2σ
δijekk

]
(as θ = ekk) (8.7.2)

Also we have

eij =
1

2µ

[
τij −

λΘ

3λ+ 2µ
δij

]
(8.7.3)

Also E =
(3λ+ 2µ)µ

λ+ µ
and σ =

λ

2(λ+ µ)

∴
σ

E
=

λ

2(λ+ µ)

(λ+ µ)

µ(3λ+ 2µ)
=

λ

2µ(3λ+ 2µ)

∴
λ

3λ+ 2µ
=
σ

E
· 2µ =

σ

E
· E

1 + σ
=

σ

1 + σ

[
since µ =

E

2(1 + σ)

]
(8.7.4)

From (8.7.3) we have

eij =
1 + σ

E

[
τij −

σ

1 + σ
Θδij

]

⇒ eij =
1

E

[
(1 + σ)τij − σΘδij

]

Thus

e11 =
1

E

[
(1 + σ)τ11 − σ(τ11 + τ22 + τ33)

]
(since Θ = τ11 + τ22 + τ33)

=
1

E

[
τ11 − σ(τ22 + τ33)

]
(8.7.5)
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Similarly,

e22 =
1

E

[
τ22 − σ(τ33 + τ11)

]
e33 =

1

E

[
τ33 − σ(τ11 + τ22)

]
e23 =

1

E

[
(1 + σ)τ23 − 0

]
=

1 + σ

E
τ23

e31 =
1 + σ

E
τ31 and e12 =

1 + σ

E
τ12



Unit 9

Course Structure

• Linearised elasticity, Equation of motion and equilibrium

• Compatibility of strain components, Beltrami-Michell compatibility equation

• Strain energy density function, Saint Venant’s principle

• Boundary value problems of elasticity, Clapeyron’s theorem

9.1 Equation of Motion and Equilibrium in terms of Dis-
placement

Using the principle of balance of linear momentum, the stress equation of equilibrium of a
continuum under external body forces per unit volume is given by

τij,j + Fi = 0, i, j = 1, 2, 3 (9.1.1)

where τij are the stress components. From the stress-strain relation for a linear isotropic solid
is given by

τij = λθδij + 2µeij, θ = ekk, i, j = 1, 2, 3 (9.1.2)

where,

2eij =

(
∂ui
∂xj

+
∂uj
∂xi

)
= ui,j + uj,i (9.1.3)

ui being the displacement component.
Then, from (9.1.2) and (9.1.3), we get

τij = λθδij + µ[ui,jj + (uj,i)j] (9.1.4)

104
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Differentiating (9.1.4) partially with respect to xj and summing over j we get

τij,j = λδijθ,j + µ[ui,jj + (uj,i)j]

= λθ,j + µ[∇2ui + (uj,j)i]

= λθ,j + µ∇2ui + µθ,1i (9.1.5)

since

θ = ekk

=
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

= uj,j

Hence, from (9.1.1) and (9.1.5), we get,

µ∇2ui + (λ+ µ)θ,i + Fi = 0, i = 1, 2, 3 (9.1.6)

These are called the displacement equation of equilibrium, also called Navier’s equations.
The equation of motion in terms of displacements can similarly be obtained from the stress
equations of motion namely

τij,j + Fi =
ρüi,

µ∇2ui + (λ+ µ)θ,i + Fi =

ρ
∂2u

∂t2

In vector form,
µ∇2u⃗+ (λ+ µ)grad(div u⃗) + F⃗ = ρ¨⃗u

where, θ = div u⃗.
Note: For one-dimensional deformation, in absence of body forces, we have (Resolving in the
x-direction)

µ∇2u(x, t) + (λ+ µ)
∂θ

∂x
= ρ

∂2u

∂t2
(x, t)

⇒ µ
∂2u

∂x2
+ (λ+ µ)

∂

∂x

(
∂u

∂x

)
= ρ

∂2u

∂t2

⇒ (λ+ 2µ)
∂2u

∂x2
= ρ

∂2u

∂t2

⇒ ∂2u

∂x2
=

ρ

λ+ 2µ

∂2u

∂t2

⇒ ∂2u

∂x2
=

1
λ+2µ

ρ

∂2u

∂t2

⇒ ∂2u

∂x2
=

1

c2
∂2u

∂t2
where c =

√
λ+ µ

ρ

This equation is called one-dimensional wave equation. c is the speed of the dilational wave
or compressional wave.
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9.2 Compatibility of Strain Components

In three-dimension, the strain-tensor has six components and the displacement vector has three
components. If the displacement components are given, then from the strain displacement
relations,

eij =
1

2
(ui,j + uj,i), i, j = 1, 2, 3 (9.2.1)

The strain components eij can easily be determined. On the other hand, if six components
eij are given, the displacement field requires the solution of a system of six partial differential
equation (9.2.1).

For the determinaton of three unknowns ui(i = 1, 2, 3), such a system is overdetermined and
for the existence of a single valued continuous displacement field, certain restrictions must be
imposed. These conditions are known as compatibility equations for strains.

It is known that the six compatibility equations are

eij,kl + ekl,ij − eik,jl − ejl,ik = 0, (i, j, k = 1, 2, 3)

This system of equations consist of 34 = 81 equations, but some of these are identically
satisfied and some others are repeatitions becauseof the symmetry in the indices i, j and k, l.
then only six of these 81 equations remain and they are

e11,22 + e22,11 = 2e12,12

e22,33 + e33,22 = 2e23,23

e33,11 + e33,22 = 2e31,31

(−e23,1 + e31,2 + e12,3),1 = e11,23

(e23,1 − e31,2 + e12,3),1 = e22,31

(e23,1 + e31,2 − e12,3),1 = e33,12

Example 9.2.1. Test whether the following system of strain components is possible in an
elastic body:

exx = k(x2 + y2), eyy = k(z2 + y2), exy = kxyz,

eyz = ezx = exy = ezz = 0, k ̸= 0

Solution: Here,
∂exx
∂y

= 2ky,
∂2exx
∂y2

= 2k,

∂eyy
∂x

= 0,
∂2eyy
∂x2

= 0,

∂2exy
∂x∂y

=
∂

∂x

(
∂exy
∂y

)
=

∂

∂x
(kxz) = kz

Hence,
∂2exx
∂y2

+
∂2eyy
∂x2

̸= 2
∂2exy
∂x∂y
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Thus, the compatibility equations are not all satisfied and hence, the system of strain compo-
nents is not possible in an elastic body.

9.3 Beltrami-Michell Compatibility Equations

Let us consider the problems in which surface (stress) are prescribed everywhere on the bound-
ary.
The equations of compatibility of stress are

eij,kl + ekl,ij − eik,jl − ejl,ik = 0. (9.3.1)

Putting l = k and summing over k we get

eij,kk + ekk,ij − eik,jk − ejk,ik = 0. (9.3.2)

From stress-strain relations for isotropic elastic body

eij =
1 + σ

E

[
τij −

σ

1 + σ
Θδij

]
(9.3.3)

where,

σ =
λ

2(λ+ µ)
, E =

µ(3λ+ 2µ)

λ+ µ
.

Using the results

τij,kk =
∂2τij
∂x2k

= ∇2τij

τkk,ij =
∂2τkk
∂xi∂xj

= Θ,ij

From equation (9.3.2), we get,

eij,kk =
1 + σ

E

[
τij,kk −

σ

1 + σ
Θ,kkδij

]
=

1 + σ

E

[
∇2τij −

σ

1 + σ
Θ,kkδij

]
ekk,ij =

1 + σ

E

[
τkk,ij −

σ

1 + σ
Θ,ijδkk

]
=

1 + σ

E

[
Θ,ij −

3σ

1 + σ
Θ,ij

]
eik,jk =

1 + σ

E

[
τik,jk −

σ

1 + σ
Θ,jkδik

]
ejk,ik =

1 + σ

E

[
τjk,ik −

σ

1 + σ
Θ,ikδjk

]
Using these relations the equation (9.3.2) reduces to

1 + σ

E

[
∇2τij −

σ

1 + σ
Θ,kkδij +Θ,ij −

3σ

1 + σ
Θ,ij − τik,jk +

σ

1 + σ
Θ,jkδik − τjk,ik +

σ

1 + σ
Θ,ikδjk

]
= 0
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Hence,

∇2τij +Θ,ij − τik,jk − τjk,ik =
σ

1 + σ
[Θ,kkδij + 3Θ,ij −Θ,jkδik −Θ,ikδjk]

=
σ

1 + σ
[Θ,kkδij + 3Θ,ij −Θ,ji −Θ,ij]

⇒, ∇2τij +

[
1− 3σ

1 + σ
+

2σ

1 + σ

]
Θ,ij −

σ

1 + σ
∇2Θδij = τik,jk + τjk,ik

⇒ ∇2τij +
1

1 + σ
Θ,ij −

σ

1 + σ
δij∇2Θ = τik,jk + τjk,ik (9.3.4)

Now, from the stress equation of equilibrium, we have,

τik,k + ρFi = 0,

where Fi’s are the body force componenets per unit mass.
Differentiating partially with respect to xj we get,

τik,jk + ρFi,j = 0

⇒ τik,jk = −ρFi,j

Similarly differentiating with respect to xi, we get

τjk,ik = −ρFj,i

Substituting these values in equation 9.3.4, we get,

∇2τij +
1

1 + σ
Θ,ij −

σ

1 + σ
δij∇2Θ = −ρ[Fi,j + Fj,i] (9.3.5)

Putting j = i and summing up with respect to i, we get

∇2τii +
1

1 + σ
Θ,ii −

σ

1 + σ
δii∇2Θ = −ρ[Fi,i + Fi,i]

∇2Θ+
1

1 + σ
∇2Θ− 3σ

1 + σ
δii∇2Θ = −2ρFi,i[Θ = τkk]

Hence,

∇2Θ = −1 + σ

1− σ
divF⃗ (9.3.6)

Substituting equation 9.3.6 in equation 9.3.5 we get

∇2τij +
1

1 + σ
Θ,ij = − σ

1− σ
ρδijdivF⃗ − ρ[Fi,j + Fj,i], (i, j = 1, 2, 3) (9.3.7)

The above equation contains six independent equations. They are known as the Beltrami-
Michell compatibility equations for stresses.
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More generally, Beltrami-Michell equations become,

∇2τxx +
1

1 + σ

∂2Θ

∂x2
= − ρσ

1− σ
.divF⃗ − 2ρ

∂Fx

∂x

∇2τyy +
1

1 + σ

∂2Θ

∂y2
= − ρσ

1− σ
.divF⃗ − 2ρ

∂Fy

∂y

∇2τzz +
1

1 + σ

∂2Θ

∂z2
= − ρσ

1− σ
.divF⃗ − 2ρ

∂Fz

∂z

∇2τyz +
1

1 + σ

∂2Θ

∂y∂z
= −ρ(Fy,z + Fz,y)

∇2τzx +
1

1 + σ

∂2Θ

∂z∂x
= −ρ(Fz,x + Fx,z)

∇2τxy +
1

1 + σ

∂2Θ

∂x∂y
= −ρ(Fx,y + Fy,x)

Result 9.3.1. If the body forces are constants, the invariants Θ and θ are harmonic functions
and the stress components τij and strain components eij are bi-harmonic functions.

Proof. The Beltrami-Michell compatibility equation for stresses are given by

∇2τij +
1

1 + σ
Θ,ij = − σ

1− σ
ρδijdivF⃗ − ρ[Fi,j + Fj,i]

If F⃗ be a constant vector, then divF⃗ = 0⃗, Fi,j = 0 = Fj,i. Therefore, the above equations
become

∇2τij +
1

1 + σ
Θ,ij = 0

Putting j = i and summing over i, we get

∇2τii +
1

1 + σ
Θ,ii = 0

=⇒ ∇2Θ+
1

1 + σ
∇2Θ = 0

=⇒ 2 + σ

1 + σ
∇2Θ = 0

=⇒ ∇2Θ = 0

which shows that Θ is harmonic. Again, since Θ = (3λ+ 2µ)θ, we have

∇2Θ = ∇2(3λ+ 2µ)θ = 0

=⇒ ∇2θ = 0

which shows that θ is harmonic also. Now, from Beltrami-Michell equation,

∇2τij +
1

1 + σ
Θ,ij = 0
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Operating on both sides by ∇2, we get,

∇4τij +
1

1 + σ
(∇2Θ),ij = 0

=⇒ ∇4τij = 0 [since ∇2Θ = 0]

which shows that the stress components τi are bi-harmonic.
Further, we have

τij = λθδij + 2µeij [for isotropic elastic body]

Operating on both sides by ∇2, we get

∇2τij = λ∇2θδij + 2µ∇2eij = 2µ∇2eij, since∇2θ = 0.

Again, operating ∇2 on both sides,

∇4τij = 2µ∇4eij = 0 [as ∇4τij = 0]

Hence,

∇4eij = 0

which shows that eij are bi-harmonic.

Example 9.3.2. Show that the following stress components are not the solutions of the prob-
lem in elasticity, even though they satisfy the equations of equilibrium with zero body forces:

τ11 = α[x22 + σ(x21 − x22)], τ12 = −2ασx1x2, τ13 = 0,

τ22 = α[x21 + σ(x22 − x21)], τ23 = 0, τ33 = ασ(x21 + x22)

Solution: The quantity

Θ = τkk = τ11 + τ22 + τ33

is given by,

Θ = τkk = α[x22 + σ(x21 − x22)] + α[x21 + σ(x22 − x21)] + ασ(x21 + x22)

= α[(x21 + x22) + σ(x21 + x22)]

= α(1 + σ)(x21 + x22)

In absence of both forces, the Beltrami-Michell compatibility equations are

∇2τ11 +
1

1 + σ
Θ,ij = 0
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For i = 1, 2, 3, j = 1, 2, 3 this equation becomes,

∇2τij +
1

1 + σ
Θ,11 =

∂2τ11
∂x21

+
∂2τ11
∂x22

+
∂2τ11
∂x23

+
1

1 + σ

∂2Θ

∂x21

= 2ασ + (2α− 2ασ) + 0 +
1

1 + σ
.2α(1 + σ)

= 4α

̸= 0

∇2τ22 +
1

1 + σ
Θ,22 =

∂2τ22
∂x21

+
∂2τ22
∂x22

+
∂2τ22
∂x23

+
1

1 + σ

∂2Θ

∂x22

= (2α− 2ασ) + 2ασ + 0 +
1

1 + σ
.2α(1 + σ)

= 4α

̸= 0

∇2τ33 +
1

1 + σ
Θ,33 =

∂2τ33
∂x21

+
∂2τ33
∂x22

+
∂2τ33
∂x23

+
1

1 + σ

∂2Θ

∂x23

= 2ασ + 2ασ + 0 +
1

1 + σ
.0

= 4ασ

̸= 0

∇2τ12 +
1

1 + σ
Θ,12 =

∂2τ12
∂x21

+
∂2τ12
∂x22

+
∂2τ12
∂x23

+
1

1 + σ

∂2Θ

∂x1∂x2
= 0

Similarly,

∇2τ13 +
1

1 + σ
Θ,13 = 0

∇2τ23 +
1

1 + σ
Θ,23 = 0

Thus, Beltrami-Michell compatibility equations are not all satisfied. Hence the given stress
components are not solutions of the problem in elasticity.
The stress equations of equilibrium for a continuous medium is given by

τij,j + ρFi = 0, i, j = 1, 2, 3.

In absence of body forces, the stress equations of equilibrium becomes τij,j = 0, i, j = 1, 2, 3.
Therefore,

τ1j,j =
∂τ11
∂x1

+
∂τ12
∂x2

+
∂τ13
∂x3

= 2ασx1 − 2ασx1 + 0 = 0
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τ2j,j =
∂τ21
∂x1

+
∂τ22
∂x2

+
∂τ23
∂x3

= −2ασx2 + 2ασx2 + 0 = 0

τ3j,j =
∂τ31
∂x1

+
∂τ32
∂x2

+
∂τ33
∂x3

= 0 + 0 + 0 = 0

Hence, in absence of body forces, the given stress components satisfy the equations of equi-
librium.

9.4 Strain Energy Density Function

The work done in deforming a body by the surface forces, that is the stress, is transformed
completely into potential energy which is stored in that body. This potential energy due to
deformation or strain is called the strain energy or the stress potential of the elastic body.

Let W represents potential energy per unit volume stored up in the body by strain deformation
alone, then W must be a function of components of strain so that we can write

W = W (e1, e2, . . . , e6) such that τi =
∂W

∂ei
, i = 1, 2, . . . , 6

where,

τ1 = τ11, τ2 = τ22, τ3 = τ33,

τ4 = τ23 = τ32, τ5 = τ31 = τ13, τ6 = τ12 = τ21

Similarly,

e1 = e11, e2 = e22, e3 = e33,

e4 = e23 = e32, e5 = e31 = e13, e6 = e12 = e21

Now, expanding W in a power series about the origin, we have,

W = W (0, 0, . . . , 0) +

(
∂W

∂ei

)
0

ei +
1

2

(
∂2W

∂ei∂ej

)
0

eiej + · · ·

= c0 + ciei +
1

2
cijeiej[Neglecting the third and other higher order terms]

where,

c0 = W (0, 0, . . . , 0) = a constant.

ci =

(
∂W

∂ei

)
0

, cij =

(
∂2W

∂ei∂ej

)
0
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Since the magnitude of the derivatives of W does not depend on the order of differentiation,

∂2W

∂ei∂ej
=

∂2W

∂ej∂ei
=⇒ cij = cji

We disregard the constant c0, since we are interested in the derivative ofW . We can set c0 = 0.
Then,

W = ciei +
1

2
cijeiej.

We have,

∂

∂ei
(cpqepeq) = cpq

(
ep
∂eq
∂ei

+
∂ep
∂ei

eq

)
= cpq(epδqi + δpieq)

= cpiep + ciqeq

= (cji + cij)ej.

So, differentiating W with respect to ei, we get,

∂W

∂ei
= ci +

1

2
(cji + cij)ej

=⇒ τi = ci +
1

2
(cji + cij)ej

Now, τi vanishes when the strains are zero. Therefore, we must have ci = 0. Thus,

W =
1

2
cijeiej i, j = 1, 2, . . . , 6

2W = (cijej)ei

= τiei i = 1, 2, . . . , 6

since τi = cijej which is the generalized Hooke’s law for linear elastic solid in which stresses
are linear functions of strain.

Returning to double suffix symbols

2W = τijeij i, j = 1, 2, 3

For isotropic solids, Hooke’s law gives

τij = λθδij + 2µeij

Therefore,

2W = (λθδij + 2µeij)eij

= λθδijeij + 2µeijeij i, j = 1, 2, 3

= λθeii + 2µ(e211 + e222 + e233 + 2e223 + 2e231 + 2e212)

= λθ2 + 2µ(e211 + e222 + e233 + 2e223 + 2e231 + 2e212)
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Since λ and µ are positive, W is a positive definite quadratic form in the strains.

Different forms:

(a) W in terms of invariants of strain tensor.

The following expressions are the two invariants among three of the strain tensor:

I1 = eii = e11 + e22 + e33 = θ

I2 =

∣∣∣∣e11 e12
e21 e22

∣∣∣∣+ ∣∣∣∣e22 e23
e32 e33

∣∣∣∣+ ∣∣∣∣e33 e31
e13 e11

∣∣∣∣
= (e11e22 − e212) + (e22e33 − e223) + (e33e11 − e213)

Now,

2W = λθ2 + 2µ(e211 + e222 + e233 + 2e223 + 2e231 + 2e212)

= (λ+ 2µ)θ2 + 2µ[e211 + e222 + e233 + 2e223 + 2e231 + 2e212 − (e11 + e22 + e33)
2]

= (λ+ 2µ)θ2 − 2µ.2[e11e22 + e22e33 + e33e11 − e223 − e231 − e212]

= (λ+ 2µ)θ2 − 4µ[(e11e22 − 2e212) + (e22e33 − e223) + (e33e11 − e231)

= (λ+ 2µ)θ2 − 4µI2

= (λ+ 2µ)I2 − 4µI2

(b) W in terms of stresses:

We have the expression of strains in terms of stresses as

eij =
1

E
[(1 + σ)τij − σΘδij] =

1 + σ

E
τij −

σ

E
Θδij

Thus,

2W = τijeij

gives

2W = τij

[
1 + σ

E
τij −

σ

E
Θδij

]
=

σ

E
Θτijδij +

1 + σ

E
τijτij

=
σ

E
Θ2 +

1 + σ

E
[τ 211 + τ 222 + τ 233 + 2τ 223 + 2τ 231 + 2τ 212]

where, E is the Young’s modulus and σ is Poission’s ratio.
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9.5 Saint Venant’s Principle

In the application of theory of elasticity, we shall often refer to a principle into Saint-Venant’s,
the essence of which can be stated as follows:

If a system of forces acting on a small portion of the surface of an elastic body is repeated by
another “statically equivalent” system of forces acting on the same portion of the surface, this
redistribution of loading produces substantial changes in the stresses only in the immediate
neighbourhood of hte loading and the stresses are essentially same in the parts of ht ebody
which are at large distances in comparison with the linear dimension of the surface on which
the forces are changed.

The phrase “statically equivalent” means that the two distributions of forces have the same
resultant force and the same resultant moment.

As and illustration of the principle we can consider a long beam, one end of which is fixed in a
rigid wall while the other is acted by a distribution of forces that gives rise to a resultant force
F and a couple of moment M . Now there are infinitely many distributions of forces that may
act on the end of the beam and that will have the same resultant moment M .

The principle of Saint-Venant asserts that while the distributions of stresses near the region of
application may differ greatly, the eccentricities of the load distribution will have no apprecia-
ble effect on the state of stress far enough from the points of application, so that the system of
applied forces are statically equivalent.

9.6 Boundary Value Problems of Static and Dynamic Elas-
ticity

In elastostatics or elasto-dynamics where a linear elastic solid is in equilibrium or in motion,
the shape of the bodyand the distribution of the external body forces throughout the body are
known. The problem is: to find the 15 unknowns:6 stresses τij , 6 strains eij and 3 displacement
functions ui which satisfy the basic 15 appropriate field equation.

(a) Three equation sof equilibrium:

τij,j + ρFi = 0, i = 1, 2, 3.

(b) Six stress-strain constitutive relations

τij = λθδij + 2µeij, θ = ekk, i, j = 1, 2, 3.

or six equivalent strain stress constitutive relations

eij =
1 + σ

E

[
τij −

σ

1 + σ
Θδij

]
, θ = τkk, i, j = 1, 2, 3.



116 UNIT 9.

(c) and six displacement kinematic relations

eij =
1

2
[ui,j + uj,i], i, j = 1, 2, 3.

at all interior points of linearly elastic body.

The solution of these partial differential equations involve arbitrary functions by using a set of
boundary or initial conditions(as the case may be). Accordingly, it is necessary to formulate
proper boundary-value problems with appropriate boundary conditions for both elastostatical
and elastodynamical problems.

9.6.1 Fundamental Boundary value problems in elastostatics

(a) First fundamental boundary value problem:(stresses are prescribed)

To determine the distribution of displacements and stresses in the interior of an elastic
solid in equilibrium under prescribed body forces, when the distribution of the forces
acting on the surface of the body is known.

(b) Second Fundamental boundary value problem:(displacement are prescribed)

To determine the distribution of displacements and stresses in the interior of an elas-
tic solid in equilibrium under prescribed body forces, when the displacements on the
surface of the body are prescribed functions.

(c) Mixed boundary value problem:(stresses are prescribed over a portion of the boundary
and displacements are prescribed over the remaining part)

To determine the distributions of the displacements and stresses in the interior of an
elastic solid in equilibrium under prescribed body forces when the distribution of forces
on the parts

∑
τ of the surface

∑
and the displacement of points on the remaining part∑

u of
∑

are also prescribed functions.

Problem: State the fundamental boundary value problems of elasto-statics.

9.6.2 Uniqueness of solutions of fundamental boundary value problems
in elastostatic cases

Before we proceed to prove the uniqueness of solutions of Fundamental boundary value prob-
lems in elastostatics, we establish an important theorem concerning the strain energy function.

Theorem 9.6.1. (Clapeyron’s Theorem) If a body is in equilibrium under a given system of
external body forces and surface forces, then the work done by the external forces of the
equilibrium state in deforming the body from unstressed state to the state of equilibrium is
equal to twice the strain energy of deformation.
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Proof. Consider a linearly elastic body in a deformed state of rest under the action of body
force Fi per unit mass and the surface force T⃗ (ν) per unit area. The work done by the above
forces during the displacement ui is

W =

∫∫∫
V

ρFiuidV +

∫∫
S

Ti
(ν)uids (9.6.1)

Now ∫∫
S

T
(ν)
i uids =

∫∫
S

τijnjuids

=

∫∫∫
V

(τijui),jdV [By Gauss-divergence theorem]

=

∫∫∫
V

(τij,juidV + τijui,j)dV

=

∫∫∫
V

τij,juidV +

∫∫∫
V

τijeijdV +

∫∫∫
V

τijrijdV (9.6.2)

where,

eij =
1

2
[ui,j + uj,i] = eji

rij =
1

2
[ui,j − uj,i] = −rji

Also,

τij = τji

Therefore,

τijrij = τjirji = −τjirij = −τijrij
⇒ 2τijrij = 0 (9.6.3)

Hence, equation (9.6.2) becomes∫∫
S

T
(ν)
i uids =

∫∫∫
V

(τij,juidV +

∫∫∫
V

τijeijdV (9.6.4)

Substituting (9.6.4) in (9.6.1), we get

W =

∫∫∫
V

(ρFi + τij,j)uidV +

∫∫∫
V

τijeijdV

=

∫∫∫
V

τijeijdV [From the equation of equilibrium, ρFi + τij,j = 0] (9.6.5)

Now, the strain energy per unit volume

W =
1

2
τijeij [If the deformation takes place isothermally or adiabetically by Clapeyron’s formula]

(9.6.6)



118 UNIT 9.

From (9.6.4) and (9.6.5)

W =

∫∫∫
V

2W dV

This completes the proof.

Uniqueness: To prove the uniqueness of solutions, consider an elastic body in a state of rest
subjected to a specific given body force Fi. In addition to body forces either surface forces
T

(n)
i or surface displacement ui are prescribed on the boundary.

Let us assume that it is possible to obtain two stes of solutions u′
i, T

(n)′

i and u”i , T
(n)”
i which

satisfy 15 basic equations of elasticity and boundary conditions.

Let us define

ui = u
′

i − u”i , τij = τ
′

ij − τ ”ij

eij = e
′

ij − e”ij, T
(n)
i = T

(n)′

i − T
(n)”
i

For the first state of stress, we have

τ
′

ij,j + ρFi = 0

as well as the following boundary condition

τ
′

ijnj = fi(x1, x2, x3) [If surface forces are prescribed on the boundary]

⇒ u
′

i = gi(x1, x2, x3) [If displacement are prescribed on the boundary]

Similarly, for second state of stress

τ
′′

ij,j + ρFi = 0

with boundary condition

τ
′′

ij,jnj = fi(x1, x2, x3)

or, u
′′

i = gi(x1, x2, x3)

Subtracting, we get

τ
′

ij,j − τ
′′

ij,j = 0

and either

τ
′

ij,jnj − τ
′′

ij,jnj = 0

or,

u
′

i − u
′′

i = 0
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on the boundary.
In other words,

τij,j = 0

at every interior point and either

T
(n)
i = τijnj = τ

′

ij,jnj − τ
′′

ij,jnj = 0

or,

ui = u
′

i − u
′′

i = 0

on the boundary.

Thus, we have a new state of stress in which body forces are absent and either surface forces
or surface displacements vanish.

On the surface of the body, boundary conditions are either T (n)
i = 0 or, ui = 0. In either case,

T
(n)
i ui = 0 at every point on the boundary.

Also by Clapeyron’s theorem,∫∫∫
V

2W dV =

∫∫∫
V

ρFiuidV +

∫∫
S

T
(n)
i uids

For new state of stress, Fi = 0 in V and T (n)
i ui = 0 on S. Hence we have,∫∫∫

V

W dV = 0

But

W =
1

2
λθ2 + µ(e211 + e222 + e233 + 2e212 + 2e223 + 2e213)

is a positive definite quadratic form in components of strain. Hence the integral can vanish
only when W = 0, that is, when eij = 0. Also, from

τij = λθδij + 2µeij

it follows that

τij = 0

Therefore,

e
′

ij = e
′′

ij and τ
′

ij = τ
′′

ij

Consequently, components of strain tensor and components of stress tensor are identical. As
regards the uniqueness of displacements, we know that the displacements are solutions of the
equation

ui,j + uj,i = 2eij = 0

and are determined within the quantities representing the rigid body motion. Hence the prob-
lem follows.
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9.7 Fundamental boundary value problems in Elastodynam-
ics

In elastodynamics, the equilibrium equations must be replaced by the equations of motion
in the system of basic field equations. Therefore, all field quantities are now considered as
functions of time as well as of the coordinates. In elastodynamics, the problem is to find 15
unknowns: 6 stresses τij , 6 strains eij and 3 displacement functions ui = ui(x, t) which staisfy
the basic 15 equations

τij,j + ρFi = ρüi, i = 1, 2, 3

τij = λθδij + 2µeij, θ = ekk, i, j = 1, 2, 3

eij =
1

2
(ui,j + uj,i)

(9.7.1)

at all interior points of linearly elastic body.

(a) First fundamental boundary value problem in elastodynamics(stress vector is given
at each point on the boundary)

When the surface function fi(x1, x2, x3, t) are prescribed on the boundary surface of the
body at the time t, representing the stress vector acting on surface element with normal
ni the stresses τij , in addition must satisfy 3 boundary conditions

τijnj = fi(x1, x2, x3, t), i = 1, 2, 3 (9.7.2)

To these conditions, it is necessary to adjoin the initial conditions specifying displace-
ment and velocity of a point of the body at initial time t = 0, that is,

ui(x1, x2, x3, 0) = Fi(x1, x2, x3)

∂ui
∂t

(x1, x2, x3, 0) = Gi(x1, x2, x3)
(9.7.3)

throughout the volume. Thus, the problem of obtaining the displacements, strains and
stresses in linearly elastic isotropic solid body in equilibrium which satisfy 15 basic
equations (9.7.1) in addition to the boundary condition (9.7.2) together with the initial
conditions (9.7.3) is known as the first fundamental boundary value problem in elasto-
dynamics.

(b) Second fundamental boundary value problem in elastodynamics (The displacement
is prescribed at each point on the boundary)

When the displacement functions gi(x1, x2, x3, t) are prescribed on the boundary at time
t then the displacement ui, in addition, must satisfy 3 boundary conditions

ui = gi(x1, x2, x3, t), i = 1, 2, 3 (9.7.4)

The problem of obtaining the displacements, strains and stresses which satisfy the 15
basic equations (9.7.1) in addition with the boundary conditions (9.7.4) together with the
initial conditions (9.7.3) is known as the second fundamental boundary value problem
in elastodynamics.
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9.8 Uniqueness of solutions of fundamental BVP in elasto-
dynamics

Before we proceed to prove, we establish an important result.

Theorem 9.8.1. The time rate of change of work done by external forces in altering the con-
figuration of the natural state of an elastic body to the current state is equal to the sum of time
rate of change of kinetic energy and the time rate of change of strain energy.

Proof. Suppose a body is acted on by a surface force T (n)
i per unit area and a body force Fi

per unit mass. Let ui be the displacement of the point at time t. The displacement of the point

during the time interval dt is
∂ui
∂t
dt.

If dW is the work done by external forces during time dt, then

dW =

∫∫∫
V

ρFiu̇idtdV +

∫∫
S

T
(n)
i u̇idtds

or,
dW

dt
=

∫∫∫
V

ρFiu̇idV +

∫∫
S

T
(n)
i u̇ids (9.8.1)

Now, ∫∫
S

T
(n)
i u̇ids =

∫∫
S

τijnju̇ids

=

∫∫∫
V

(τiju̇j),jdV

=

∫∫∫
V

(τij,ju̇i + τiju̇i,j)dV

=

∫∫∫
V

τij,ju̇idV +

∫∫∫
V

τijdijdV +

∫∫∫
V

τijwijdV (9.8.2)

where

dij =
1

2
(u̇i,j + u̇j,i) = eij

and

wij =
1

2
(u̇i,j − u̇j,i)

Also,

τijwij = 0
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Hence, equation (9.8.1) becomes,

dW

dt
=

∫∫∫
V

ρFiu̇idV +

∫∫∫
V

τij,ju̇idV +

∫∫∫
V

τijdijdV

=

∫∫∫
V

(ρFi + τij,j)u̇idV +

∫∫∫
V

τijdijdV

=

∫∫∫
V

ρüiu̇idV +

∫∫∫
V

τijdijdV [as, ρFi + τij,j = ρüi]

=
dK

dt
+

∫∫∫
V

τijdijdV

where,

K = Kinetic energy of the body

=
1

2

∫∫∫
ρu̇i.u̇i.dV.

Therefore,

dW

dt
=

dK

dt
+

∫∫∫
V

τij
∂eij
∂t

dV as dij = ėij =
∂eij
∂t

=
dK

dt
+

∫∫∫
V

∂W

∂eij

∂eij
∂t

dV as τij =
∂W

∂eij

=
dK

dt
+
d

dt

∫∫∫
V

WdV

where,
∫∫∫

V
WdV is strain energy and W is starin energy per unit volume. This completes

the proof.

Uniqueness To prove the uniqueness of solutions,consider an elastic body in motion sunjected
to a specific given body force Fi. In addition to body force, either surface force T (n)

i or surface
displacements ui are prescribed on the boundary.

Let us assume that it is possible to obtain two sets of solutions u′
i, e

′
ij , τ

′
ij and u′′

i , e′′ij , τ
′′
ij , which

satisfy 15 basic equations of elasticity and boundary conditions. Let us define

ui = u
′

i − u
′′

i , τij = τ
′

ij − τ
′′

ij, eij = e
′

ij − e
′′

ij

For the first state of stress, we have

ρFi + τ
′

ij,j = ρü
′

i

and the boundary condition

τ
′

ij,jnj = fi(x1, x2, x3, t) [if surface forces are prescribed]

or, u
′

i = gi(x1, x2, x3, t) [if boundary displacement are prescribed]
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Similarly, for the second state of stress,

ρFi + τ
′′

ij,j = ρü
′′

i

and

τ
′′

ijnj = fi(x1, x2, x3, t)

u
′′

i = gi(x1, x2, x3, t)

Subtracting, we get,

τ
′

ij,j − τ
′′

ij,j = ρ(ü
′

i − ü
′′

i )

and either

τ
′

ijnj − τ
′”
ij nj = 0

or,

ü
′

i − ü
′′

i = 0

on the boundary. In other words,

τij,j = ρüi

at every interior point and either

T
(n)
i = τijnj = 0

or, ui = 0 for t ≥ 0

on the boundary.

Thus, we have a new state in which body forces are absent and surface forces or surface
displacements vanish. When on the surface of the body,

ui = 0 for t ≥ 0

We must have
∂ui
∂t

= 0 on the surface for t ≥ 0. On the surface of the body, the boundary

conditions are either T (n)
i = 0 for t ≥ 0, or,

∂ui
∂t

= 0 for t ≥ 0. In either case, T (n)
i

∂ui
∂t

= 0

on the surface for t ≥ 0. Since both the solutions of the problem must satisfy the same initial
condition we have

ui = 0 for t = 0
∂ui
∂t

= 0 for t = 0



124 UNIT 9.

Now, we know that

dW

dt
=

dK

dt
+
d

dt

∫∫∫
V

WdV

=

∫∫∫
V

ρFiu̇idV +

∫∫
S

T
(n)
i u̇ids

Since for the new state body forces are absent, that is, Fi = 0 and T (n)
i

∂ui
∂t

= 0 on the surface
for t ≥ 0. So, we have

dW

dt
= 0

=⇒ dK

dt
+
d

dt

∫∫∫
V

WdV = 0

=⇒ K +

∫∫∫
V

WdV = constant

Since ui = 0, u̇i = 0 for t = 0, constant of integration must be zero. Hence,

K +

∫∫∫
V

WdV = 0

Since both kinetic energy K and W are essentially positive definite, we obtain,

K = 0 and W = 0 ∀t ≥ 0

It follows that,

∂ui
dt

= u̇i = 0 and eij = 0 ∀t ≥ 0

=⇒ ui = independent of time, and
1

2
[ui,j + uj,i] = 0

That is, the solution can represent only rigid body displacement of the body. But the displace-
ment ui = 0 at t = 0. Hence, the rigid body displacement must be zero at all parts of the body
and at all time. Hence, two solutions are completely identical.

9.9 Few Probable Questions

(a) Express the strain energy density function W in the form

W = − σ

2E
Θ2 +

1 + σ

2E
τijτij, i, j = 1, 2, 3

where Θ = τii= sum of the normal stresses and τij = stress tensor.

(b) State the fundamental boundary value problems of elastostatics.



Unit 10

Course Structure

• Two dimensional problems

• Plane stress, Airy’s stress function

• .Elastic waves, Waves of dilation distortion

10.1 Plane Stress

A state of stress in a plate is said to be a plane stress if the stress vector on planes parallel to
the base is zero throughout its volume. A body is in the plane stress parallel to the xy-plane
where these stress components τxz, τyz, τzz vanish.

Let the middle plane of the plate of thickness 2h be taken as coordinate plane xy. By

125
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definition, τxz = τyz = τzz = 0. Hence, the system of equilibrium equations become

∂τxx
∂x

+
∂τxy
∂y

+ ρFx = 0 [since τij,j + ρFi = 0]

∂τyx
∂x

+
∂τyy
∂y

+ ρFy = 0

Fz = 0

From constitutive equation we have,

τzz = λθ + 2µezz

=⇒ 0 = λ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
+ 2µ

∂w

∂z
, since τzz = 0 and u, v, w displacements

=⇒ ∂w

∂z
= − λ

2µ+ λ

(
∂u

∂x
+
∂v

∂y

)
Substituting these values of

∂w

∂z
in the components of stress and strain, we get,

τxx = λ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
+ 2µ

∂u

∂x

= (λ+ 2µ)
∂u

∂x
+ λ

(
∂v

∂y
+
∂w

∂z

)
= (λ+ 2µ)

∂u

∂x
+ λ

[
∂v

∂y
− λ

2µ+ λ

(
∂u

∂x
+
∂v

∂y

)]
=

(
λ− λ2

2µ+ λ

)
∂u

∂x
+

(
λ− λ2

2µ+ λ

)
∂v

∂y
+ 2µ

∂u

∂x

=
2λµ

2µ+ λ

(
∂u

∂x
+
∂v

∂y

)
+ 2µ

∂u

∂x

= λ∗
(
∂u

∂x
+
∂v

∂y

)
+ 2µ

∂u

∂x
where λ∗ =

2λµ

2µ+ λ

Similarly,

τyy = λ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
+ 2µ

∂v

∂y

= (λ+ 2µ)
∂v

∂y
+ λ

(
∂u

∂x
+
∂w

∂z

)
= (λ+ 2µ)

∂v

∂y
+ λ

[
∂u

∂x
− λ

2µ+ λ

(
∂u

∂x
+
∂v

∂y

)]
=

(
λ− λ2

2µ+ λ

)
∂u

∂x
+

(
λ− λ2

2µ+ λ

)
∂v

∂y
+ 2µ

∂v

∂y

=
2λµ

2µ+ λ

(
∂u

∂x
+
∂v

∂y

)
+ 2µ

∂v

∂y

= λ∗
(
∂u

∂x
+
∂v

∂y

)
+ 2µ

∂v

∂y
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Also, we can find τxy.

10.2 Airy’s Stress Function

In the solution of a plane problem, the stress components τxx, τyy, τxy must satisfy the equation
of equilibrium

∂τxx
∂x

+
∂τxy
∂y

+ ρFx = 0

∂τyx
∂x

+
∂τyy
∂y

+ ρFy = 0

Fz = 0

(10.2.1)

In the absence of body force, the above equation of equilibrium for plane problem reduces to
∂τxx
∂x

+
∂τxy
∂y

= 0

∂τyx
∂x

+
∂τyy
∂y

= 0

(10.2.2)

It is observed that these equations will be identically satisfied by choosing a representation

τxx =
∂2ϕ

∂y2
, τyy =

∂2ϕ

∂x2
, and τxy = − ∂2ϕ

∂x∂y
(10.2.3)

where, ϕ = ϕ(x, y) is called Airy’s Stress function. This stress function may be Algebraic
function, polynomial, trigonometric function, complex function, etc.

The compatibility equation for strain is

∂2exx
∂y2

+
∂2eyy
∂x2

= 2
∂2exy
∂x∂y

(10.2.4)

Now, from strain-stress relation,

exx =
1

2µ

[
τxx −

λ

2(λ+ µ)
(τxx + τyy)

]
eyy =

1

2µ

[
τyy −

λ

2(λ+ µ)
(τxx + τyy)

]
exy =

1

2µ
τxy

(10.2.5)

Therefore,

∂2exx
∂y2

=
1

2µ

[(
1− λ

2(λ+ µ)

)
∂2τxx
∂y2

− λ

2(λ+ µ)

∂2τyy
∂y2

]
∂2eyy
∂x2

=
1

2µ

[(
1− λ

2(λ+ µ)

)
∂2τyy
∂x2

− λ

2(λ+ µ)

∂2τxx
∂x2

]
∂2exy
∂x∂y

=
1

2µ

∂2τxy
∂x∂y

(10.2.6)
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Now, using (10.2.6), from (10.2.4), we get(
1− λ

2(λ+ µ)

)[
∂2τxx
∂y2

+
∂2τyy
∂x2

]
− λ

2(λ+ µ)

[
∂2τyy
∂y2

+
∂2τxx
∂x2

]
= 2

∂2τxy
∂x∂y

=
∂2τxy
∂x∂y

+
∂2τxy
∂x∂y

= −∂
2τxx
∂x2

− ∂2τyy
∂y2

using (10.2.2)

⇒
(
1− λ

2(λ+ µ)

)[
∂2τxx
∂x2

+
∂2τxx
∂y2

+
∂2τyy
∂x2

+
∂2τyy
∂y2

]
= 0

⇒ (1− σ)∇2(τxx + τyy) = 0, where, ∇2 ≡ ∂2

∂x2
+

∂2

∂y2

⇒ ∇2(τxx + τyy) = 0 (10.2.7)

This is the compatibility equation in terms of stresses for the plane stress problem in the
absence of body forces. Substituting

τxx =
∂2ϕ

∂y2
, τyy =

∂2ϕ

∂x2

we get,

∂4ϕ

∂x2∂y2
+
∂4ϕ

∂x4
+
∂4ϕ

∂y4
+

∂4ϕ

∂x2∂y2
= 0

⇒ ∂4ϕ

∂x4
+ 2

∂4ϕ

∂x2∂y2
+
∂4ϕ

∂y4
= 0

⇒ ∇4ϕ = 0. (10.2.8)

The above compatibility equation is in terms of stress function in the absence of body forces
for plane problem. This equation is also known as fourth degree Biharmonic equation.

Thus, the problem of determination of stress distribution in an elastic body in the case of
plane stress in the absence of body forces is reduced to that of finding a stress function which
satisfies the biharmonic equation.

10.3 Solution by polynomials

In this section, we shall use the inverse method to obtain the solution of some simple plane
problem by stress functions in the form of polynomials, assuming that there are no body forces.

Let us assume a polynomial of second degree as

ϕ(x, y) =
a2

2
x2 + b2xy +

c2
2
y2 (10.3.1)

Then from the following equations in the absence of body forces,

τxx =
∂2ϕ

∂y2
, τyy =

∂2ϕ

∂x2
, τxy = − ∂2ϕ

∂x∂y
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we get

τxx = c2, τyy = a2, τxy = −b2

Clearly,

∇4ϕ = 0

Thus, the stresses are constant throughout the body, that is, the stress function ϕ represents a
combination of uniform normal stresses(uniform tension or compression, according as a2, b2,
c2 be positive or negative, in two perpendicular directions and uniform shear stresses with no
body force.

For a rectangular plate with sides parallel to the coordinate axes, the forces are shown in the
figure.

Example: Extension of a beam by longitudinal forces.

Let a force T , along the z axis, be applied at the centre of gravity of the area a of the cross-
sectional base z = l of a cylinder. If the stresses giving rise to the force are assumed to be
uniformly distributed, then

τzz =
T

a
= p, constant

τzx = τzy = 0 with z = l
(10.3.2)

If we assume in absence of body forces

τzz = p, τxx = τyy = τxy = τyz = τzx = 0
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throughout this cylinder, then the equations of equilibrium and boundary conditions are obvi-
ously satisfied. The Beltrami-Michell compatibility equations are also satisfied.

Now, the displacement components u, v, w can be calculated as

∂u

∂x
=

1 + σ

E
τxx −

σ

E
τzz

= 0− σ

E
τkk

= − σ

E
p (10.3.3)

∂v

∂y
=

σ

E
p (10.3.4)

∂w

∂z
=

1 + σ

E
p− σ

E
p

=
p

E
(10.3.5)

Now,

exy = 0 =⇒ ∂v
∂x

+ ∂u
∂y

= 0 (10.3.6)

eyz = 0 =⇒ ∂w
∂y

+ ∂v
∂z

= 0 (10.3.7)

ezx = 0 =⇒ ∂u
∂z

+ ∂w
∂x

= 0 (10.3.8)

Integrating (10.3.5), we get

w =
p

E
z + w0(x, y), (10.3.9)

where w0 is an arbitrary function of x and y.
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From (10.3.8), we have,

∂u

∂z
= = −∂w

∂x

= −∂w0

∂x

=⇒ u = −z∂w0

∂x
+ u0(x, y) (10.3.10)

where, u0 is an arbitrary function.
Similarly, from (10.3.7), we get,

∂v

∂z
= = −∂w

∂y

= −∂w0

∂y

=⇒ v = −z∂w0

∂y
+ v0(x, y) (10.3.11)

Substituting (10.3.10) in (10.3.3) we get

−z∂
2w0

∂x2
+
∂u0
∂x

= −σp
E

This implies that,

∂2w0

∂x2
= 0, and

∂u0
∂x

= −σp
E

=⇒ u0 = −σp
E
x+ f1(y) (10.3.12)

Substituting (10.3.11) in (10.3.4), we get

−z∂
2w0

∂y2
+
∂v0
∂y

= −σp
E

This implies that,

∂2w0

∂y2
= 0, and

∂v0
∂y

= −σp
E

=⇒ v0 = −σp
E
y + f2(x) (10.3.13)

Now, equations (10.3.10), (10.3.11), (10.3.12), (10.3.13) give,

u = −z∂w0

∂x
+ u0(x, y)

= −z∂w0

∂x
− σp

E
x+ f1(y) (10.3.14)

v = −z∂w0

∂y
− σp

E
y + f2(x) (10.3.15)
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Substituting these values in (10.3.6), we get

∂v

∂x
+
∂u

∂y
= 0

=⇒ −z ∂
2w0

∂x∂y
− 0 + f ‘

2(x)− z
∂2w0

∂y∂x
− 0 + f ‘

1(y) = 0

=⇒ −2z
∂2w0

∂x∂y
+ f ‘

2(x) + f ‘
1(y) = 0

This holds if

∂2w0

∂x∂y
= 0, f ‘

2(x) + f ‘
1(y) = 0

=⇒ df2
dx

= −df1
dy

= ν (say)

=⇒ f2 = νx+ b and f1 = −νy + c

Again since

∂2w0

∂x2
= 0,

∂2w0

∂y2
= 0,

∂2w0

∂x∂y
= 0

therefore, w0 is linear in x and y.

Let w0 = βx+ γy + d. From (10.3.14) and (10.3.15), we have

u = −z(−β)− σp

E
x+ (−γy + c)

= −σp
E
x− γy + βz + c

v = −σp
E
y − γz + νx+ b

w =
p

E
z − βx+ γy + d

The parts of u, v, w containing b, c, d and β, γ, ν correspond to rigid motion. Therefore, for
pure deformation (in which rigid body motion is absent) we must have

u = −σpx
E

, v = −σpy
E

and w =
px

E
.

10.4 Elastic waves

If a disturbance is produced at any point of an alstic medium, waves radiate from that point
in all directions. Material particles of the medium undergo small displacements due to this
disturbance. If the particle motions occur parallel to the direction of wave propagation, the
wave is termed as longitudinal wave while if the particle motions take place perpendicular to
the direction of wave propagation, it is called shear wave. The speed of propagation of the
two types of plane waves depend on elastic properties of the medium. The waves undergo no
dispersion in isotropic homogeneous elastic media.
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10.5 Propagation of wave in isotropic elastic media

Waves of dilation and distortion In the absence of body force the equation of motion in
isotropic elastic medium are

ρ
∂2u

∂t2
= (λ+ µ)∇⃗(∇⃗.u⃗) + µ∇⃗2u⃗ (10.5.1)

Taking vector operation of divergence on both sides of (10.5.1), we get

ρ
∂2

∂t2
(∇⃗.u⃗) = (λ+ µ)∇⃗.∇⃗(∇⃗.u⃗) + µ∇⃗.(∇⃗2u⃗) (10.5.2)

Now, div grad ≡ ∇2 and

∇⃗.(∇⃗2u⃗) =
∂

∂x
(∇⃗2u⃗) +

∂

∂y
(∇⃗2u⃗) +

∂

∂z
(∇⃗2w⃗)

= ∇⃗2∂u

∂x
+ ∇⃗2∂u

∂y
+ ∇⃗2∂w

∂z

= ∇⃗2

(
∂u

∂x
+
∂u

∂y
+
∂w

∂z

)
= ∇⃗2θ

= ∇⃗2(∇⃗.u⃗)

So, the equation (10.5.2) becomes

ρ
∂2

∂t2
(∇⃗.u⃗) = (λ+ µ)∇⃗2.(∇⃗.u⃗) + µ∇⃗2(∇⃗.u⃗)

= (λ+ 2µ)∇⃗2.(∇⃗.u⃗)

=⇒ ∂2θ

∂t2
=

λ+ 2µ

ρ
(∇⃗2θ) [where ∇⃗.u⃗ = θ] (10.5.3)

=⇒ ∇⃗2θ =
1

c21

∂2θ

∂t2
where c21 =

λ+ 2µ

ρ

We thus conclude that a change in volume or dilatational disturbance will propagate at the
velocity

c1 =

√
λ+ 2µ

ρ

and such a wave is known as dilational wave or primary wave(p-wave).

Next we perform on vector operation curl u⃗ on both sides of (10.5.1), we obtain

ρ
∂2

∂t2
(curlu⃗) = (λ+ µ)curl grad(∇⃗.u⃗) + µ curl(∇⃗2u⃗) (10.5.4)
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We know that curl gradϕ = 0 and

curl(∇⃗2u⃗) = ∇⃗2(curl u⃗)

Therefore, the above equation becomes,

ρ
∂2

∂t2
(curl u⃗) = µ∇⃗2(curl u⃗)

=⇒ ∇⃗2(curl u⃗) =
1

c22

∂2

∂t2
(curl u⃗) where c22 =

µ

ρ
(10.5.5)

Let curl u⃗ = 2w⃗, then equation (10.5.5) becomes

∇⃗2w⃗ =
1

c22

∂2w⃗

∂t2
(10.5.6)

showing that the rotational wave propagate at the velocity

c2 =

√
µ

ρ

Now suppose that tha displacement vectors are given in such a way that θ = 0, that is div
u⃗ = 0. Therefore from (10.5.1), we can write

ρ
∂2u

∂t2
= µ∇⃗2u⃗

=⇒ ∇⃗2u⃗ =
1

c22

∂2u

∂t2
(10.5.7)

Hence the velocity c2 arises again.

The interpretation of this result is that, equivoluminal wave propagate with the velocity c2.

Next suppose that rotation w⃗ = 0⃗, that is, curl u⃗ = 0 which shows that u⃗ = grad ϕ. Since
div grad= ∇2ϕ, in this case, equation (10.5.1) becomes,

ρ
∂2

∂t2
(∇⃗ϕ) = (λ+ µ)∇⃗(∇2ϕ) + µ∇2(∇ϕ)

= ∇⃗[(λ+ µ)∇2ϕ+ µ∇2ϕ]

= ∇⃗[(λ+ 2µ)∇⃗2ϕ]

= (λ+ 2µ)∇⃗2(∇⃗ϕ)

Therefore,

ρ
∂2u⃗

∂t2
= (λ+ 2µ)∇⃗2u

=⇒ ∇⃗2u =
1

c21

∂2u⃗

∂t2
, where c21 =

λ+ 2µ

ρ
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The interpretation of this result is that an irrotational disturbance propagate with velocity c1.

We thus see that in the material of an elastic solid, wave may propagate with two different
velocities. Waves involving no rotation travel with velocity

c1 =

√
λ+ 2µ

ρ

and are dilational. While waves involving no dilation, travel with velocity

c2 =

√
µ

ρ

and are called distortional wave or secondary wave (s-wave).

Thus, in an isotropic elastic medium, there are two possible velocities:c1 and c2. We note that
c1 > c2, since λ, µ > 0.

10.6 Few Probable Questions

(a) An isotropic elastic solid is subjected to the following stress system under no body
forces and is in equilibrium: τ33 = p(constant), τ11 = τ22 = τ23 = τ31 = τ12 = 0. Find
the displacement components.

(b) Show that there are two possible plane waves propagating in an isotropic elastic medium.



Unit 11

Course Structure

• Introduction to dynamical system

• Phase portrait

• Fundamental theorem of linear systems

11.1 Introduction to dynamical system

What is a dynamical system? Roughly speaking, a dynamical system is a system that evolves
in time. More precisely, a dynamical system has the following three components:

• Some variable that acts like time, i.e. an independent variable that increases mono-
tonically and independently of the evolution of the system, with other variables being
indexed by our time variable.

• Some variables that describe the state of a system. These variables define a state space.

• A rule according to which the state evolves in time. We can think of the time evolution
either as a time-dependent state, say x(t), or as a trajectory in the state space.

In mathematics, an autonomus system or autonomus differential equation is a system of or-
dinary differential equations which does not explicitly depend on the independent variable.
When the variable is time, the system is also called time invariant systems. An autonomus
system is a system of ordinary differential equations of the form

d

dt
[x(t)] = f(x(t)), (11.1.1)

136
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where x can takes values in n-dimensional Euclidean space and t is usually time. It is distin-
guished from the systems of differential equations of the form

d

dt
[x(t)] = g[x(t), t], (11.1.2)

in which the law governing the rate of motion of a particle depends not only on the particle
location, but also on time; such systems are called non-autonomus. In this unit, we will study
linear autonomus systems of ordinary differential equations

Ẋ = AX (11.1.3)

where X ∈ Rn, A is an n×n matrix and Ẋ =
dX

dt
=

[
dx1
dt
, . . . ,

dxn
dt

]T
. It can be shown that

the solution of the linear system (11.1.3) together with initial condition X(0) = X0 is given
by

X(t) = X0e
At. (11.1.4)

Theorem 11.1.1. Existance and Uniqueness Theorem: Consider the initial value problem
Ẋ = f(X), X(0) = X0. Suppose that f(x) and f ′(x) are continuous on an open interval R
and suppose that x0 is a point in R, then the initial value problem has a solution x(t) on some
time interval (−t, t) about t = 0, and the solution is unique.

We have two types of linear autonomus systems, namely

• Uncoupled linear systems

• Coupled linear systems

For example,

ẋ1 = −x1
ẋ2 = 2x2

is a two dimensional uncoupled linear system which can be solved by the method of separation
of variables, whereas

ẋ1 = −x1 − 3x2

ẋ2 = 2x2

is a two dimensional coupled linear system.

Definition 11.1.2. The motion of a system can be described geometrically by drawing the
solution curve on the plane x1x2, which is known as phase plane.

Definition 11.1.3. The point at which ẋ1 = 0 = ẋ2, i.e., Ẋ = 0, is known as equilibrium
point.
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Definition 11.1.4. Geometrical representation of all solution curve of the system (11.1.3) is
known as phase portrait.

Example 11.1.5. Draw the phase portrait for the uncoupled system

ẋ1 = −x1
ẋ2 = 2x2

Solution: Solving the given system, we obtain

x1(t) = c1e
−t (11.1.5)

x2(t) = c2e
2t (11.1.6)

where c1 and c2 are arbitrary constants. It can be easily observe that solutions starting on the
x1-axis approach the origin as t → ∞ and that the solutions starting on the x2-axis approach
to the origin as t→ −∞ (see Figure. 11.1.1).

X

X

1

2

Figure 11.1.1: Phase portrait of the given dynamical system

Now eliminating t, from (11.1.5) and (11.1.6), we have

x21x2 = c21c2 = k, (say)

This f(x1, x2) = x21x2 − k represent the solution curve for the above system.

Alternatively, the system may be expressed as

Ẋ = AX where A =

[
−1 0
0 2

]
Let us now calculate the eigenvalues of A

|A− λI| = 0 ⇒
∣∣∣∣−1− λ 0

0 2− λ

∣∣∣∣ = 0

⇒ (λ+ 1)(λ− 2) = 0

⇒ λ = −1, 2
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X

X

1

2

Figure 11.1.2: Phase portrait of the given dynamical system

Hence the eigenvalues are λ1 = −1 and λ2 = 2. Let us calculate the eigenvector corresponding
to the eigenvalue λ1 = −1. For this, we consider

A · v = −1 · v

⇒
[
−1 0
0 2

] [
v1
v2

]
=

[
−v1
−v2

]
⇒
[
0 0
0 3

] [
v1
v2

]
=

[
0
0

]

Thus the solution set is
{
v1

[
1
0

]}
. Letting v1 = 1, we have the eigen vector

[
1
0

]
correspond-

ing to λ1 = 1. Similarly, we can calculate eigen vector
[
0
1

]
corresponding to eigen value

λ2 = 2.

Now let us plot eigen vector in x1x2-plane.
[
1
0

]
correspond to x1- axis while

[
0
1

]
correspond

to x2- axis. Since λ1 = −1 < 0, thus arrows are towards origin, while λ2 = 2 > 0 thus arrows
are away from origin (see Figure 11.1.2).

Now since e2t > e−t, hence if we start near x1- axis the trajectory will have the tendency to
move towards the origin but it will change the direction along x2- axis at the neighbourhood of
x2- axis at the neighbourhood of x2-axis. Proceeding similarly we can have the phase portrait
as figure shown above.

From the previous example, it is clear that we can easily draw phase portrait for a diagonal
matrix. If the coefficient matrix is not diagonal the system is known as coupled system. We
can use the algebraic technique of diagonalizing a square matrix A which can be used to re-
duce the linear system Ẋ = AX to an uncoupled linear system.

First we consider the case of real and distinct eigenvalues of A.
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Theorem 11.1.6. If the eigenvalues λ1, λ2, . . . , λn of an n × n matrix A are real and distint,
then any set of corresponding eigenvectors {v1, v2, . . . , vn} forms a basis of Rn, the matrix
P = [v1 v2 . . . vn] is invertible and P−1AP = diag[λ1, λ2, . . . , λn].

In order to reduce the system (11.1.3) to an uncoupled linear system using the above theorm,
define the linear transformation of coordinates

y = P−1x (11.1.7)

where P is the invertible matrix defined in the theorem. Then

x = Py. (11.1.8)

Now differentiating with respect to time t, we have

ẏ = P−1ẋ = P−1Ax = P−1APy (11.1.9)

and accordingly to the above theorem, we obtain the uncoupled linear system ẏ = diag[λ1, . . . , λn]y.
Then we can easily obtain the solution of the uncoupled system and will able to draw the phase
portrait.

Now since y(0) = P−1x(0) and x(t) = Py(t), it follows that the original system has the
solution

x(t) = PE(t)P−1x(0), (11.1.10)

where E(t) = diag[eλ1t, . . . , eλnt].

Example 11.1.7. Solve the following linear system and draw the phase portrait.

ẋ1 = −x1 − 3x2

ẋ2 = 2x2

Solution: Here the coefficient matrix A=
[
−1 −3
0 2

]
The eigenvalues are λ1 = −1 and λ2 = 2

while the corresponding eigenvectors are v1 =
[
1
0

]
and v2 =

[
−1
1

]
. Hence, the matrix P and

its inverse are given by

P =

[
1 −1
0 2

]
and P−1 =

[
1 1
0 1

]
Now,

P−1AP =

[
1 1
0 1

] [
−1 −3
0 2

] [
1 −1
0 1

]
=

[
−1 0
0 2

]
(11.1.11)

Then under the coordinate transformation y = P−1x, we obtain the following uncoupled
system

ẏ1 = −y1
ẏ2 = 2y2
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y

y

1

2

X

X

1

2

x=Py

Figure 11.1.3: Transformation of the phase portrait from the uncoupled to coupled dynamical system

which has the general soluton y1(t) = c1e
−t and y2(t) = c2e

2t. The corresponding phase
portrait is shown in Fig.

Now the general solution of the original system is given by

x(t) = P

[
e−t 0
0 e2t

]
P−1C, where C = X(0)

which gives

x1(t) = c1e
−t + c2(e

−t − e2t

x2(t) = c2(e
2t (11.1.8)

The phase portrait of the original system are shown in Figure 11.1.3. which is nothing but the
sketching of the solution curve (11.1.8).

Alternative way to draw the phase portrait:

i) Find eigenvalues

ii) Find corresponding eigenvectors

iii) Draw eigenvectors

iv) Draw the appropriate arrows using the sign of eigenvalues

Theorem 11.1.8. Fundamental theorem of linear systems: Let A be a n × n matrix. Then
for a given x0 ∈ Rn, the initial value problem

ẋ = Ax; x(0) = x0 (11.1.9)

has a unique solution given by
x(t) = eAtx0.
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Proof: Let A be a n× n matrix. Now

d

dt
[eAt] = lim

h→0

eA(t+h) − eAt

h
= lim

h→0
eAt e

Ah − I

h

= eAt lim
h→0

1

h

[
Ah+

A2h2

2!
+ · · ·+ Akhk

k!
+ · · ·

]
= eAt lim

h→0

[
A+

A2h

2!
+ · · ·+ Akhk−1

k!
+ · · ·

]
= AeAt

Now, if x(t) = eAtx0, then differentiating with respect to time t, we have

ẋ(t) =
d

dt
[x(t)] =

d

dt
[eAtx0] = x0

d

dt
[eAt] = Ax0e

At = Ax(t) for all t ∈ R

Also, x(0) = Ix0 = x0. Thus x(t) = eAtx0 is a solution. Now in order to prove the unique-
ness, let x(t) be any solution of the given initial value problem and set

y(t) = e−Atx(t).

Now differentiating with respect to time t,

ẏ(t) = −Ae−Atx(t) + e−Atẋ(t)

= −Ae−Atx(t) + e−AtAx(t)

= 0

Thus y(t) is a constant. Setting t = 0, we have y(0) = x(0) = x0. Therefore, any solution of
the initial value problem is given by

x(t) = eAty(t) = c eAt, where cis constant

Now, at t = 0, x0 = x(0) = c, and hence x(t) = x0e
At.



Unit 12

Course Structure

• Phase portrait of linear system

12.1 Phase portrait of linear systems

We have seen that the phase portrait depends on the eigen values of the matrix. The following
cases may arrive.

• Eigenvalues are distinct and of opposite sign,

• Eigenvalues are distinct and both are negative,

• Eigenvalues are distinct and both are positive,

• Eigenvalues are complex number with positive real part,

• Eigenvalues are complex number with negative real part,

• Eigenvalues are purely imaginary number,

• Eigenvalues are real and equal.

Let us consider the following linear system

dx

dt
= ax+ by

dy

dt
= cx+ dy (12.1.1)

143
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A point (x0, y0) is said to be a critical point if
dx

dt
= 0 =

dy

dt
at (x0, y0). It can be easily seen

that (0, 0) is the critical point of the above system.

The characteristic equation is given by

λ2 − (a+ d)λ+ (ad− bc) = 0. (12.1.2)

Case 1. If the roots λ1 and λ2 of the characteristic equation are real unequal and of the same
sign, then the critial point (0, 0) of the linear system (12.1.1) is termed as node.

Sub-case 1. Both the eigenvalues are positive λ1 > 0 and λ2 > 0.

For example, let us consider the following system

ẋ = −x+ 4y

ẏ = −2x+ 5y

whose coefficient matrix is A =

[
−1 4
−2 5

]
. Computing the eigenvalues and eigenvectors we

have λ1 = 1, v1 =

[
2
1

]
and λ2 = 3, v2 =

[
1
1

]
. The phase portrait is shown in Fig. 12.1.1

Since both the λ1 > 0, λ2 > 0, therefore the critical point is unstable node.

X

y
λ=3

λ=1

Figure 12.1.1: Phase portrait for sub-case 1

X

y

Figure 12.1.2: Phase portrait for sub-case 2

Sub-case 2. Both the eigenvalues are negative λ1 < 0 and λ2 < 0.

For example, let us consider the following system

ẋ = −3x

ẏ = 3x− 2y
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whose coefficient matrix is A =

[
−3 0
3 −2

]
. Computing the eigenvalues and eigenvectors we

have λ1 = −3, v1 =

[
1
−3

]
and λ2 = −2, v2 =

[
0
1

]
. The phase portrait is shown in Fig. 12.1.2

Since both the λ1 < 0, λ2 < 0, therefore the critical point is stable node.

Case 2. If the roots λ1 and λ2 of the characteristic equation are real, unequal and of opposite
sign, then the critical point (0, 0) of the linear system (12.1.1) is called saddle point.

X

y

Figure 12.1.3: Phase portrait of the given dynamical system

For example, let us consider the following system

ẋ = 4x

ẏ = 2x− y

whose coefficient matrix is A =

[
4 0
2 −1

]
. Computing the eigenvalues and eigenvectors we

have λ1 = 4, v1 =

[
5
2

]
and λ2 = −1, v2 =

[
0
1

]
. The phase portrait is shown in Fig. 12.1.3.

Since λ1 > 0, λ2 < 0, therefore the critical point is a saddle point.

Case 3. If the roots λ1 and λ2 of the characteristic equation are real and equal, then the critical
point (0, 0) of (12.1.1) is called node.

Sub-case 1. Both the eigenvalues are positive, i.e., λ1 > 0 and λ2 > 0 and equal λ1 = λ2.

For example, let us consider the following system

ẋ = 2x− 3y

ẏ =
x

3
+ 4y
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X

y

Figure 12.1.4: Phase portrait for sub-case 1

X

y

Figure 12.1.5: Phase portrait for sub-case 2

whose coefficient matrix is A =

[
2 −3
1
3

4

]
. Computing the eigenvalues and eigenvectors we

have λ1 = 3 = λ2, v1 =

[
3
−1

]
= v2. The phase portrait is shown in Fig. 12.1.4.

Since λ1 = λ2 = 3 > 0, therefore the critical point (0, 0) is unstable node.

Sub-case 2. Both the eigenvalues are negative, i.e., λ1 < 0 and λ2 < 0 and equal, i.e., λ1 = λ2.

For example, let us consider the following system

ẋ = −7x+ y

ẏ = −4x− 3y

whose coefficient matrix is A =

[
−7 1
−4 −3

]
. Computing the eigenvalues and eigenvectors we

have λ1 = −5 = λ2, v1 =

[
1
2

]
= v2. The phase portrait is shown in Fig. 12.1.5.

Since λ1 < 0, λ2 < 0, therefore the critical point (0, 0) is stable node.

Case 4. The roots λ1 and λ2 of the characteristic equation are conjugate complex with real part
not zero (i.e., is not purely imaginary) the critical point (0, 0) of the linear (12.1.1) is termed
as spiral point.

Sub-case 1. Eigenvalues are complex number with negative real part.

For example, let us consider the following system

ẋ = −2x+ 3y

ẏ = −3x− 2y
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whose coefficient matrix is A =

[
−2 3
−3 −2

]
. Computing the eigenvalues we have λ1,2 =

−2± 3i with real(λ) = −2 < 0. The phase portrait is shown in Fig. 12.1.6.

Thus, the critical point (0, 0) is stable spiral.

X

y

Figure 12.1.6: Phase portrait for sub-case 1

X

y

Figure 12.1.7: Phase portrait for sub-case 2

Sub-case 2. Eigenvalues are complex numbers with positive real part.

For example, let us consider the following system

ẋ = 2x+ 3y

ẏ = −3x+ 2y

whose coefficient matrix is A =

[
2 3
−3 2

]
. Computing the eigenvalues we have λ1,2 = 2± 3i,

with real(λ) = 2 > 0. The phase portrait is shown in Fig. 12.1.7.

Therefore, the critical point (0, 0) is unstable spiral.

Case 5. The roots λ1 and λ2 of the characteristic equation are purely imaginary, then the criti-
cal point (0, 0) of the linear system is a centre.

For example, let us consider the following system

ẋ = y

ẏ = −5x

whose coefficient matrix is A =

[
0 1
−5 0

]
. Computing the eigenvalues, we have λ1,2 = ±5i,

with real(λ) = 0. The phase portrait is shown in Fig. 13.1.2.
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X

y

Figure 12.1.8: Phase portrait of the given dynamical system

Therefore the critical point (0, 0) is a centre.



Unit 13

Course Structure

• Criteria for critical points and Stability

• Dynamical system with complex and multiple eigenvalues

13.1 Criteria for Critical Points: Stability

We continue our discussion of homogeneous linear systems with constant coefficients given
by

y′ = Ay =

[
a11 a12
a21 a22

]
y, (13.1.1)

in components,

y′1 = a11y1 + a12y2

y′2 = a21y1 + a22y2.

From the examples in the last unit, we have seen that we can obtain an overview of families of
solution curves if we represent them parametrically as and graph them as curves in the y1y2-
plane, called the phase plane. Such a curve is called a trajectory of (13.1.1), and their totality
is known as the phase portrait of (13.1.1).

Now we have seen that solutions are of the form

y(t) = xeλt.

Substitution into (13.1.1) gives

y′(t) = λxeλt = Ay = Axeλt.

149
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Dropping the common factor eλt, we have

Ax = λx. (13.1.2)

Hence y(t) is a (nonzero) solution of (13.1.1) if λ is an eigenvalue of A and x a corresponding
eigenvector.

Our examples in the last section show that the general form of the phase portrait is determined
to a large extent by the type of critical point of the system (13.1.1) defined as a point at which
dy2/dy1 becomes undetermined, 0/0; here

dy2
dy1

=
y′2dt

y′1dt
=
a21y1 + a22y2
a11y1 + a12y2

. (13.1.3)

We also recall that there are various types of critical points. What is now new, is that we shall
see how these types of critical points are related to the eigenvalues. The latter are solutions
λ = λ1 and λ2 of the characteristic equation

det(A − λI) =
∣∣∣∣a11 − λ a12
a21 a22 − λ

∣∣∣∣ = λ2 − (a11 + a12)λ+ detA = 0. (13.1.4)

This is a quadratic equation λ2 − pλ+ q = 0 with coefficients p, q and discriminant ∆ given
by

p = a11 + a22, q = detA = a11a22 − a12a21, ∆ = p2 − 4q (13.1.5)

From algebra we know that the solutions of this equation are

λ1 =
1

2
(p+

√
∆), λ2 =

1

2
(p−

√
∆). (13.1.6)

Furthermore, the product representation of the equation gives

λ2 − pλ+ q = (λ− λ1)(λ− λ2) = λ2 − (λ1 + λ2)λ+ λ1λ2.

Hence p is the sum and q the product of the eigenvalues. Also λ1 − λ2 =
√
∆ from (13.1.6).

Together,
p = λ1 + λ2, q = λ1λ2, ∆ = (λ1 − λ2)

2.

This gives the criteria in Table 13.1 for classifying critical points.

If q = λ1λ2 > 0, both of the eigenvalues are positive or both are negative or complex conju-
gates. If also p = λ1 + λ2 < 0, both are negative or have a negative real part. Hence P0 is
stable and attractive. The reasoning for the other two lines in Table 13.2 is similar.

If ∆ < 0, the eigenvalues are complex conjugates, say, λ1 = α + iβ and λ2 = α− iβ. If also
p = λ1 + λ2 = 2α < 0, this gives a spiral point that is stable and attractive. If p = 2α > 0,
this gives an unstable spiral point.

If p = 0, then λ2 = −λ1 and q = λ1λ2 = −λ2. If also q > 0, then λ21 = −q < 0, so that λ1,
and thus λ2, be pure imaginary. This gives periodic solutions, their trajectories being closed
around P0, which is a center.
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Table 13.1: Eigenvalue Criteria for Critical Points

Name p = λ1 + λ2 q = λ1λ2 ∆ = (λ1 − λ2)
2 Comments on λ1, λ2

Node q > 0 ∆ ≥ 0 Real, same sign
Saddle point q > 0 Real, opposite signs
Center p = 0 q > 0 Purely imaginary
Spiral point p ̸= 0 ∆ < 0 Complex, not pure imaginary

Figure 13.1.1: Stability chart of the dynamical system with p, q, ∆

Definition 13.1.1. A steady state P0 = (x∗1, y
∗
1) is called stable if a solution which starts nearby

stays nearby. More precisely, (x∗1, y
∗
1) is stable if for all ϵ > 0, there exists a δ > 0 such that

solutions to initial data (x01, y
0
1) with ||(x01, y01)− (x∗1, y

∗
1)|| < δ satisfy

||(x1(t), x2(t))− (x∗1, y
∗
1)|| < ϵ

for all time t > 0. Here || · || denotes the Euclidean vector norm.

Definition 13.1.2. A steady state P0 = (x∗1, y
∗
1) which is not stable is called unstable. For a

dynamical system, there is atleast one solution which diverges from (x∗1, y
∗
1).

Definition 13.1.3. A steady state P0 = (x∗1, y
∗
1) is called asymptotically stable if P0 = (x∗1, y

∗
1)

is stable and all solutions near P0 = (x∗1, y
∗
1) converges to (x∗1, y

∗
1). More precisely, P0 =

(x∗1, y
∗
1) is asymptotically stable if P0 = (x∗1, y

∗
1) is stable and there exists a δ > 0 such that all

solutions with initial data (x01, y
0
1), with ||(x01, y01)− (x∗1, y

∗
1)|| < δ satisfy

lim
t→∞

||(x01, y01)− (x∗1, y
∗
1)|| = 0.

Exercise 13.1.4. Given the linear system

ẋ1 = ax1 − bx2

ẋ2 = bx1 + ax2
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Table 13.2: Stability Criteria for Critical Points

Type of Stability p = λ1 + λ2 q = λ1λ2
Stable and attractive p < 0 q > 0
Stable p ≤ 0 q > 0
Unstable p > 0 q < 0

Differentiate the equations r2 = x21 + x22 and θ = tan−1

(
x2
x1

)
with respect to time t in order

to obtain

ṙ =
x1ẋ1 + x2ẋ2

r
and θ̇ =

x1ẋ2 − x2ẋ1
r2

; r ̸= 0

For the linear system given above, show that these equations reduces to

ṙ = ar and θ̇ = b.

Solve these equations with the initial conditions r(0) = r0 and θ(0) = θ0 and draw the phase
portrait for all the possible values of a and b.

13.1.1 Complex Eigenvalues

If the 2n× 2n matrix A has 2n distinct complex eigenvalues λj = aj + ibj and λj = aj − ibj
and the corresponding eigen vectors are wj = uj + ivj and wj = uj − ivj, j = 1, · · · , n, then
{u1, v1, · · · , un, vn} is a basis for R2n, the matrix

P = [v1 u1 v2 u2 · · · vn un]

is invertiable and P−1AP = diag
[
aj −bj
bj aj

]
a real 2n × 2n matrix with 2 × 2 blocks along

the diagonal.

Remark: Note that if instead of the matrix P , we use the invertiable matrixQ = [u1 v1 u2 v2 · · · un vn]

then Q−1AQ = diag
[
aj bj
−bj aj

]
.

Under this hypotheses, the solution of the initial value problem Ẋ = AX;X(0) = X0 is given
by

X(t) = P diag eajt
[
cos(bjt) − sin(bjt)
sin(bjt) cos(bjt)

]
P−1 X0.

Example 13.1.5. Solve the initial value problem Ẋ = AX; X(0) = X0 where

A =

−3 0 0
0 3 −2
0 1 1
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and roughly draw the phase portrait.

Solution: The matrix A has the eigenvalues

λ1 = −3, λ2 = 2 + i and λ2 = 2− i.

The corresponding eigen vectors are

v1 =

10
0

 and w2 = u2 + iv2 =

 0
1 + i
i

 =

01
1

+ i

01
0


Thus

P =

1 0 0
0 1 1
0 0 1

 P−1 =

1 0 0
0 1 −1
0 0 1

 and P−1AP =

−3 0 0
0 2 −1
0 1 2


Therefore, the solution of the IVP is given by

X(t) = P

e−3t 0 0
0 e2t cos(t) −e2t sin(t)
0 e2t sin(t) e2t cos(t)

 P−1 X0

=

e−3t 0 0
0 e2t[cos(t) + sin(t)] −2e2t sin(t)
0 e2t sin(t) e2t[cos(t)− sin(t)]X0


The stable subspace is the x1-axis and the unstable subspace is the x2x3 plane. Thus, the phase
portrait is shown in Fig. 13.1.2.

X

X

X

1

2

3

Figure 13.1.2: Phase portrait of the given dynamical system

Exercise 13.1.6. Solve the initial value problem Ẋ = AX for

A =

1 0 0
0 2 −3
1 3 2
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13.1.2 Multiple eigenvalues

Let A be a real n× n matrix with real eigenvalues λ1, λ2, · · · , λn repeated according to their
multiplicity. Then there exists a basis of generalised eigen vectors for Rn and if {v1, · · · , vn}
is any basis of generalised eigen vectors for Rn, then the matrix P = [v1 · · · vn] is invertiable,
so that

A = S +N where P−1SP = diag[λj].

The matrix N = A− S is nilpotent of order k ≤ n, also S and N commute, i.e., SN = NS.

Under this hypothesis, the linear system Ẋ = AX,X(0) = X0 has the solution

X(t) = Pdiag[eλjt]P−1

[
I +Nt+ · · ·+ Nk−1tk−1

(k − 1)!

]
X0.

Note: If λ is an eigenvalue of multiplicity n of an n × n matrix A, then the above results are
particularly easy to apply, since in this case S = diag[λ] with respect to the usual basis and
N = A− S. The solution to the IVP Ẋ = AX; X(0) = X0 is therefore given by

X(t) = eλt
[
I +Nt+ · · ·+ Nktk

k!

]
.

Example 13.1.7. Solve the IVP Ẋ = AX; X(0) = X0 with A =

[
3 1
−1 1

]
.

Solution: The eigenvalues of A are given by

|A− λI| = 0

⇒
∣∣∣∣3− λ 1
−1 1− λ

∣∣∣∣ = 0

⇒ (3− λ)(1− λ) + 1 = 0

⇒ λ2 − 4λ+ 4 = 0

⇒ (λ− 2)2 = 0

Thus λ1 = 2 and λ2 = 2. Therefore,

S =

[
2 0
0 2

]
and N = A− S =

[
1 1
−1 −1

]
.

Now,

N2 =

[
1 1
−1 −1

] [
1 1
−1 −1

]
=

[
0 0
0 0

]
.

Thus the solution of the IVP is given by

X(t) = e2t[I +Nt]X0

= e2t
[[

1 0
0 1

]
+

[
1 1
−1 −1

]
t

]
X0

= e2t
[
1 + t t
−1 1− t

]
X0.
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Exercise 13.1.8. Solve the IVP Ẋ = AX; X(0) = X0 with A =


0 −2 −1 −1
1 2 1 1
0 1 1 0
0 0 0 1

.



Unit 14

Course Structure

• Conversion of an n-th Order ODE to a System

• Linearization of a dynmaical system

• Minimum Variance Unbiased Estimator

• Method of Maximum Likelihood for Estimation of a parameter

14.1 Conversion of an n-th Order ODE to a System

We show that an nth-order ODE can be converted to a system of n first-order ODEs. This is
practically and theoretically important - practically because it permits the study and solution
of single ODEs by methods for systems, and theoretically because it opens a way of including
the theory of higher order ODEs into that of first-order systems. This conversion is another
reason for the importance of systems, in addition to their use as models in various basic appli-
cations. The idea of the conversion is simple and straightforward, as follows.

Theorem 14.1.1. An n-th order ODE

y(n) = F (t, y, y′, · · · , y(n−1) (14.1.1)

can be converted to a system of n first-order ODEs by setting

y1 = y, y2 = y′, y3 = y′′, · · · , yn = y(n−1) (14.1.2)

156
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This system is of the form

y′1 = y2

y′2 = y3
... (14.1.3)

y′n−1 = yn

y′n = F (t, y1, y2, · · · , yn)

Proof: The first n− 1 of these n ODEs follows immediately from (14.1.2) by differentiation.
Also, y′n = y(n) by (14.1.2), so that the last equation in (14.1.3) results from the given ODE
(14.1.1).

Example 14.1.2. To gain confidence in the conversion method, let us apply it to the modeling
the free motions of a mass on a spring governed by the differential equation

my′′ + cy′ + ky = 0 or y′′ = − c

m
y′ − k

m
y.

For this ODE (14.1.1) the system (14.1.3) is linear and homogeneous,

y′1 = y2

y′2 = − k

m
y1 −

c

m
y2.

Setting y =

[
y1
y2

]
, we get in matrix form

y’ = Ay =

[
0 1

− k
m

− c
m

] [
y1
y2

]
.

The characteristic equation is

det(A − λI) =
∣∣∣∣−λ 1
− k

m
− c

m
− λ

∣∣∣∣ = λ2 +
c

m
λ+

k

m
= 0.

For an illustrative computation, let m = 1, c = 2, and k = 0.75. Then

λ2 + 2λ+ 0.75 = (λ+ 0.5)(λ+ 1.5) = 0.

This gives the eigenvalues λ1 = −0.5 and λ2 = −1.5. Eigenvectors follow from the first
equation in A − λI = 0, which is −λx1 + x2 = 0. For λ1 this gives 0.5x1 + x2 = 0, say,
x1 = 2, x2 = −1. For λ2 = −1.5 it gives 1.5x1 + x2 = 0, say, x1 = 1, x2 = −1.5. These
eigenvectors

x(1) =

[
2
−1

]
, x(2) =

[
1

−1.5

]
give y = c1

[
2
−1

]
e−0.5t + c2

[
1

−1.5

]
e−1.5t.

This vector solution has the first component

y = y1 = 2c1e
−0.5t + c2e

−1.5t

which is the expected solution. The second component is its derivative

y2 = y′1 = y′ = −c1e−0.5t − 1.5c2e
−1.5t.
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14.2 Linearization of a dynamical system

In mathematics, linearization is finding the linear approximation to a function at a given point.
The linear approximation of a function is the first order Taylor expansion around the point of
interest. In the study of dynamical systems, linearization is a method for assessing the local
stability of an equilibrium point of a system of nonlinear differential equations or discrete dy-
namical systems. This method is used in fields such as engineering, physics, economics, and
ecology.

A two dimensional dynamical system may be written as ẋ = f(x) where x = (x1, x2) and
f(x) = (f(x1), f(x2)).

Existence and Uniqueness Theorem: Consider the initial value problem ẋ = f(x), x(0) =

x0. Suppose that f is continuous and that all its partial derivatives
∂fi
∂xj

, i, j = 1, ·, n are con-

tinuous for x in some open connected set D ⊂ Rn. Then for x0 ∈ D, the initial value problem
has a solution x(t) on some time interval (−τ, τ) about t = 0, and the solution is unique.

Corollary: Different trajectories never intersect.

In this section, we first discuss the linearization technique for two dimensional dynamical
system. Consider the system

ẋ = f(x, y)

ẏ = g(x, y)

and suppose that (x∗, y∗) is the fixed point, i.e.,

f(x∗, y∗) = 0 and g(x∗, y∗) = 0.

Let u = x−x∗, v = y−y∗ denote the components of a small disturbance from the fixed point.
To see whether the disturbance grows or decays, we need to derive differential equations for u
and v. Let us do u-equation first.

We have u = x− x∗. Differentiating with respect to time t,

u̇ = ẋ (since x∗ is a constant)
= f(x∗ + u, y∗ + v) (By substitution)

= f(x∗, y∗) + u
∂f

∂x
+ v

∂f

∂y
+O(u2, v2, uv) (Expanding in Taylor series)

= u
∂f

∂x
+ v

∂f

∂y
+O(u2, v2, uv) (Since f(x∗, y∗) = 0).

To simplify the notation, we have written ∂f
∂x

and ∂f
∂y

, but remember these partial derivatives
are to be evaluated at the fixed point (x∗, y∗), thus they are numbers, not functions. Also the
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shorthand notation O(u2, v2, uv) denotes quadratic terms in u and v. Since u and v are small,
these quadratic terms are extremely small.

Similarly, we find

v̇ =
∂g

∂x
+ v

∂g

∂y
+O(u2, v2, uv).

Hence the disturbance (u, v) evolves according to[
u̇
v̇

]
=

[
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

] [
u
v

]
+ Quadratic terms (14.2.1)

The matrix A =

[
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]
x∗,y∗

is called the Jacobian matrix at the fixed point (x∗, y∗). Now

since the quadratic terms in Eq. (14.2.1) are tiny, it is tempting to neglect them. If we do that,
we obtain the linearized system [

u̇
v̇

]
=

[
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

][
u
v

]
whose dynamics can be analysed as before.

Effect of small nonlinear terms:

Is it really safe to neglect the quadratic terms? In other words, does the linearized system give
a qualitatively correct picture near (x∗, y∗)?

The answer is yes, as long as the fixed point for the linearized system is not of the borderline
case (centers, degenerate nodes, stars or non-isolated fixed pints). In other words, if the lin-
earized system predicts a saddle, node, or spiral for the original nonlinear equations.

Example 14.2.1. Find all the fixed points of the system

ẋ = −x+ x3

ẏ = −2y

and use linearization to classify them.

Solution: Fixed points occurs where ẋ = 0 and ẏ = 0 simultaneously, which give us x = 0 or
x = ±1 and y = 0.
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Thus there are three fixed points, viz (0, 0), (1, 0), and (−1, 0). The Jacobian matrix at the
general point (x, y) is

A =

[ ∂
∂x
(−x+ x3) ∂

∂y
(−x+ x3)

∂
∂x
(−2y) ∂

∂y
(−2y)

]
=

[
−1 + 3x2 0

0 −2

]
Next we evaluate A at the fixed points.

At the point (0, 0), we find A =

[
−1 0
0 −2

]
which gives two negative eigenvalues, viz

λ1 = −1 and λ2 = −2. Therefore, the fixed point (0, 0) is a stable node.

At (±1, 0), A =

[
2 0
0 −2

]
, which gives two eigenvalues of opposite sign. So both the fixed

points (1, 0) and (−1, 0) are saddle point.

Now since stable nodes and saddle points are not borderline cases, it is certain that the fixed
points for the given nonlinear system has been predicted correctly.

Example 14.2.2. Consider the system

ẋ = −y + ax(x2 + y2)

ẏ = x+ ay(x2 + y2)

where a is a parameter. Show that the linearized system incorrectly predicts that the origin is
a center for all values of a, whereas in fact the origin is a stable spiral if a < 0 and unstable
spiral if a > 0.

Solution: To obtain the linarization about the origin, i.e. about (x∗, y∗) = (0, 0), we can either
compute the Jacobain matrix directly form the definition, or we can take the following shortcut.

For any system with a fixed point at the origin, x and y represent deviations from the fixed
point, since u = x− x∗ = x and v = y − y∗ = y; hence we can linearize by simply omitting
the nonlinear terms in x and y. Thus the linearized system is given by

ẋ = −y
ẏ = x

The Jacobain at the fixed point (0, 0) is A =

[
0 −1
1 0

]
which has τ = 0,∆ = 1 > 0, so the

origin is always a center.

To analyze the nonlinear system, we change variables to polar coordinates. Let

x = r cos θ

y = r sin θ.
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To derive a differential equation for r, we note x2 + y2 = r2, so on differentiation we obtain

xẋ+ yẏ = rṙ

⇒ rṙ = x{−y + ax(x2 + y2)}+ y{x+ ay(x2 + y2}
⇒ rṙ = a(x2 + y2)2

⇒ rṙ = ar4

⇒ ṙ = ar3

Now since θ = tan−1
(y
x

)
, we have

θ̇ =
1

1 + y2

x2

[
xẏ − yẋ

x2

]
=
xẏ − yẋ

x2 + y2

⇒ θ̇ =
1

r2
[x{−y + ax(x2 + y2)} − y{x+ ay(x2 + y2)}]

⇒ θ̇ =
x2 + y2

r2
=
r2

r2

⇒ θ̇ = 1

Thus in polar coordinates the original system becomes

ṙ = ar3

θ̇ = 1

The system is easy to analyse in this form, because the radial and angular motions are inde-
pendent. All trajectories rotate about the origin with constant angular velocity θ̇ = 1.

If a < 0, then r(t) → 0 monotonically as t→ ∞. In this case, the origin is a stable spiral.

If a = 0, then r(t) = r0 for all t and the origin is a center.

Finally if a < 0, then then r(t) → ∞ monotonically and the origin is a unstable spiral.

X

y

X

y

X

y

a=0a<0 a>0



Unit 15

Course Structure

• Hyperbolic fixed point

• Hartman-Grobman theorem

• Interaction model for two population

Definition 15.0.1. Hyperbolic fixed point: A fixed point of an n-th order dynamical system is
hyperbolic if all the eigenvalues of the linearization lie off the imaginary axis, i.e., Re(λi) ̸= 0
for i = 1, · · · , n.

The Hartman-Grobman theorem is another important result in the local qualitative theory of
ODE. The theorem shows that x′ = f(x) with f(0) = 0 and its linearized system x′ = Df(0)x
have the same qualitative structures near a hyperbolic equilibrium point.

Consider the system
ẋ = f(x) (15.0.1)

where x = 0 is a hyperbolic equilibrium. The corresponding linarized system is

ẋ = Ax where A = Df(0) (15.0.2)

Two autonomus system of differential equation such as (15.0.1) and (15.0.2) are said to be
topolofically equivalent in a neighbourhood of the origin or to have the same qualitative struc-
ture near the origin if there is a homeomorphism H mapping an open set U containing the
origin onto an open set V containing the origin which maps trajectories of (15.0.1) in U onto
trajectories of (15.0.2) in V and preserves their orientation by time in the sense that if a tra-
jectory is directed from x1 to x2 in U , then its image is directed from H(x1) to H(x2) in V .
If the homeomorphism H preserves the parametrization by time, then the system (15.0.1) and
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(15.0.2) are said to be topologically conjugate in a neighbourhood of the origin.

As illustrative example for topologically conjugate consider two linear systems ẋ = Ax and
ẋ = Bx with

A =

[
−1 −3
−3 −1

]
and B =

[
2 0
0 −4

]
Let H(x) = Rx, where R =

1√
2

[
1 −1
1 1

]
and R−1 =

1√
2

[
1 1
−1 1

]
Then B = RAR−1 and

letting y = H(x) = Rx which gives

x = R−1y

⇒ Ax = AR−1y

⇒ ẋ = AR−1y [since, ẋ = Ax]

⇒ Rẋ = RAR−1y

⇒ ẏ = By [since, B = RAR−1 & ⇒ ẏ = Bẋ]

Thus if x(t) = eAtx0 is the solution of ẋ = Ax through x0, then

y(t) = H(x(t)) = Rx(t) = ReAtx0 = eBtRx0

is the solution of ẋ = Bx; i.e., H maps trajectories of ẋ = Ax onto trajectories of ẋ = Bx and
it preserves the parametrization by t since HeAt = eBtH . Therefore, H is a homomorphism
from A onto B.

Theorem 15.0.2. Hartman-Grobman Theorem: If x = 0 is a hyperbolic equilibrium point
of (15.0.1) and (15.0.2), then there exists a homeomorphism H of an open set U containing
the origin onto an open set V containing the origin such that for each x0 ∈ U , there exists an
open interval I0 ⊂ R containing the origin such that for all t ∈ I0

H ◦ ϕt(x0) = eAtH(x0).

Example 15.0.3. Consider the dynamical system ẏ = −y; ż = z + y2. The solution with the
conditions y(0) = y0 and z(0) = z0 is obtained as

y(t) = y0e
−t, z(t) = z0e

t +
y20
3
(et − e−2t)

The linearized system is given by

ẏ = −y
ż = z

Its solution with y(0) = y0 and z(0) = z0 can be easily solved as

y(t) = y0e
−t, z(t) = z0e

t
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The homeomorphism H is defined as H(x, y) =

[
y

z + y2

3

]
. Then we can verify the result of

the Hartman-Grobman theorem as follows:

Let the solution of the original system as

ϕt(y0, z0) =

[
y0e

−t

z0e
t +

y20
3
(et − e−2t)

]

and eAt of the linarized system is given by eAt =

[
e−t 0
0 et

]
. Since,

eAtH(y0, z0) =

[
e−t 0
0 et

] [
y0

z0 +
y20
3

]
=

[
e−ty0

et
(
z0 +

y20
3

)]

and

H ◦ ϕt(y0, z0) = H ◦
[

y0e
−t

z0e
t +

y20
3
(et − e−2t)

]
=

[
y

z + y2

3

]
y=y0e−t;z=z0et+

y20
3
(et−e−2t

=

[
y0e

−t

z0e
t +

y20
3
(et − e−2t) + (y0e−t)2

3

]
=

[
e−ty0

et
(
z0 +

y20
3

)]

Hence we have
H ◦ ϕt(y0, z0) = eAtH(y0, z0) for all t ≥ 0.

Note: Finding a homeomorphism H such that H ◦ ϕt(x0) = eAtH(x0) is difficult. In fact, the
Hartman-Grobman theorem only assures the existence ofH . It does not tell us any information
on how to find H . Moreover, it is a qualitative property.

15.0.1 A general interaction model for two population

In order to explain mathematical modelling with systems of differential equations, we investi-
gate the following general two species interaction model:

ẋ = αx+ βxy

ẏ = γy + δxy (15.0.3)

where x(t) and y(t) denote the concentration (or number) of two populations and α, β, γ, δ are
constant real numbers.

The linear terms αx and γy describe the growth or decay of the corresponding population x
and y in isolation. For example, if α > 0 and β = 0, the population x will grow like eαt; if
α < 0, it will decay exponentially. Similarly, if δ = 0, then the sign of γ decides whether y(t)
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is exponentially growing or decaying.

We begin by writing (15.0.3) in vector notation:

d

dt

[
x
y

]
=

[
f1(x, y)
f2(x, y)

]
with f1(x, y) = αx + βxy and f2(x, y) = γx + δxy. To find the x-nullclines, say ηx, we set

f1(x, y) = 0. Hence, the x-nullclines are ηx =

{
(x, y) : x = 0 or y = −α

β

}
. Similary, the

y-nullclines are ηy =
{
(x, y) : y = 0 or x = −γ

δ

}
. The steady stated (x∗, y∗) are intersection

points of the nullclines and they satisfy f1(x∗, y∗) = 0 and f2(x∗, y∗) = 0. We have two steady
states, namely,

P1 = (0, 0) and P2 =

(
−γ
δ
,−α

β

)
.

The linearization of the given system (15.0.3) is given by

d

dt

[
z1
z2

]
= Df(x∗, y∗)

[
z1
z2

]

where Df(x∗, y∗) =

[
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

]
(x∗,y∗)

=

[
α + βy βx
δy γ + δx

]
(x∗,y∗)

. We evaluate this matrix

at the two steady states, P1 and P2. For P1, we find

Df(0, 0) =

[
α 0
0 γ

]
which has two eigenvalues λ1 = α and λ2 = γ. Similarly, for P2, we find

Df

(
−γ
δ
,−α

β

)
=

[
0 −βγ

δ

−αδ
β

0

]
= A, say.

Since trace(A) = 0 and det(A) = −αγ, hence the eigenvalues are λ1,2 = ±√
αγ. To identify

the type of steady states, we nee to have more information. In particular, we need to know the
signs of the parameters α, β, γ, and δ. Analysis of three specific cases follows:

Case I: A prey-predator model:

We assume that α < 0, β > 0, γ > 0 and δ < 0. Hence, we see that one eigenvalue is
negative (λ1 = α < 0) and the other eigenvalue is positive (λ2 = γ > 0). Hence P1(0, 0) is

a saddle point. Before we study P2 =

(
−γ
δ
,−α

β

)
we have to ensure that it is biologically

relevant, i.e., −γ
δ
,−α

β
both are positive. The product αγ < 0, so that the eigenvalues are

purely imaginary, namely λ1,2 = ±i
√

|αγ|. Hence the critical point
(
−γ

δ
,−α

β

)
is a center.
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Thus P2 is not hyperbolic and the Hartman-Grobman theorem can not be applied.

Case II: Mutualism of two species:

We assume two species which cannot survive alone. For this α < 0 and γ < 0. The eigen-
values of Df(0, 0) are α < 0 and γ < 0. Hence (0, 0) is a stable node. Also, −α

β
> 0 and

−γ
δ
> 0 and hence P2 is biologically relevant. The product αγ > 0. Hence the eigenvalues

are λ1,2 = ±√
αγ. Therefore, P2 is a saddle point.

Case III: A competition model:

In this case, we assume that α > 0 and β < 0, thus the critial point (0, 0) is a saddle point.
But P2 is not bilogically relevant because −γ

δ
< 0. Thus the population y goes extinct while

population x can grow without competition.

Example 15.0.4. A basic epidemic Model: We consider the spread of an infectious disease in
a host population. Let S, I and R denote the number of susceptible, infectious, and recovered
individuals respectively.

If the disease is transmitted through direct contact, then the rate of new incidences, βIS, is in
proportion to the number of susceptible and to the number of infectious individuals. With these
assumptions, the disease process is descrbed by the following classical SIR (Susceptibles-
Infected-Recovered) model which is given by

Ṡ = −βIS + γR

İ = βIS − αI (15.0.4)
Ṙ = αI − γR

For simplicity, we assume γ = 0. This can be understood as assuming the mean immune

period
1

γ
→ ∞; the disease incurs permanent immunity. The simplified model is known as

the Kermack-Mckendric model which is given by

Ṡ = −βIS
İ = βIS − αI (15.0.5)

Qualitative Analysis of the epidemic model:

Let us analyse the epidemic model given in (15.0.5). To find the steady states, we set Ṡ = 0
and İ = 0.



167

If Ṡ = 0, then eigher S = 0 or I = 0 and if İ = 0, then either I = 0 or S = α/β. Therefore,
the system (15.0.5) has a ray of steady states along the positive S-axis, {(S, 0) : S > 0}.

To find the stability of each steady state (S, 0), we examine the Jacobian matrix,[
−βI −βS
βI βS − α

]
S=S,I=0

=

[
0 −βS
0 βS − α

]
The two eigenvalues of this Jacobian matrix are λ1 = 0 and λ2 = βS − α. The eigenvalue
λ1 = 0 corresponds to the neutrally stable direction along the ary of steady states. The second
eigenvalue λ2 = βS − α is positive if S >

α

β
and negative if S <

α

β
.

To construct the phase portrait, we write one unknown, I , as a function of the other, S. This
way, we still follow the trajectory of an epidemic, but we forget about the time course for a
moment. To achieve this, we use the chain rule. In particular if I = I(S(t)), then

dI

dt
=
dI

dS
· dS
dt
.

Hence,
dI

dS
=
İ

Ṡ
=
βIS − αI

−βIS
= −1 +

α

βS
.

If we regard I as a function of S, and integrate the above equation from S0 to S, then we
obtain

I(S)− I(S0) = −(S − S0) +
α

β
(lnS − lnS0)

⇒ I(S) =
α

β
lnS − S + c1

I

SO βα

Figure 15.0.1

where the constant c1 is determined by the initial condition S(t) = S0, I(t) = I0 at t = 0, so
that c1 = I(S0) + S0 − α

β
lnS0.
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As shown in Fig. 15.0.1 the steady state to the right of
α

β
, namely, S >

α

β
are unstable in the

direction away from the S-axis, and those to the left of
α

β
are stable.

Biologically,
α

β
represents the critical population size to sustain an epidemic. If the initial

susceptible population is below
α

β
, then no epidemic is possible and the number of infections

decreases, whereas if S0 >
α

β
, then the number of infection initially increases, reaching its

maximum when S =
α

β
and then declines.

Exercise 15.0.5. Find all the critical points of the logistic model

ẋ = x− ax2

ẏ = y − by2

and discuss the stability of each critical points for all possible values of a and b.



Unit 16

Course Structure

• Stability and Liapunov Functions

16.1 Stability and Liapunov Functions

Here we discuss the stability of the equilibrium points of the non-linear system

ẋ = f(x). (16.1.1)

The stability of any hyperbolic equilibrium point x0 of (16.1.1) is determined by the sign of
real parts of the eigen values λj of the matrix Df(x0). A hyperbolic equilibrium point x0
is asymptotically stable if and only if Re(λj) < 0 for j = 1, . . . , n, while it is unstable if
and only if it is saddle or Re(λj) > 0 for j = 1, . . . , n. The stability of non-hyperbolic
equilibrium points is typically more difficult to determine. A method due to Liapunov, that
is very useful for deciding the stability of non-hyperbolic equilibrium points. Consider the
non-linear autonomous systen

dx

dt
= P (x, y) (16.1.2)

dy

dt
= Q(x, y). (16.1.3)

Assume that this system has an isolated critical point at the origin (0, 0) and that P and Q
have continuous first order partial derivatives for all (x, y). Let E(x, y) be positive definite for
all (x, y) in a domain D containing the origin and such that the derivative Ė(x, y) of E with
respect to the above system is negative semi-definite for all (x, y) ∈ D. Then E is called a
Liapunov function for the system in D.

169
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Example 16.1.1. Show that E(x, y) = x2 + y2 is a Liapunov function for the non-linear
system

dx

dt
= −x+ y2

dy

dt
= −y + x2.

Here the critical point is given by (0, 0). Now,

Ė =
∂E

∂x

dx

dt
+
∂E

∂y

dy

dt

= 2x(−x+ y2) + 2y(−y + x2)

= −2x2 + 2xy2 − 2y2 + 2x2y

= −2(x2 + y2) + 2(x2y + xy2).

Here, E(0, 0) = 0 and E(x, y) = x2 + y2 > 0 for all x, y ̸= 0. Hence E(x, y) is positive
definite in any domain D containing the origin (0, 0). Now clearly Ė(0, 0) = 0 and if x < 1
and y ̸= 0, then xy2 < y2. Also, if y < 1 and x ̸= 0, then x2y < x2. Thus, if x < 1, y < 1
and (x, y) ̸= (0, 0), then

x2y + xy2 < x2 + y2.

Hence,

Ė = −2(x2 + y2) + 2(x2y + xy2) < −2(x2 + y2) + 2(x2 + y2) = 0.

Hence, Ė < 0. Thus, in every domain D containing (0, 0) and such that x < 1 and y < 1,
Ė(x, y) is a negative definite function and hence negative semi-definite.

Therefore, E = x2 + y2 is a Liapunov function for the given system.

Theorem 16.1.2. Consider the system

dx

dt
= P (x, y)

dy

dt
= Q(x, y).

Assume that this system has an isolated critical point at the origin (0, 0) and that P andQ have
continuous first order partial derivatives for all (x, y). If there exists a Liapunov function E
for the above system in some domain D containing (0, 0), then the critical point (0, 0) of the
above system is stable.

Note 16.1.3. (a) If Ė < 0 for all x ̸= 0, then (0, 0) is asymptotically stable.

(b) If Ė > 0 for all x ̸= 0, then (0, 0) is unstable.

(c) If Ė = 0 for all x ∈ R2, then (0, 0) is a stable equilibrium point which is not asymptoti-
cally stable and solution curves lie on circles centered at the origin.
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Example 16.1.4. Use the Liapunov function v(x) = x21+x
2
2 to establish the following results.

(a) The origin is an asymptotically stable equilibrium point of

Ẋ =

[
0 −1
1 0

]
X +

[
−x31 − x1x

2
2

−x32 − x2x
2
1

]
.

(b) The origin is an unstable equilibrium point of

Ẋ =

[
0 −1
1 0

]
X +

[
x31 + x1x

2
2

x32 + x2x
2
1

]
.

(c) The origin is a stable equilibrium point which is not asymptotically stable for

Ẋ =

[
0 −1
1 0

]
X +

[
−x1x2
x21

]
.

Here, v(x) = x21 + x22. Differentiating with respect to time t, we have

v̇(x1, x2) = 2x1ẋ1 + 2x2ẋ2. (16.1.4)

(a) The system is given by

ẋ1 = −x2 − x31 − x1x
2
2

ẋ2 = x1 − x32 − x2x
2
1.

From (16.1.4),

v̇(x1, x2) = 2x1[−x2 − x31 − x1x
2
2] + 2x2[x1 − x32 − x2x

2
1]

= −2x1x2 − 2x41 − 2x21x
2
2 + 2x1x2 − 2x42 − 2x22x

2
1

= −2[x41 + x42 + 2x21x
2
2]

= −2(x21 + x22).

Hence v̇(0, 0) = 0 and v̇(x1, x2) < 0 for all x1, x2 ∈ R. Thus the origin is an aysmptot-
ically stable equilibrium point.

(b) The system is equivalent to

ẋ1 = −x2 + x31 + x1x
2
2

ẋ2 = x1 + x32 + x2x
2
1.

Now from (16.1.4),

v̇(x1, x2) = 2x1ẋ1 + 2x2ẋ2

= 2x1(−x2 + x31 + x1x
2
2) + 2x2(x1 + x32 + x2x

2
1)

= −2x1x2 + 2x41 + 2x21x
2
2 + 2x1x2 + 2x42 + 2x21x

2
2

= 2x41 + 2x42 + 4x21x
2
2

= 2(x21x
2
2)

2.

Hence v̇(0, 0) > 0 for all (x1, x2) ∈ R2. Thus, (0, 0) is unstable critical point.
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(c) The system is given by

ẋ1 = −x2 − x1x2

ẋ2 = x1 + x21.

Now from (16.1.4),

v̇(x1, x2) = 2x1ẋ1 + 2x2ẋ2

= 2x1(−x2 − x1x2) + 2x2(x1 + x21)

= −2x1x2 − 2x21x2 + 2x1x2 + 2x21x2

= 0.

Thus the origin is stable equilibrium point which is not asymptotically stable.

Example 16.1.5. Show that the stable equilibrium point E0(1, 0) pf the SIR epidemic model

dS

dt
= µ(1− S)− βSI

dI

dt
= βSI − (µ+ γ)I

is globally asymptotically stable if R0 =
β

µ+ γ
< 1, where S and I are proportions of the

susceptibles and infectives at time t respectively. Use the Liapunov function v = I + S − 1 +
lnS.

It is easy to verify that (1, 0) is a critical point. Now the Liapunov function is given by

v = I + S − 1 + lnS.

Differentiating with respect to time t,

dv

dt
=

dI

dt
+
dS

dt
− 1

S

dS

dt

= µ(1− S)− βSI + βSI − (µ+ γ)I − 1

S
[µ(1− S)− βSI]

= µ(1− S)− 1

S
µ(1− S) + βI − (µ+ γ)I

= −µ(S − 1)2

S
+ I[β − (µ+ γ)]

= −µ(S − 1)2

S
+ (µ+ γ)I

[
β

µ+ γ
− 1

]
= −µ(S − 1)2

S
+ (µ+ γ)I(R0 − 1).

Thus,
dv

dt
< 0 ⇒ R0 − 1 < 0 ⇒ R0 < 1 ⇒ β

µ+ γ
< 1. Hence the critical point E0(1, 0) is

asymptotically stable if R0 =
β

µ+ γ
< 1.



Unit 17

Course Structure

• Limit cycles and periodic solutions

• Existence and Non-existence of limit cycles

• Bendixon’s Non-existence criterion, Dulac’s criterion

17.1 Limit Cycles and Periodic solutions

Given an autonomous system
dx

dt
= P (x, y)

dy

dt
= Q(x, y).

(17.1.1)

One is often most interested in determining the existence of periodic solution of the system.
If x = f1(t), y = g1(t), where f1 and g1 ate not both constant functions, is a periodic solution
of the above system, then the path which the solution defines is a closed path. On the other
hand, let C be a closed path of the above system defined by a solution x = f(t), y = g(t),
and suppose f(t0) = x0, g(t0) = y0. Since C is a closed path, there exists a value t1 = t0 + T
where T > 0, such that f(t0) = x0, g(t0) = y0. Now the pair

x = f(t+ T )

y = g(t+ T )

is a solution of (17.1.1). In other words, f(t+ T ) = f(t), g(t+ T ) = g(t) for all t, and so the
solution x = f(t), y = g(t) defining the closed path C is a periodic solution.

173
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Definition 17.1.1. A closed path C of the system (17.1.1) which is approached spirally from
either the inside or the outside by a non-closed path C1 of (17.1.1) either as t → +∞ or
t→ −∞ is called a limit cycle of (17.1.1).

X

y

C

The following example of a system having a limit cycle will illustrate the above discussion
and definition.

Example 17.1.2. Consider the following system.

dx

dt
= y + x(1− x2 − y2)

dy

dt
= −x+ y(1− x2 − y2).

(17.1.2)

To study this system, we shall introduce polar coordinates (r, θ), where

x = r cos θ

y = r sin θ.

From these relations, we find that

x
dx

dt
+ y

dy

dt
= r cos θ

[
−r sin θdθ

dt
+
dr

dt
cos θ

]
+ r sin θ

[
r cos θ

dθ

dt
+
dr

dt
sin θ

]
= r

dr

dt
. (17.1.3)

Similarly,

x
dy

dt
− y

dx

dt
= r2

dθ

dt
. (17.1.4)

Now, from (17.1.2),

x
dx

dt
+ y

dy

dt
= (x2 + y2)(1− x2 − y2)

⇒ r
dr

dt
= r2(1− r2) [Using (17.1.3)]

⇒ dr

dt
= r(1− r2).



17.1. LIMIT CYCLES AND PERIODIC SOLUTIONS 175

Again, from (17.1.2),

y
dx

dt
− x

dy

dt
= y2 + x2

⇒ −r2dθ
dt

= r2 [Using (17.1.4)]

⇒ dθ

dt
= −1.

Thus in polar coordinate system, we have

dr

dt
= r(1− r2) (17.1.5)

dθ

dt
= −1. (17.1.6)

Integrating (17.1.6), we have, θ = −t+ t0, t0 is constant. From (17.1.5),

dr

r(1− r2)
= dt

⇒ r2 + (1− r2)

r(1− r2)
dr = dt

⇒ rdr

1− r2
+
dr

r
= dt

⇒ 2rdr

1− r2
+ 2

dr

r
= 2dt.

Integrating, we get

ln r2 − ln |1− r2| = 2t+ ln |C0|

⇒ r2

1− r2
= C0 e2t

⇒ r2 = (1− r2)C0 e2t

⇒ (1 + C0 e2t)r2 = C0 e2t

⇒ r2 =
C0 e2t

1 + C0 e2t

⇒ r =
1√

1 + C e−2t
,

where C =
1

C0

. Thus the solution of the system may be written as

r =
1√

1 + C e−2t
,

θ = −t+ t0,

where C and t0 are arbitrary constants. We may choose t0 = 0. Then θ = −t, and hence

x =
cos t√

1 + C e−2t
, and y =

sin t√
1 + C e−2t

. (17.1.7)
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If C = 0, the path defined by (17.1.7) is the circle x2 + y2 = 1. If C ̸= 0, the path defined
by (17.1.7) are not closed paths but rather paths having a spiral behaviour. If C > 0, the paths
are spirals lying inside the circle x2 + y2 = 1. As t → ∞, they approach this circle, while as
t → −∞, they approach the critical point (0, 0). If C < 0, the paths lied outside the circle
x2 + y2 = 1.

X

y

-1 1

Since the closed path x2 + y2 = 1 approached spirally, both the inside and outside by non-
closed paths as t→ +∞, we conclude that this cycle is a limit cycle of the given system.

17.1.1 Existence and Non-existence of Limit cycles

Bendixon’s Non-existence criterion

Let D be a domain in the xy-plane. Consider the autonomous system

dx

dt
= P (x, y)

dy

dt
= Q(x, y)

(17.1.8)

where P andQ have continuous first order partial derivatives inD. Suppose that
∂P (x, y)

∂x
+
∂Q(x, y)

∂y
has the same sign throughout D. Then the system (17.1.8) has no closed path in the domain
D.

Proof. Let C be a closed curve in D. Let R be the region bounded by C and apply Green’s
theorem in the plane. We have∫

C

[P (x, y)dy −Q(x, y)dx] =

∫ ∫
R

[
∂P

∂x
+
∂Q

∂y

]
dxdy

where the line integral is taken in the positive sense. Now assume that C is a closed path of
(17.1.8). Let x = f(t), y = g(t) be an arbitrary solution of (17.1.8), defining C parametrically
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and let T denote the period of this solution. Then

df(t)

dt
= P [f(t), g(t)] and

dg(t)

dt
= Q[f(t), g(t)]

along C and we have∫
C

[P (x, y)dy −Q(x, y)dx] =

∫ T

0

{
P [f(t), g(t)]

dg(t)

dt
−Q[f(t), g(t)]

df(t)

dt

}
dt

=

∫ T

0

{P [f(t), g(t)]Q[f(t), g(t)]−Q[f(t), g(t)]P [f(t), g(t)]} dt

= 0.

Thus, ∫ ∫
R

[
∂P

∂x
+
∂Q

∂y

]
dx dy = 0.

But this double integral can be zero only if
∂P

∂x
+
∂Q

∂y
changes sign. This is a contradiction.

Thus C is not a path of (17.1.8) and hence (17.1.8) possesses no closed path in D.

Example 17.1.3. Show that the following system has no closed path

dx

dt
= 2x+ y + x3

dy

dt
= 3x− y + y3.

Here,

P (x, y) = 2x+ y + x3

Q(x, y) = 3x− y + y3.

Now,
∂P

∂x
+
∂Q

∂y
= 3(x2 + y2) + 1.

Since this expression is positive throughout every domain D in the xy-plane, the given system
has no closed path in any such domain.

Example 17.1.4. By constructing a Liapunov function, show that the system

ẋ = −x+ 4y

ẏ = −x+ y3

has no closed orbit.
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Consider v(x, y) = x2 + ay2, where a is a parameter to be chosen later. Then

v̇ = 2xẋ+ 2ayẏ

= 2x(−x+ 4y) + 2ay(−x+ y3)

= −2x2 + (8− 2a)xy − 2ay4.

If we choose a = 4, the xy term disappears and

v̇ = −2x2 − 8y4.

By inspection, v > 0 and v̇ < 0 for all (x, y) ̸= (0, 0). Hence, v = x2 + y2 is u is a Liapunov
function and so there are no closed orbits. In fact, all trajectories approach the origin as
t→ ∞.

Exercise 17.1.5. (a) Show that the system ẋ = y − x3, ẏ = −x − y3 has no closed orbit,
by constructing a Liapunov function v = ax2 + by2 with a suitable a, b.

(b) Show that v = ax2+2bxy+ cy2 is positive definite if and only if a > 0 and ac− b2 > 0.

(c) Show that ẋ = −x + 2y3 − 2y4, ẏ = −x − y + xy has no periodic solution. [Hint:
Choose a, m and n such that v = xm + ayn is a Liapunov function]

17.1.2 Dulac’s Criterion

This is a method for ruling out closed orbits is based on Green’s theorem, and is known as
Dulac’s criterion.

Theorem 17.1.6. Let ẋ = f(x) be a continuously differentiable vector field defined on a
simply connected subset of R of the plane. If there exists a continuously differentiable real
valued function g(x) such that ▽ · (gẋ) has one sign throughout R, then there are no closed
orbits lying entirely in R.

Proof. Suppose there were a closed orbit C lying entirely in the region R. Let A denote the
region inside C. Then Green’s theorem yields∫ ∫

A

▽ · (gẋ)dA =

∮
C

gẋ · ηdl

A
R

C

X
.

n
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where η is the outward normal and dl is the element of arc length along C. Since ▽ · (gẋ) has
one sign in R, hence the double integral on the left side must be non-zero. On the other hand,
the line integral on the right equals zero. Since ẋ · η = 0 everywhere, by assumption that C is
a trajectory (the tangent vector ẋ is orthogonal to η). This contradiction implies that no such
C can exist.

Note 17.1.7. Dulac’s criterion suffers from the same drawback as Liapunov’s method; there is
no algorithm for finding g(x). Most commonly used g(x) are

g = 1,
1

xαyβ
, eax, and eay .

Example 17.1.8. Show that the system ẋ = x(2− x− y), ẏ = y(4x− x2 − 3) has no closed
orbit om the positive quadrant x, y > 0.

Let us choose g =
1

xy
. Then

▽ · (gẋ) =
∂

∂x
(gẋ) +

∂

∂y
(gẏ)

=
∂

∂x

(
2− x− y

y

)
+

∂

∂y

(
4x− x2 − 3

x

)
= −1

y
< 0.

Since the region x, y > 0 is simply connected and g and f satisfy the required smoothness
conditions. Hence Dulac’s criterion implies that there are no closed orbits in the positive
quadrant.

Example 17.1.9. Show that the system ẋ = y, ẏ = −x− y − x2 + y2 has no closed orbits.

Let g = e−2x. Then

▽ · (gẋ) = −2 e−2x y + e−2x(1− 2y) = − e−2x < 0.

By Dulac’s criterion, there are no closed orbits.

Exercise 17.1.10. (a) Using Dulac’s criterion with weight function g = (N1N2)
−1, show

that the system

Ṅ1 = r1N1

(
1− N1

K1

)
− b1N1N2

Ṅ2 = r2N2

(
1− N2

K2

)
− b2N1N2

has no periodic orbits in the first quadrant N1, N2 > 0.
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(b) Using Dulac’s criterion, show that the system

ẋ = −x+ y2

ẏ = y(2 + 2x− y2)

has no closed orbits. You may use a Dulac’s function g(x, y) =
1

y
.

(c) Use the Dulac’s function B(x, y) = b e−2βx to show that the system

ẋ = y

ẏ = −ax− by + αx2 + βy2

has no limit cycle in R2.



Unit 18

Course Structure

• Bifurcation

• Saddle-Node bifurcation

18.1 Bifurcation

The dynamics of vector fields is very limited. All solutions either settle down to equilibrium
or head out to ±∞. The most interesting fact of a dynamical system is the parametric depen-
dence. Mathematical models often rise to differential equations that have many parameters.
When the parameter values are changed, we may expect a change in the behaviour of the
solution of the differential equation. If the variation of a parameter changes the qualitative
behaviour of the solution, we call it bifurcation.

For example, consider the equation for linear growth or linear decay.

x′ = µx.

If µ > 0, solution grows exponentially; if µ < 0, all solutions tend to zero.

The qualitative behaviour of solutions for µ < 0 and µ > 0 are quite different, whereas the
behaviour of solution for µ = 1 and µ = 2 are very similar. For this example, µ = 0 is a
bifurcation value.

To understand a mathematical model properly, it is important to know when and how a bifur-
cation occurs. In this unit, we introduce four common bifurcations that occur at the equilibria.

We consider a scalar differential equation depending on a scalar parameter

x′ = f(x, µ), x ∈ R, µ ∈ R,

where µ is the parameter, and f : R2 → R is continuously differentiable.

181



182 UNIT 18.

Definition 18.1.1. We say that x∗ is a bifurcation point and µ∗ is a bifurcation value if

f(x∗, µ∗) = 0, and
∂

∂x
f(x∗, µ∗) = 0,

where
∂

∂x
denotes the partial derivative with respect to x.

Note that, f(x∗, µ∗) = 0 implies x∗ is a steady state of the differential equation x′ = f(x, µ∗).
We know that, x∗ is a hyperbolic steady state if fx(x∗, µ∗) ̸= 0. Thus, bifurcation points must
be non-hyperbolic steady states.

We now discuss the normal forms of the four most common bifurcations. The first three
(saddle-node, transcritical and pitchfork) can be exhibited in scalar equations. The Hopf bi-
furcation can occur in system having dimension atleast 2.

18.1.1 Saddle-Node Bifurcation

The saddle-node bifurcation is the basic mechanism by which fixed points are created and
destroyed. As a parameter is varied, two fixed points move towards each other, collide and
mutually annihilate.

The prototypical example of a saddle-node bifurcation is given by the first order system

ẋ = r + x2

where r is a parameter, which may be positive, negative or zero. When r is negative, there are
two fixed points, one is stable and one unstable.

X

X XX

r=0r<0 r>0

XX
. . .

Figure 18.1.1: Saddle-Node Bifurcation

• As r approaches 0 from below, the parabola moves up and the two fixed points move
towards each other.

• When r = 0, the fixed points coalesce into a half stable fixed point at x∗ = 0. This type
of fixed point is extremely delicate: it vanishes as soon as r → 0 and now there are no
fixed point at all.

In this case, we say that a bifurcation occurred at r = 0. Since the vector field for r < 0 and
r > 0 are qualitatively different.
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Graphical Conventions

We now show a stack of vector fields for discrete values of r. This representation emphasizes
the dependence of the fixed points on R. In the limit of a continuous stack of vector fields, we
have a picture like figure 18.1.2. The curve shown is r = −x2, that is, ẋ = 0, which gives the
fixed points for different r. To distinguish between stable and unstable fixed points, we use a
solid line for fixed points and a broken line for unstable ones.

r=0

r>0

r<0

Figure 18.1.2

The most common way to depict the bifurcation is to invert the axis of Figure 18.1.3. The ra-
tionale is that r plays the role of an independent variable, and so should be plotted horizontally
(Figure 18.1.4). The drawback is that now the x-axis has to be plotted vertically, which looks
strange at first. Arrows are sometimes included in the graph, but not always. This picture is
called the bifurcation diagram for the saddle-node bifurcation.

X

r

unstablestable

Figure 18.1.3

X

r

unstable

stable

Figure 18.1.4

Example 18.1.2. Show that the first order system ẋ = r − x − e−x undergoes a saddle-node
bifurcation as r varied, and find the value of r at the bifurcation point.

Using the Taylor series expansion for e−x about x = 0, we have

e−x = 1− x+
x2

2!
− . . .
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Now,

ẋ = r − x− e−x

= r − x−
[
1− x+

x2

2!
− . . .

]
= (r − 1)− x2

2!
+ . . .

If we ignore the higher order terms, then we have

ẋ = (r − 1)− x2

2!
.

This is equivalent to the normal form of saddle-node bifurcation, ẋ = r + x2. Thus, the given
system undergoes a saddle-node bifurcation. The bifurcation point is given by

r − 1 = 0 ⇒ r = 1.

Differentiating partially with respect to x, we have

∂f

∂x
= −1 + e−x .

Hence the critical point is given by

∂f

∂x
= 0 ⇒ −1 + e−x = 0

⇒ e−x = 1

⇒ −x ln | e | = ln(1)

⇒ −x = 0

⇒ x = 0.

Thus the critical point is x∗ = 0 and bifurcation point is given by r∗ = 1.



Unit 19

Course Structure

• Transcritical bifurcation

• Pitchfork bifurcation

19.0.1 Transcritical Bifurcation

There are certain situations where a fixed point exists for all values of a parameter and can
never be destroyed. However, such a fixed point may change its stability as the parameter is
varied. The transcritical bifurcation is the standard mechanism for such changes in stability.
The normal form for a transcritical bifurcation is

ẋ = rx− x2.

The following figure shows the vector field as r varies. Note that there is a fixed point at
x∗ = 0 for all values of r.

For r < 0, there is an unstable fixed point at x∗ = r and a stable fixed point at x∗ = 0. As
r increases, the unstable fixed point approaches the origin and coalesces with it when r = 0.
Finally, when r > 0, the origin has become unstable and x∗ = r is now stable. Thus an
exchange of stability conditions has taken place between the two fixed points.

Note 19.0.1. The important difference between the saddle-node and transcritical bifurcations
is that the two fixed points don’t disappear after bifurcation; instead they just switch their
stability.

Figure 19.0.2 shows the bifurcation diagram for the transcritical bifurcation.

185
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X

X XX

r=0r<0 r>0

XX
. . .

Figure 19.0.1: Transcritical Bifurcation

r

x

stable

stable

unstable

unstable

Figure 19.0.2: Bifurcation Diagram

Example 19.0.2. Show that the first order system

ẋ = x(1− x2)− a(1− e−bx)

undergoes a transcritical bifurcation at x = 0 when the parameters a, b satisfy a certain equa-
tion to be determined.

Here, x = 0 is a fixed point for all a, b. For small x, we find,

1− e−bx = 1−
[
1− bx+

1

2
b2x2 +O(x3)

]
= bx− 1

2
b2x2 +O(x3).

Thus,

ẋ = x− a

(
bx− 1

2
b2x2

)
+O(x3)

= (1− ab)x+
1

2
b2x2 +O(x3).
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Hence, the transcritical bifurcation occurs when 1 − ab = 0 ⇒ ab = 1. This equation
represents the equation of bifurcation curve. The non-zero critical point for small x is given
by

(1− ab) +
1

2
b2x∗ ≃ 0 ⇒ x∗ ≃ 2(ab− 1)

ab2
.

Example 19.0.3. Show that the system

ẋ = r ln(x) + x− 1

undergoes a transcritical bifurcation at a certain value of r.

Here f(x) = r ln(x) + x − 1. Now, f(1) = 0. Hence, x = 1 is a critical point for all values
of r. Since we are interested in the dynamics near the fixed point, we introduce a new variable
u = x− 1, where u is very small. Then

u̇ = ẋ = r ln(u+ 1) + u

= r

[
u− 1

2
u2 +O(u3)

]
+ u

= (r + 1)u− 1

2
ru2 +O(r3).

Hence the transcritical bifurcation occurs at r + 1 = 0 ⇒ r = −1.

19.0.2 Pitchfork Bifurcation

Here we discuss the third type of bifurcation, the so called pitchfork bifurcation. This bifurca-
tion is common in physical problems that have a symmetry. There are two very different types
of pitchfork bifurcation, namely supercritical bifurcation and subcritical bifurcation.

Supercritical Pitchfork Bifurcation

The normal form of the supercritical pitchfork bifurcation is

ẋ = rx− x3. (19.0.1)

Note 19.0.4. This equation is invariant under the change of variable x → −x. That is, if we
replace x by −x and then cancel the resulting minus sign on both sides of the equation, we
get equation (19.0.1) again. This invariance is the mathematical expression of the left right
symmetry.

The following figure shows the vector field for different values of r.

When r < 0, the origin is the only fixed point, and it is stable. When r = 0, the origin
is still stable, but much weakly so, since linearization vanishes. Finally, when r > 0, the
origin has become unstable. Two new stable fixed points appear on either side of the origin,
symmetrically located at x∗ = ±

√
r.
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X

X XX

r=0r<0 r>0

XX
. . .

Figure 19.0.3: Supercritical Pitchfork Bifurcation

r

x

stable

stable

unstable

stable

Figure 19.0.4: Bifurcation diagram for pitchfork
bifurcation

r

x

stable

unstable

unstable

unstable

Figure 19.0.5: Bifurcation diagram for subcritical
pitchfork bifurcation

Subcritical pitchfork bifurcation

The normal form of subcritical pitchfork bifurcation is given by

ẋ = rx+ x3.



Unit 20

Course Structure

• Hopf Bifurcation

20.1 Hopf Bifurcation

A Hopf Bifurcation occurs when a periodic solution or limit cycle, surrounding an equilib-
rium point, arises or goes away as a parameter varies. When a stable limit cycle surrounds
an unstable equilibrium point, the bifurcation is called a supercritical Hopf bifurcation. If the
limit cycle is unstable and surrounds a stable equilibrium point, then the bifurcation is called
a subcritical Hopf bifurcation.

Theorem 20.1.1. Hopf Bifurcatoin Theorem: Consider the planar system

ẋ = fµ(x, y),

ẏ = gµ(x, y), (20.1.1)

where µ is a parameter. Suppose it has a fixed point, which without loss of generality we may
assume to be located at (x, y) = (0, 0). Let the eigenvalues of the linearized system about the
fixed point be given by λ(µ), λ(µ) = α(µ) ± iβ(µ). Suppose further that for a certain value
of µ (which we may assumed to be 0) the following conditions are satisfied:

(a) α(0) = 0, β(0) = ω ̸= 0, where sgn(ω) = sgn
[(

∂gµ
∂x

) ∣∣∣
µ=0

(0, 0)

]
(non-hyperbolicity

condition: conjugate pair of imaginary eigenvalues)

189
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(b)
dα(µ)

dµ

∣∣∣
µ=0

= d ̸= 0 (transversality condition: the eigenvalues cross the imaginary axis

with non-zero speed)

(c) a ̸= 0, where

a =
1

16
(fxxx + fxyy + gxxy + gyyy) +

1

16ω
[fxy(fxx + fyy)

−gxy(gxx + gyy)− fxxgxx + fyygyy

with
[(

∂2fµ
∂x∂y

) ∣∣∣
µ=0

(0, 0)

]
, etc. (genericity condition)

Then a unique curve of periodic solutions bifurcates from the origin into the region µ > 0 if
ad < 0 or µ < 0 if ad > 0. The origin is a stable fixed point for µ > 0 (resp. µ < 0) and
an unstable fixed point for µ < 0 (resp. µ > 0) if d < 0 (resp. d > 0) whilst the periodic
solutions are stable (resp. unstable) if the origin is unstable (resp. stable) on the side of µ = 0
where the periodic solutions exist. The amplitude of the periodic orbits grows like

√
|µ| whilst

their periods tend to 2π/|ω| as |µ| tends to zero.

Illustration: Consider the two dimensional system

x′1 = −x2 + x1(µ− x21 − x22)
x′2 = x1 + x2(µ− x21 − x22).

(20.1.2)

Using polar coordinates,
x1 = r cos θ and x2 = r sin θ.

We can rewrite the system (20.1.2) as

r′ = r(µ− r2)
θ′ = 1.

(20.1.3)

Note that the equation for r in (20.1.3) is the normal form for a pitchfork bifurcation. Thus as
µ passes through the bifurcation value 0, the system (20.1.3) undergoes a pitchfork bifurcation.

The steady state r = 0 corresponds to the steady state (0, 0) while the other steady state
r =

√
µ, corresponds to a periodic orbit√

x21 + x22 =
√
µ.

The corresponding bifurcation diagram is shown in the figure below.

Note that the Jacobian matrix Df(0, 0) is given by[
µ −1
1 µ

]
which has a pair of complex eigen values, namely λ = µ± i. At the bifurcation value µ = 0,
the eigen values are purely imaginary. The occurance of purely imaginary eigen values for a
set of parameter values is an important indicator of Hopf bifurcation.
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x
stable

unstable

stable

μ

2

x1
μr=
12

Figure 20.1.1: Hopf bifurcation diagram

Example 20.1.2. Perform a bifurcation analysis for the Liénard equation

ẍ− (µ− x2)ẋ+ x = 0

If we let u = x, v = ẋ, we can rewrite the equation as a two-dimensional first order system

u̇ = v

v̇ = −u+ (µ− u2)v

The only equilibrium point is the origin. The Jacobian matrix for the linearized system about
the origin is [

0 1
−1 µ

]
.

The eigenvalues of the Jacobian matrix are

α(µ) + β(µ) =
µ

2
± i

√
4− µ2

2
.

Notice that
α(0) = 0 and ω = β(0) = −1.

Also,

d =
dα(µ)

dµ

∣∣∣
µ=0

=
1

2
̸= 0.

Lastly, a = −1

8
̸= 0. Hence, all the conditions of the Hopf Bifurcation Theorem are satisfied.

Since ad = − 1

16
< 0, the origin is stable for µ < 0 (see Fig. 20.1.2) and unstable for µ > 0,

where there is a stable periodic orbit (see Fig. 20.1.3). The system has a supercritical Hopf
bifurcaton at µ = 0.
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Figure 20.1.2: The origin is stable focus µ = −0.3 Figure 20.1.3: The origin is unstable focus µ = 1

Example 20.1.3. Perform a bifurcation analysis for the following logistic model.

ẋ = rx(1− x)− h

where r > 0 is the rate of logistic growth and h is a harvesting component, say the amount of
fishing allowed in a lake. If h is positive or the amount of stocked fish added to the lake per
year if h is negative.

Here, f(x, r, h) = rx(1− x)− h. For critical point,

f(x∗, r, h) = 0

⇒ rx∗(1− x∗)− h = 0

⇒ r (x∗)2 − rx∗ + h = 0

⇒ x∗ =
r ±

√
r2 − 4rh

2r
=

1

2

[
1±

√
1− 4h

r

]
.

Letting µ =
4h

r
, we have the critical points

x∗ =
1

2
(1±

√
1− µ).

When µ < 1, we have two equilibrium points. When µ = 1, we have only one equilibrium
point. When µ > 1, there is no equilibrium point.

In order to determine the stability, we need to look at the derivative of f(x, r, h). Thus,

d

dx
f(x, r, h) = −2rx+ r = −r(2x− 1).

Now,
d

dx
f(x∗, r, h) = −r[1±

√
1− µ− 1] = ∓r

√
1− µ.
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Since r > 0 when µ < 1, x∗ =
1

2

[
1 +

√
1− 4h

r

]
is stable while x∗ =

1

2

[
1−

√
1− 4h

r

]
is

unstable. As µ increased towards 1, the two equilibria moves towards each other, eventually

colliding each other. This point in the (µ;x∗) plane
(
1,

1

2

)
is called the bifurcation point. A

qualitative bifurcation diagram is as follows.

μ=1

x
stable

unstable

μ

*

Bifurcation Point (1,1/2)

Figure 20.1.4: Bifurcation diagram

Exercise 20.1.4. Show that the system

dx

dt
= x(1− x)− h

x

a+ x

can have one, two or three fixed points, depending on the values of a and h.

• Analyse the dynamics near x = 0 and show that a bifurcation occurs when h = a. What
type of bifurcation is it?

• Show that another bifurcation occurs when h =
1

4
(a+ 1)2, for a < ac, where ac is to be

determined. Classify this bifurcation.
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Unit 3: Overview of C
Structure
3.1. History of C

3.2. Importance of C

3.3 Sample Programs

3.4 Basic Structure Of  C Programs

3.5 Programming style

3.6 Executing A C Program

3.7 Unix System

3.8 MS- DOS System

3.9 Summary

3.1. History of C

C is a structured general purpose  machine Independent high level programming language
developed by Dennis Ritchie at AT & T’s Bell Labs of USA in the mid 1970s for the Unix based
operating system.  Many of the important concepts of C are borrowed from the language BCPL
(Basic Combined Programming Language), developed by Martin Richards in 1967. Although
originally designed as a systems programming language, C has proved to be a powerful and flexible
language that is   used for a variety of applications for nearly every available platform. The merit of C
lay in the fact that it is easier to read, more flexible and more efficient at using memory. It is
particularly popular for personal computer programmers because it requires less memory than other
languages. C is the archetype  or original model for  many  modern  languages  as when we find
Language constructs in C, such as "if" statements, "for" and "while" loops, and types of variables, can
be found in many later languages. Today, there are very few platforms that do not have a C compiler

In the late, seventies C began to replace the more familiar languages of that time like, ALGOL,
PL/I, etc. The drawback of the B language was that it did not know data-types. Both BCPL and B are
“ type less”  system programming languages. By Contrast, C Provides a variety of data types with
powerful features. The fundamental data types are integers, characters and floating point numbers of
various sizes. In addition there is a hierarchy of derived data types created with arrays, pointers,
structures and union.

Since C was developed along with the UNIX operating system, it is has close association with
UNIX. Major parts of the popular operating systems like windows, Linux and Unix are coded   in C.
This is because when it comes to performance nothing beats C.  Although C is technically a high-
level language, it is one of the "lowest-level" high-level programming languages in the sense; it is
much closer to assembly language than are most other high-level languages. This closeness to the
underlying machine language allows C programmers to write very efficient code. More over if one is

Unit 5
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Variables, Identifier, Keywords, Constants
Basic data type, Variables, Declaration and Initialization
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to extend the operating system to work with new devices one needs to write device driver programs.
These programmes are exclusively written in C.

For many years, C was the reference manual, but eventually with the appearance of many C
compilers coupled with the wide popularity of UNIX operating system, it gained wide popularity
among computer professionals. Today, C is the language of choice while building a variety of
hardware and operating system platforms.

The American National Standards Institute (ANSI) constituted a committee in 1983, to provide an
updated definition of C. The resulting definition “ANSI C “was completed in late 1988, and modern
compilers are already supporting most of the features of this standard .The standard is based on the
original reference Manual in the first edition, the classic book “The C Programming Language” ,
with little or no changes  on the original design of the C language . They ensured that old programs
still worked with the new standard, failing that, the compiler would produce warnings of new
behavior.

One of the significant contributions of the standard is the definition of a new syntax for the defining
and declaration of the function. This extra information makes it easier for compilers to detect errors
caused by mismatched arguments. A second significant contribution of the standard is the definition
of a library  to accompany C. These library functions specifies functions for accessing the operating
system, formatted input and output, memory allocation, string manipulation, and the like. A
collection of standard headers provides uniform.

3.2. Importance of C

C is an immensely popular language widely used and well understood. Some of the versatile features
of C language are: reliability, portability, flexibility, interactivity, modularity and finally efficiency
and effectiveness. It is a great tool for expressing programming ideas in a way it is easily understood,
regardless of the language users   are most familiar with. It is in fact the original or archetypal
building block for many other currently known languages and it is very close to assembly language. C
is a robust language whose rich set of built in functions, and operators can be used to write any
complex programs. In C large programs are divided into small programs called functions and data
moves freely around the systems from one function to another. Moreover, the C compiler combines
the capabilities of an assembly language with the attributes of a high level language and therefore it is
useful for writing both system software and business packages without worrying about the hardware
platforms  where they will be implemented..The great thing about C is that it can be used to write
high performance code for both application and system software. Further it can interact with
hardware at quite low level. In fact, many of the compilers available in market are written in C. It is
the language used for developing system applications that forms major portion of operating systems
such as Windows, UNIX and Linux. C is increasingly being used in Database systems, Graphics,
Spread sheets, word processors, Compilers /Assemblers, Network drivers and interpreters.
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The variety of data types and powerful operators available in C makes C programs very efficient and
fast. In C there are only 32 key words and its strength lies in its built-in functions. Some standard
functions are available which can be used for developing programs. C Being highly portable,
programs written for one computer can be made to run on another system with little or no
modification.

C is at once one of the pillars of modern information technology (IT) and computer science (CS). C
is a high level language that lets us to write very low level stuff like device drivers that runs as fast as
assembly written programs. C's power and fast program execution come from its ability to access low
level commands, similar to assembly language, but with high level syntax. It allows low level access
to information and commands while still retaining the portability and syntax of a high level language.
In this process C imposes few constraints on the programmer. Further it is tailor- made for structured
programming, thus requiring the user to think a problem in terms of function modules or blocks. A
collection of these modules make a program debugging and testing easier..Thus, C meets the
requirements, where speed, space and portability are important.

Another prime feature of C is its ability to extend itself. A program in C is basically a collection of
functions that are supported by the C library. We can add our own functions to the C library  .With
the availability of large number of functions , the programming burden becomes simple. C being
simple and easy to understand, most of the operating systems and game software are written in C .

Before discussing some distinct features of C, we shall look at some sample programs in C, and as
we proceed, can learn more about the language.

3.3 Sample Programs

Printing A Message: Sample program 1

The only way to learn a new programming language is by writing programs in it. Let us begin by
looking at the construction of  a very simple program.

The following is the output of the  above program code  when it is executed:

hello, fine

Fig. 3.1 The  first C program to print a single line  of  text

main( )

{

/* ……Printing begins…….*/

Printf(“ hello, fine ”);

/* ……Printing ends…….*/

}

5353
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In the above C  program, the code  begins executing at the beginning of main. main( ) is a special

function  used by the C systems to tell the computer where the program begins. This means that every

program must have a main somewhere. In this example, main is defined to be a function that expects

no arguments, which is indicated by the empty list ( ). All the statements that belong to main( ) are

enclosed within  a pair of braces { } as indicated above. The opening brace “{“ indicates the

beginning of the function main and the closing brace “}“ marks the end of the program. All the

statements between these two braces form the function body. The function body  contains a set of

instructions to perform the given task.

In our example, the function body contains three statements out of which only the printf line is an

executable statement. A function is called by naming it, followed by parenthesized list of arguments,

so this calls the function printf with the argument “ hello, fine ”. printf is a library function that

prints output , in this case the string of characters (String constant or character string) between quotes.

The two lines

/* ……Printing begins…….*/

And

/* ……Printing ends…….*/

Are comment lines which in this program tells what the program does. Any characters between /*

and .*/  are ignored by the compiler ( comments are solely given for the understanding of the

programmer or the fellow programmers); they may be used  freely to make a program easier to

understand . Any number of comments can be written at any place in the program. The normal

language rules do not apply to text written with in /*  and .*/ . Thus we can type this text in small

case, capital, or a combination. Moreover, comment can be split over more than one line, as in,

/*  printing

begins.*/

Such a comment is often called a multi-line comment. Comments cannot be nested. For example,

/* Printing begins /*Printing ends.*/*/

Is invalid and therefore results in an error.

Let us come back to  the printf function, the only executable statement of the program .

printf(“ hello, fine ”);

The above quotation can be printed in two lines, by adding another printf function, as in,

printf(“hello,\n”);

printf(“fine”);
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The information contained between the parentheses is called the augment (which are simply strings
of character to be printed out) of the function. The argument of the first printf contains a combination
of two characters \ and n at the end of the string. The combination sequence” \n “ is called newline
and it takes the character to the next line. Therefore, you will get the output split over two lines. \n is
one of the several Escape Sequence (similar in concept to the carriage return key on a type writer,
which when printed advances the output to the left margin on the next line) available in C. if you try
something like

printf(“hello, fine

”);

The C compiler will produce an error message.

No space is allowed between \ and n. printf never supplies a new line automatically, so several
function calls may be used to build up an output line in stages, as in,

.

To produce identical output. Here \n represents only a single character. An escape sequence like \n
provides a general and extensible mechanism for representing hard to type or invisible characters. It is
also possible to produce multi line output by one printf statement with the use of newline character at
appropriate places, as in,

printf (“hello\n….fine,\n……I\n……..am ok!”);

Where the output is

hello

…..fine,

……….I

……….am ok !

main( )

{

/* ……printing begins…….*/

printf(“ hello,”);

printf(“ fine,”);

printf(“ \n”);

/* ……printing ends…….*/

}
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The inclusion of the preprocessor directive # include < stdio.h > at the beginning of all programs

that use any input/output library functions should not be insisted for functions like, printf and scanf,
Printf is a pre defined standard C function (predefined in the sense that it is function that has already

been written, compiled, and linked together with the program at the time of linking).

Note that the print line ends with a semi colon. Thus  the mark ; acts as a statement terminator.

That is,  every C statement must end with a ; mark. In C , everything is written in lowercase letters.

However, uppercase letters are used for symbolic names representing constants. we may also use

uppercase letters in output strings like “HELLO” and “FINE”.

The General format of simple C programs is shown below.

Function Name

Beginning of program

Program statements

End of program

SAMPLE PROGRAM 2: Adding    Two Numbers

Here is a simple program which demonstrates the use of new ideas, including comments, declaration,

variables, and arithmetic expressions.

main( )

{

…..

……

…..

}
Simple C program Format

The main Function
The main ( ) is a function and is part of every program. There are different forms of main statement in C. viz.,

main ( )

int main ( )

main (void)

void main (void )

int main (void)

The empty pair of parenthesis indicates that the function has no arguments This may be explicitly indicated by

using the keyword void inside the parenthesis. Just like the way functions in a calculator returns a value,
functions in C also  return a value to the operating system. That is, It is also possible to specify the keyword int or
void before the word main. Some compilers permit us to return nothing or no information to the operating

system  from main ( ). In such a case we should precede it with the key word void. The key word void means
that the function does not return any value to the operating system and int means that the function s returns an

integer value to operating system. When int is specified, the last statement in the program must be “return 0”.
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Addition of Two numbers: Sample program 2

Consider another program, which performs addition on two numbers. This program explains the need

for the use of declaration of variables, and use of operators.

On execution of this program we will get the following output:

10

50.10

The first line of the program is a comment line. Comment line in the beginning give information

such as name of the program, author, date etc. To indicate line numbers comment characters can also

be used. in other lines. The words num and amount are variable names used to store numeric data.

The numeric data may be either in real or integer form. In C, all variables must be declared before

they are used, usually at the beginning of the function before any executable statement. The type

declaration statement is written at the beginning of main ( ) function.     In lines 4 and 5,  the

declarations

int  num;

float amount;

/* addition of two numbers */

main ( )

{

int  num;

float amount;

num = 10;

amount = 20.25+29.85;

printf ( “ % d\n”,num);

printf (“%5.2f”,amount);

}

/Program to add two numbers:/
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tells the compiler that num is an integer (int) and amount is a floating (float) point (numbers with

fractional part) numbers. All declaration statements ends with a semicolon. The words such as int
and float are called keywords and cannot be used as variable names .The range  of  both int and float
depends on the machine you are using; 16- bit  ints, which lie between -32768 and +32768 , are

common, as are 32-bit ints. A float number is typically 32-bit quantity, with at least six significant

digits and magnitude generally between about 10-38 and 10+38. While declaring the type of variable

one can also initialize it as shown in line 7 and 9.That is , the statements

num = 10;

amount = 20.25+29.85;

are called the assignment statement. Every assignment statement must have a semicolon at the end.

The order in which we define the variables is sometimes important sometimes and sometimes not.

For example,

int i =10, j =25;

is same as

int j= 25, i=10;

However,

float a= 1.5, b = a + 3.2;

Is alright. But

float b= a+3.2, a = 1.5 ;

Is not, because we are trying to use a even before defining it.

Moreover, the following statements would work

int a,b,c,d

a = b = c = d = 10;

However the following statement would not work

Int a= b= c= d =10;

The next statement of the program is an output statement that prints the value of number. The

print statement

printf ( “ % d\n”, num);
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contains two arguments..The first argument “%d’ tells the compiler that the value of the second

argument num should be printed as a decimal integer. These arguments are separated by comma.
The newline character “\n “ causes the next output to appear on a new line.

The last statement of the program

printf (“%5.2f”, amount);

print out the value of amount in floating point format. The format specification “%5.2f “ tells the

compiler that the output must be floating type , with five places in all and two places to the right of

the decimal point.

Calculation of Interest: Sample Program 3

C supports the basic four arithmetic operators (-, +, * . / ) along with various others. The use of

such operators along with other variable declarations, the while loop construct  and # define

preprocessor directive are illustrated in the program below. The program calculates the value of

money at the end of each year of investment, assuming the  interest rate at  11 percent  with an initial

investment of 50 000 for 10 years .In this program, the variable value represents the value of money

at the end of the year and the amount represents the value of the money at the start of the year. The

statement

amount = value ;

makes the value at the end of the current year as the value at the beginning  of the next year .

The preprocessor compiler directive #define, defines a symbolic constant. Whenever a symbolic

name is encountered, the compiler automatically substitutes the value associated with the name. If

you want to change the value you have to simply change the definition. #define line should not end

with a semicolon and are usually written in upper case letters(so that they can be readily distinguished

from the lower case variable names), usually placed at  the beginning  before the main ( ) function.

They are not declared in the declaration section. The declaration section of the program declares year
as integer and amount ,value and rate as floating point numbers. When two or more variables are

declared in one statement, they are separated by commas. It is also possible to declare the floating

point variables as multiple statements as in,

float amount;

float value;

float rate;
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Fig.3.5       The Investment Program

/*   ………………………… INVESTMENT PROBLEM ………………….. */

# define PERIOD        10

#define PRINCIPAL  50000.00

/* ………………………… MAIN PROGRAM BEGINS ………………….. */

main (  )

{ /*   ……………………DECLARATION STATEMENTS …………….. */

int year;

float amount, value, rate;

/*   ………………………… ASSIGNMENT STATEMENTS …………….. */

amount = PRINCIPAL ;

rate = 0.11;

year = 0;

/*   ……………  ……… COMPUTATION STATEMENTS… ………….. */

/*   …………… COMPUTATION USING while LOOP ………….. */

While (year < = PERIOD )

{

printf ( “ % 2d     % 8.2 f \n” , year, amount );

value = amount + rate * amount;

year = year +1;

amount = value;

}

/*   ……….. ………………… while LOOP ENDS… ………….. */

}

/*   ……………  ……… PROGRAM  ENDS                    … ………….. */
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In the while loop all computation and printing are accomplished. The body of a while loop can
be one or more statements enclosed in braces . The parenthesis after the while contain a condition that
is tested. So long as this condition remains true all , all statements within body of the while loop keep
getting executed repeatedly. When the condition  becomes false , the control passes to the  first
statement that  follows the body of the while loop..In this case as long as the value of the year is less
than or equal to the PERIOD, the four statements grouped by braces that follows the while are
executed. The loop ends when year becomes greater than PERIOD.

Sample Program 4: Use of Sub routines:
A very simple program that explains the use of mul ( ) function is shown below. It uses a user

defined

//A program using user defined function//

/*   ………………………… PROGRAM USING FUNCTION ………………….. */

int mul  ( int a, int b); /* DECLARATION….. */

/*   ………………………… MAIN PROGRAM STARTS………………….. */

main ( )

{

int a, b,c;

a =7;

b =10;

c = mul (a,b);

printf ( “multiplication of %d and % d is  % d”, a,b,c);

}

/*   ………………………… MAIN PROGRAM ENDS

MUL FUNCTION STARTS………………….. */

int mul (int x, int y)

int p;

{

p = x * y;

return ( p);

}

/*                             MUL  (  )  FUNCTION ENDS . */
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function equivalent to subroutine in FORTRAN or Sub program in BASIC. The Execution of the
program will print the output

Multiplication of 7 and 10 is 70
The mul ( ) function multiplies the value of variables x and y and the result is returned to the main

( ) function when it is called in the statement

c = mul (a,b );
The mul ( ) function has two arguments x and y (declared as integers) and  when called the values of

a and b are passed onto x and y respectively. This example also shows a bit more of how printf
works.

Sample Program 5: Use of Math Functions:
There are many occasions where we often use standard mathematical functions like cos, sin, exp,

etc.

Figure 3.1     Use of Cosine Function

/*   … PROGRAM USING COSINE FUNCTION …………….. */

# include < math.h >

# define PI 3.1416

# define MAX 180

main ( )

{

int angle;

float x,y;

angle = 0;

Printf ( “Angle      Cos(angle) \n\n “);

While (angle < = MAX)

{

x = ( PI/MAX) * angle;

y = cos (x);

printf ( “% 15 d % 13.4 f\ n “, angle, y);

angle = angle +10;

}

}
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The standard mathematical functions are defined and kept as a part of C math library for use in
programs. The use of any of these mathematical functions in the program can be accomplished by
means of # include instruction in the program. The #include directive tells the preprocessor to treat
the contents of a specified file as if those contents had appeared in the source program at the point
where the directive appears Like # define, it is also a compiler directive and tells the compiler to link
the specified mathematical functions from the library. The instruction is of the form

# include < math.h >

math.h is the file name containing the required information. Program code,(Figure 3.1) explains the
use of cosine function. Another # include  instruction that is often used is

# include <stdio.h>

<stdio.h> refers to the standard I/O header file containing standard Input output functions. That is, it
adds the contents of the file named stdio.h to the source program and the ankle brackets cause the
preprocessor to search the directories specified by the Include environment variable for stdio.h, after
searching directories specified by the / I  compiler option. For example, to use the function printf( ) in
a program, the line

#include  <stdio.h>

Should be at the beginning of the source file, because the definition for printf() is found in the file
stdio.h.

As explained earlier,  C programs   are divided into modules or functions. To use any of the
standard functions, the appropriate header file should be included...Header files contain definitions of
functions and variables which can be incorporated into any C program by using the pre-processor
#include statement. This is done at the beginning of the C source file . To access the functions stored
in the C library, it is necessary to tell the compiler about the files to be accessed. This is achieved by
the use of pre processor directive

#include  <filename>

Placed at the beginning of the program. Note here that filename is the name of the library file that
contains the required function definition.

3.4   Basic Structure Of  C Programs
The programs in C so far discussed illustrates that it can be viewed as a group of building blocks

called functions. A function is a segment that groups a number of program statements to perform
specific task. To write a c program , we  must first create functions and then put them together.

The different sections of a C program as shown in figure 3.2..The documentation section consists
of  a set of comment lines giving the name of a program, author, date and other details, which the
programmer would like to use later .The link section provides instructions to the compiler  to link
functions from the system library. All symbolic constants are defined in the definition section. Global
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variables (variables that are used in more than one function)  and all the user defined functions are
declared in the global declaration section that is out side of all the functions.

Every C  program must have one main ( ) function section that contains two parts, the declaration and

executable part, appearing  between the opening and closing braces. In the declaration part all those

variables used in the executable part are declared..There is at least one statement in the executable

part. The program execution begins at the opening brace and ends at the closing brace which marks

the logical end of the program. Every statements in the declaration and executable parts end with a

semi colon (;).\

The sub program section contains all the user defined functions that are called in the main function.

User defined functions are generally placed immediately after the main function, although they may

appear in any order. All sections , except the main function may be absent when they are not required.

Documentation Section

Link Section

Definition Section

Global Declaration Section

main ( ) Function section

{

Declaration Part

Execution Part

}

Sub Program section

Function  1

Function  2

……..                           ( User Defined functions)

Function  n

Fig.3.2 An over view of C program
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3.5 Programming Style
Programming style is a set of rules or guidelines used when writing the source code for a computer

program. It is often claimed that following a particular programming style will help programmers to read and
understand source code conforming to the style, and help to avoid introducing errors.

C has no specific rules for the position at which a statement  is to be written. That’s why it is often called a
free –form language. First of all, all statements are entered in small case letters. Upper case letters are used
only for symbolic constants. The statements in the program must appear in the same order in which we wish to
be executed.; unless of course the logic of the problem demands a deliberate “jump”, which is out of sequence.
These statements are terminated with a semi-colon (;), and are collected in sections known as functions. By
convention, a statement should be kept on its own line. Blank spaces may be inserted between two words to
improve the readability of the statement. However , no blank spaces are allowed with in a variable, constant or
key word.

Since C is a free-form language, we can group statements together on one line. The statements

a = b;

x = y-1;

z = a-1;

can be written on one line as

a = b;  x = y-1; z = a-1;

The program

main ( )

{

Print f (“hello”);

}

May be written in one line like

main ( )  { Print f (“hello”)};
However, this style makes the program more difficult to understand. Rather than putting everything on one line, it is

much more readable to break up long lines so that each statement and declaration goes on its own line.

Comments in code can be useful and they  provide the easiest way to set off specific parts of code (and their purpose);
as well as providing a visual "split" between various parts of your code. Having good comments throughout your code
will make it much easier to remember what specific parts of your code do. Care should be taken  not  to over emphasize
generous use of comments inside the code. For debugging as well as testing of the code Judiciously inserted comments is
very helpful and it  improves the  code readability as well as the understandability of the code logic.

3.6 Executing A C Program

C program Execution involves the following steps

1. Creating the program
2. Compiling the program
3. Linking the program with functions that are needed from the C library
4. Executing the program.
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As in any language, C language has its own vocabulary and grammar (or syntax rules)   and each

program instruction must conform precisely to the syntax   of the language. In this chapter we will

discuss the concepts of constants, variables and their types.

4.2 The C Character Set

A  C character set denotes any valid alphabet, digit or special symbol,  to represent an information.

The set of characters that can be used to write a source program is called source character set and the

set of characters available during program execution is called execution character set. Very often, in

most implementations of C,  both character sets are taken as identical. Generally, a character data

type holds a single character( or one byte), enclosed with in single quotes,  to represent a character

constant. For e.g., the expressions ‘a’ , ‘b’,and ‘0’ represent character constants. Remember that  “a”
is used to represent a string of characters( or sequence of characters enclosed with in double quotes)

and is different from ‘a’. Further, ‘\n’ is used to represent a new line character,  that is used to move
the cursor to a new line on the screen. Figure 4.2 shows the entire character set ( i.e., the valid

alphabets, numbers, special  characters and white spaces )  allowed in  C. The compiler ignores white

spaces unless they are part of a string constant. White spaces may be used to separate words, and are

prohibited between characters of key words and identifiers.

Trigraph Characters

Some characters from the C character set are not available in all environments, because keyboard

may not have keys to cover the entire characters set of the language. A Trigraph, is a three character

replacement for a special character in the C character set. ANSI C introduces the concept of

“Trigraph”  Sequences  to provide a way to enter  certain characters that are  not available on some

keyboards. Actually, each  Trigraph sequence contains  three characters ( i.e., two question marks

followed by  another character ) as in Figure 4.3. i.e., Each trigraph sequence is introduced by two

question marks followed by a third character  that indicates the character to be  represented. For eg., ,

if a key board does not support square brackets , we can still use them  in a program using the

Trigraphs ??  ( and ??).

Figure 4.1:  Steps in  Learning  C Language

ProgramsInstructions

Alphabets

Digits

Special Symbols

Constants

Variables

Key words
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4.3  C Tokens

A token is a source program text that the compiler does not break down into  atomic units. They are

the basic building blocks/elements  of the  C language,  constructed together to make a C program.

That is, each and every smallest individual units in a C program are called Tokens. The Tokens in C

language include:

Figure 4.2 : The C Character Set

Alphabets Upper  case  letters  A,B,……., Z

Lower case letters   a,b,…… .., z

Digits                                       All decimal   digits  0,1,2,…….9

Special Characters ; semicolon                 , comma                       & ampersand              . period

* asterisk                      + plus sign                  ‘ apostrophe               ? question

mark

< opening bracket        >  closing bracket       ^ caret                         ~ tilde

or less than sign            or greater than sign

! exclamation  mark     | vertical bar                ( left parenthesis

) right parenthesis \ backlash                    [ left bracket

] right bracket              $ dollar sign                } right brace

_ under score                { left brace                   = equal sign

% percent sign              # number sign              / slash

@ commercial at - hyphen or minus        “ quotation  mark

sign

White  Spaces

Blank spaces

Horizontal Tab

Carriage Return

New Line

Form Feed
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1. Key words  (eg: float, double etc.,)

2. Constants   (eg: 100, -10.0 etc., )

3. Strings        (eg: “ABC”, “month” etc.,)
4. Operators   (eg: +, - etc.,)

5. Identifiers   (eg: main, total etc.,)

6. Special Symbols (eg: [ ],( ) etc.,)

C Programs are written using these tokens and the syntax of the language.

4.4 Key Words and Identifiers

Every C word fall  under two categories, viz,. either  a key word or an Identifier. C Key words
(also called Reserved words) are the words that convey a special meaning to the C Compiler. They

are the system defined identifiers that do have a fixed  meaning (i.e., it does not change) and cannot

be used as variable names. They are the basic building blocks for program statements and are written

in lowercase letters. C language supports 32 (Thirty Two) keywords and are  listed in Figure

4.4.below.

Fig. 4.3 ANSI C Trigraph Sequences

Trigraph Sequence Translation

??= # number sign

??( [  left bracket

??) ]  right bracket

??< { left brace

?? > } right brace

??! | vertical bar

??/ \ back slash

??| ^ caret

??~ ~ tilde
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auto float double long

short signed unsigned const

goto else switch break

if do while for

typedef extern static struct

default enum return sizeof

register union int case

void char continue volatile

An Identifier refers to the names of variables ( i.e., the one which changes during program
execution), names of functions,  arrays, and structures. They are  user defined names consisting of a
combinations of alphabets, digits with a letter as the first character and underscore. The under score
symbol is treated as a letter in the C character set and it helps in  the readability of long variable
names. That is, they are  the names given to C entities such as , variables, types, functions, structures
and  labels in the program. However, the lengths of identifiers in C, vary from one implementation to
another. In general, Identifier are created  to give a unique name to C entities so as  to identify it
during the execution of the program. For example: int apple; Here apple is an identifier  which denote
a variable of integer type.  In fact, Keywords (either C or Microsoft)  are not used as
identifiers.(i.e.,  they are reserved  for special use). Identifiers are in general, used to name
constants, functions, files and the like,  apart from variables.
Rules for Identifiers

1. The first character must be an alphabet( uppercase or lowercase ) or an under score.
2. All succeeding characters must be letters or digits.
3. Key words should not be used as identifiers.
4. Name of identifier is case sensitive  i.e. num and Num are two different variables.
5. Identifier name cannot be exactly same as  constant name which have been declared  in the header

file of C and you have  included that header file.
6. Name of identifier cannot be exactly same as of name of function with in the scope of the function.
7. Name of function cannot be global identifier.
8. No two successive underscores are allowed.
9. Only first 31 characters are significant.
10. No special characters or punctuation symbols are used except the under score.

Figure  4.4    Key words in C
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Figure 1.4: Keywords in C
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4.5 Constants

A constant in C refers to a piece of data that does not change throughout the execution of the

program. That is, Constants in C are expressions with a fixed  value that are not changed during the

execution of the program  and are declared with the define keyword .In general,  C constants can be

divided into two major categories

1. Primary constants

2. Secondary constants.

These constants are further categorized as shown in Figure 4.5.

At this stage, we would restrict our discussion to only primary constants( or basic constants)

namely, Integer, Real and Character constants. Let use details of each of these constants..

Integer Constants

Integer constants are the numeric constants (Constants associated with number)  without any

fractional or exponential part. Integer constants take one of the following forms:

1.    A decimal integer. , e.g., 1 , 134, 10005   ( Decimal integers are a set of digits,  0  through   9,

preceded by an optional – or + sign). Embedded spaces, commas, and non digit characters

are    not  allowed  between digits.

2.     An Octal integer constant (base 8), e.g., 0 1 , 134, 0303242 . An octal constant is introduced

Fig. 4.5 Types of   C   Constants

C  Constants

Primary Constants Secondary Constants

Numeric  Constant Character Constant Array

Pointer

Structure

Union

Enum. etc

Integer

Constant

Real

Constant

Single
Character

Constant

String

Constant
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by a   leading   0 and   digits,  the digits are 0  through 7 .

3.      A Hexa  decimal (base 16)  Number. e.g., 1 , 0x1, 0X186A2. A hex constant is preceded by a

leading  0X or  0x and the digits are 0 through 9 followed by A through F ( Note that upper and

lower case Letters  are allowed) .

4. A character Constant.

Integer constants can also be suffixed  with an  identifier  U (or u) or L (or l ), which is used to

indicate that the constant is unsigned or long, respectively. For e.g., 567U  or  567u  These suffixes

may be combined as in .e.g., 989712343UL  or 989712343ul . The largest integer value that can be

stored is machine dependent. It is 32767 on 16-bit and 2147483647 on 32-bit machines.  For

constructing the integer constants, certain rules have been laid down. These rules are as under:

Rules for constructing Integer constants

1.An integer constant must have at  least one digit

2.It must not have a decimal point.

3.It can be either + ve  or - ve.( If no sign precedes, it is assumed to be + ve.).

4. No Commas or Blanks are allowed within an integer constant.

5. The allowable range is between -32768 to 32767(For 16 bit compiler).

Real Constant

Certain quantities that vary continuously,  such  as  prices, distances, temps, and so on,  are

represented by numbers containing fractional parts like 10.246. Such numbers are called Real or
Floating point constants. That is, a real constant is one of :

• A fractional constant followed by an optional exponent

• A digit sequence followed by an exponent.

In either case followed by an  optional of  f, l ( for single precision) , F. L(For double Precision),

where:

• An optional digit sequence followed by a decimal point followed by a digit sequence.

• A digit sequence followed by a decimal point.

Further, an exponent is one of :

• E or e  followed by an optional +  or – followed by a digit sequence ( A digit sequence

is an arbitrary combination of one or more digits).
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Floating point constants are normally represented as  double precision quantities. Following rules

must be observed while constructing  real constants in fractional form:

1. A real constant must have at least one digit

2. It must have a decimal point

3. It could be either positive or negative

4. If no sign precedes an integer constant, it is assumed to be positive.

5. No commas or blanks are allowed within the real constant.

The exponential form of  representation of  real constants  is usually used if  the value of the

constant is either too small or too large . In this form of representation, the real constant is

represented in two parts. The part appearing before ‘e’  is called  mantissa, whereas the part
following ‘e’ is called  exponent. Thus 0.000213 is represented in exponential form as 2.13e-4 . The

General form is

mantissa e exponent

Following rules must be observed while constructing real constants expressed in exponential form:

1. The mantissa and exponential part should be separated by a letter e or E.

2. The mantissa part may have + ve or –ve sign.(default sign is positive).

3. The exponent must have at least one digit , which must be a +ve or _ve integer. Default sign is

+ve.

4 .Range of  real constants expressed in exponential form is -3.4e38 to 3.4e38.

Character Constant

Character constants are the constant which use single quotation around characters. example, `b`,

`k`, `l` etc.  In general,   A character constant is a single alphabet, a single digit, or a single special

symbol enclosed with in single quotes(or inverted commas).  For both  the inverted  commas(single

quotes)  should point to the left. For example, `C` is a valid character constant while  ‘ C‘ is not. In
C, characters are small integers, so you can use a character constant anywhere you can use an integer

constant and vice  versa. More over, the maximum length of a character constant can be 1 character.

String Constants

It is a collection of characters enclosed in double quotes. It may contain letters, digits, special

characters and blank space. Examples are:

“Hello!”   “How Are You  “  “ ? “   “X ”
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Note that a character constant (e.g., ‘X’)  is  not equal to the single character string constant( e.g.,
“X” ) . Further, a single character string constant does not have an equivalent integer value while a
character constant has an integer value. More over,  character strings are often  used  in programs  to

build meaningful programs. Moreover, the entity having two consecutive double quotes without  any

characters in between them, i.e., “  “, is called  a null string. Here, the quotes acts as delimiters and
are not part of the string.

Backlash character constants

Sometimes, it is necessary to use newline(enter), tab, quotation  mark etc. in the program which

either cannot be typed  or has special meaning in C programming.  Such characters with special

meaning  should be preceded  by a backlash symbol to make use of special function of them.. The

backlash (\ ) causes “escape” from the normal way the characters are interpreted by the compiler.
Each backlash character constant represents one character, although they consist of two characters.

These character combinations are called escape sequences. Given below (Table 4.1)is the list of

special characters and their  purpose .

4.6  Variables

Every language should support the basic data objects namely, variables and constants. Variables
are memory location in computers memory to store data. To indicate the memory location, each

variable should be given a unique name called identifier. Variable names are just the symbolic

representation of a memory location. These memory  locations can  contain integer, real or character

constants. Unlike constants that remain  unchanged during  the execution of program , a variable  may

take different values at different  times during execution.  Examples of  variable names are : sum,

count, bike, interest etc. A variable name can be chosen by the programmer in a meaningful manner

so as to reflect its function. Variables are to be declared before using it in the program.

Rules for writing Variable names in C

1. Variable  names can be composed of  letters(upper & lower case) , digits, and underscore. There

is no  rule for the length of a variable. A variable name is any combination of 1 to 31 alphabets.

2. The first letter of a variable should be either a letter or an under score.  Note that upper and

lower case are significant

3.   No commas or blanks are allowed with in a variable name.

4.   No special symbol other than underscore can be used in the variable name.

5.   It should not be a key word.

6.   White spaces are not allowed.
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Constant Meaning

‘\a’                                  audible alarm

‘\b’                                  back space

‘\f’ form feed

‘\n’                                  new line

‘\r’                                  carriage return

‘\t’                                   horizontal Tab

‘\v’                                  vertical tab

‘\”’                                  double quote

‘\’’                                  single quote

‘\?’                                  question mark

‘\\’                                   backlash

‘\0’                                  null

Table 4.1

4.7 Data Types.

Like other computer languages, C supports  data types  namely, of integer, character and of float
type. In C, all variables must be declared  before they are used, usually at the beginning of the

function  before an  executable statements.  A declaration announces the properties of variables; it

consists of a type name and a list of variables such as

int Celsius;

int count;

The type int means that the variables listed are integers. ANSI C supports three classes of data

types:

1. Primary data types

2. Derived data Types

3. User defined data Types.
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All C Compilers support five fundamental data types, namely integer(int) , character(char), Floating

point(float), double  precision floating point(double) and void.  Extended data types like long int
,long double are also in use in C. Figure 4.6 gives an overview of primary data types in C.

Integer Types

This data   type allows a variable to store numeric values. int keyword is used to refer integer data

type.  The.  integers are whole  numbers with a range of values supported  by a particular machine

(that is, the storage size of int data type  is 2 or 4 or 8 byte. It varies with the processor in the CPU

that we use). Generally, the C integer types were intended to allow code to be portable among

machines with different inherent data sizes (word sizes), so each type may have different ranges on

different machines. The problem with this is that a program often  needs to be written for a particular

PRIMARY DATA TYPES

Integral Type

Integer Character

signed unsigned

int               unsigned int

short int      unsigned short

long int       unsigned long int

Char

Signed char

Unsigned char

Floating point type

void
float         double long double

Fig. 4.6   Primary data types in C
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The above figure gives an overview of primary data types in C.
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range of integers, and sometimes must be written for a particular size of storage,  regardless of what

machine the program runs on. In fact,  integers occupy one word of storage, and since the word size

of machines vary,  the size of integer that can be stored depends on the computer. For a 16 bit word

length, the size of the integer value is limited to the range -2 15 to 2 15-1. A signed integer uses one bit

for sign and 15 bits for the magnitude of the number.

In order to provide control over the range of numbers and storage space, the C language defines

several  integer data types: integer, short integer, long integer, and character, all both in signed
and unsigned varieties. For eg., Short int represents fairly small  integer values and requires half

the amount of storage space as a regular int number  uses. Unlike signed integers, unsigned integers

use all the bits for the magnitude of the number and are always  positive. To increase the range of

values we declare long and unsigned integers

Floating point types

C uses the key word float to define floating point numbers . Floating point numbers are stored in

32-bit, with six digits precision. Key word double is used to define big floating  point  numbers. It

reserves twice the storage for the number. A double data type number  uses 64 bits giving a precision

of 14 digits. On PC’s  this is likely to be 8 bytes. The double type represents the same data type that

float represents, but with a greater precision. To extend the precision further,  the key word long
double with 80 bits are used.

Void types

Void is an empty data type normally used as a return type in C to declare that  no value will be

returned by the function. It can also play the role of generic type, meaning that it can represent any of

the other  standard types.

Character type

A single character of the character set of  C, can be defined as a character ( or char) type data .

Key word char is used for declaring the variable of character type. Usually, a character enclosed

between a pair of single quotes denotes a character constant. The size of char is 1 byte(or 8 bits of

internal storage)..The qualifier signed or unsigned may explicitly applied to char.

4.8 Declaration of Variables

In order to use a variable in C, we must first declare it  before they are used in the program.

Declaration does two things:

1. It tells the compiler what the variable name (type name) is

2. It specifies what type of data (or properties) the variable will hold
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The type declaration statement is written at the beginning of main ( ) function.

Primary type instruction

A variable can be used  to hold  a value of any data type in a memory location. After assigning

variable names, we have to declare them. The syntax for declaring a variable is:

data-type v1,v2,….vn;

Here v1,v2,….vn are the variable names and are separated by commas A declaration statement must

end with a semicolon. For example,

int num, sum;

int code;

double ratio;

are valid declarations. Here, Keywords int and double are used to represent integer and real type data

respectively. When qualifier is applied to the data type then it changes its size (The size qualifiers are

:short and long ) or its sign ( sign qualifiers are: signed and unsigned). While using qualifiers like,

short, long, unsigned without  specifying the basic data type , the C compiler will treat the data type

as int . Moreover, if we want to declare a character variable as unsigned, then we must do so by

using both the terms like unsigned char

User Defined Declaration

In C  language,  a user can define an  identifier that  represents an existing data type. The user

defined data type identifier can later be used to declare variables. The General syntax is:

typedef type identifier;

Here type represents existing data type and “identifier” refers to the row name given to the data type.

Example:

typedef  int amount;

typedef  float sum;

Here amount symbolizes int and sum  symbolizes float. They can be later used to declare variables

as follows:

amount dep1,dept2;

sum section1[20],section2[20];

Therefore  dept1 and dept2  are indirectly declared as integer data type and section1 and section 2 are

indirectly float data type.
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Another user defined data type is enumerated  data type provided by ANSI C standard which is

defined as follows:.

enum identifier { value1,value2,…..valuen};

The “identifier “  here ,  is a user- defined  enumerated data  type which can be used to declare

variables that can have one of  the values enclosed  with in  the braces . After the definition  we can

declare variables to be of  this ‘new’ type as below.

enum identifier v1,v2,…..vn;

The enumerated  variables v1,v2,…vn  can have only one of the values value1, value2 ….. value n.

Th assignments of the following type:

v1 = value3;

v5 = value1;

are valid.

For example:

enum day { Monday, Tuesday,…….,Sunday};

enum day week_ st,week_end;

week_ st = Monday;

week_end = Friday;

If (week_st = = Tuesday)

week_end = Saturday;

The C compiler automatically assign integer digits beginning with 0 to all the enumeration constants.

That is,  the enumeration constant value 1 is assigned 0, value 2 is assigned 1, and so on. The

automatic assignment can be overridden  if we assign enumeration constant values explicitly as;

enum day { Monday = 1 , Tuesday,…….,Sunday};

Here Monday is assigned the value 1.The remaining constants are assigned values that increase

successively by 1.

The definition and declaration of enumerated variables can be combined in one statement as in :

enum day { Monday, Tuesday,…….,Sunday}  week _st, week_end;
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1.1 Introduction:
C language has a wide range of built –in operators to perform various operations. The symbols which are

used to perform logical and mathematical operations in a C program are called operators. These C operators
are used to join individual constants and variables to frame expressions. Moreover, operators, functions,
constants and variables are combined to shape expressions. That is, operators are used with operands to build
expressions. For example , the following is an expression containing two operands and one operator ‘ +’  (an
operator to perform addition).

8 + 5

whose value is 13. The value can be any type other than void.  C offers the following operator Groups.

• Arithmetic

• Assignment

• Logical/relational

• Incremental and decrement  operators

• Conditional

• Special Operators

• Bit wise operators.

1..2 Arithmetic Operators

The C arithmetic operators are  the +, -, /, * and the modulo operator % . These C arithmetic operators are
used to carry out mathematical calculations like addition, multiplication, division and modulus in c programs.
Unlike /, which returns quotient, the %  returns the reminder, the integer division truncates any fractional part.
That is, the expression

x  %  y

produces the remainder when  x  is divided by  y, and thus  is zero when y divides  x exactly. Note that the
operator ‘ % ‘ cannot be applied on floating point  or double type data. Further,  C does not have an operator
for exponentiation. The operators in C with their meaning are listed in Table 5.1 below.

Integer Arithmetic

When both the operands in a single arithmetic expression are integers, the expression is called an integer
expression, and the operation is called integer arithmetic. Integer arithmetic always yields an integer value. For
example, for integer operands such as a and b with assigned values  respectively, 15 and 5, we have:

a + b  = 20

a - b  = 10

a *  b  = 75

a  /  b  = 3

a %  b = 0
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During integer division , if both operands are of  the same sign, the result is truncated to zero. If one of

them  is negative, the direction of truncation is machine dependant. .That  is , 6/7 = 0 and -6/-7 = 0 but -6/7

may be zero or -1( that is , machine dependent).

Similarly, during modulo operation, the sign of the result is sign of the first operand., as in:

-16 %  3 = - 1

-16 % -3 = - 1

16 % - 3 = 1

Operator Meaning

+ Addition(unary plus)

- Subtraction(Unary minus)

* Multiplication

/ Division

% Modulo division (reminder after division)

Table 5.1    Arithmetic Operators

The Precedence to the operations associated with the operators are listed as:

Operator type Precedence priority

Unary Minus 1 Highest

*, / , % 2 Second

+, - 3 Third

That is, when an expression is given for evaluation, they are evaluated from Left to Right, based on the

precedence associated with the operators. On the other hand, if the precedence’s associated with the operators

are to be overridden,  it is necessary to use parenthesis  in the expression. However,  the expression within the

parenthesis  is evaluated on the basis of the precedence rule , with parentheses  again evaluated from left to

right. For expressions with nested parentheses, we evaluate the innermost one first, then the one immediately

outside and so on.
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Real Arithmetic

The C language contains the basic real arithmetic operators. An arithmetic operation involving only real

operands is called real arithmetic. A real operand may accept values either in decimal or exponential form. An

arithmetic operation  between an  integer and  integer gives  an  integer result, while , the result of applying

the real operators  to real  is another  real. For floating point values, it is rounded to the number of significant

digits permissible, and the final value is an approximation of  the corrected result. For example, if operands x,

y ,z are floats, then we will have,

x = 6.0/ 7.0  = 0.857143

y = 1.0/ 3.0  = 0.333333

z = -2.0 /3.0 = -0. 666667.

The operator % cannot be used with real operands

Mixed Mode Arithmetic

If operands in an expression contains both  integer and real constants or variables  then  it is a mixed mode

arithmetic expression.  That is, When one of  the operands is real,  an operation between an integer and real

always gives a real result. In this operation, the integer is first promoted to a real one and then operation  is

performed. The expression  thus obtained is called a Mixed mode arithmetic expression. For e.g.,  25/ 10.0 =

2.5 while, 25/10= 2.

1.3 Relational Operators

Relational  operators  are used to check relationship between two operands. If the relation is true, it returns

value 1 and if the relation is false, it returns value zero. The relational operators are

>,  > = ,  < , < =

They all  have the same precedence. C offers  six relational operators in all. These operators and their

meanings  are listed in Table 5.2.

Operator Meaning

< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to

= = is equal to

!= is not equal  to

Table 5.2     Relational Operators.
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A simple relational expression contains only one relational operator . When arithmetic operations are used

on either side of a relational  operator, arithmetic expressions will be evaluated first and then the results are

compared.  Relational  operators have lower precedence than arithmetic operators  and are used in decision

making and loops(i.e., in statements like If and while) in C programming..The Syntax Is:

ae-1 relational operator ae-2

with ae-1 and ae-2 representing arithmetic expressions.

For e.g., 4.6 < =  10   TRUE

4.6 < - 10    FALSE

x+y =  y+z TRUE only if sum of values of x and y are equal to the sum of values of y and z

Relational operator complements

Among the six relational operators, each one is complement of another operator. They are as:

 >   is complement of   < =

 <   is complement of   > =

 = =  is complement of ! =

We can simplify an expression involving the not and less than operators using the complements as :

! ( x < y)          simplified to x > = y

! ( x > y)          simplified to x < = y

! ( x ! = y)        simplified to x= = y

! ( x <  = y)      simplified to x >  y

! ( x > =  y)      simplified to x  <  y

! ( x = = y)       simplified to x !> = y

1.4  Logical Operators.

Logical operators are used to combine expressions containing relational operators. These operators perform

logical operations on the given expressions .In C there are 3 logical operators (Table 5.3) and are:

Operator Meaning of operator

&& logical AND

| | logical OR

! logical NOT

. Table 5.3
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Logical operators perform logical-AND ( && ) and logical –OR ( | | ) operations. Its Syntax is:

logical-AND-expression:

inclusive-OR- expression

logical –AND- expression & & inclusive- OR- expression

logical-OR-expression:

logical –AND- expression

logical -OR- expression | | logical - AND- expression

some example of usage of logical expression is:

1. If (age > 60 & & salary < 300 000)

2.If (number < 0 | | number > 1000 )  .

Logical operators & & and | | are used when we want to test more than one condition and to make decisions.

They do not perform  the usual arithmetic conversions. Instead, they evaluate each operand in terms of its

equivalence to 0.The result of logical operation is either 0 or 1 and is of int type. The operands of  logical-

AND and logical-OR are evaluated from left to right. If the value of the first operand is sufficient to determine

the result of the operation, the second operand is not evaluated . The C logical operators are described in Table

5.4 belo

Operator Description

&& If  both operand  are non zero  logical AND produces the value 1.If either

operand is equal to zero, the result is zero and if the first operand is equal to

zero, the second operand is not evaluated.

| | The logical-OR performs an  inclusive - OR operation on its operands. The

result is 0 if both operands have 0 values. If either operands has a non zero

value, the second operand is not evaluated.

Table 5.4

While using compound expressions, care should be taken in using the precedence of relational and logical

operators. The relative precedence are listed as:

!                                                             Highest

>   > =   <   < =

= = ! =

& &

| |                                                             Lowest.
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1. 5 Assignment Operators.
The assignment operators perform an arithmetic operation  on the 1value and assign the result to the

1value.The usual assignment operator is the ‘=’ ,. In addition, C has a set of less frequent shorthand

assignment operators of the form ( + +, - =, * =, / =, % =). The syntax s;

v  op = exp;

where v is a variable, exp is  an expression and op is a C binary arithmetic operator.(or short hand binary

operator).  For e.g., consider the statement x + = y +1 ;  this is same as x= x+(y+1). Here the operator + =

means add  ‘ y + 1  to x ‘  ( or increment  x  by y + 1) . Some of the commonly used short hand assignment

operators with their description is shown in Table 5.6. In all expressions involving these operators, the type of

an assignment expression is the type of its left operand, and the value is the value after the assignment.

Statement with simple assignment
operator

Statement with assignment operator

a =  a + 1

a =  a - 1

a =  a* (n+1)

a = a/( n+1)

a  = a % b

a + = 1

a - =  1

a* =  n+1

a / =  n+1

a % =  b

Table 5.6. Short hand assignment operators

1.6 Increment and Decrement operators.
C provides  two operators  ++  and - - called increment and decrement operators and these  operators are

useful in controlling the loops through an index variable. The + + operator adds 1 to its operand while the
decrement operator - - subtracts 1. Both of these operators are unary operators. (That is, used on single
operand. ++ adds  1 to operand and - - subtracts 1 to operand respectively). For example:

Let  a =  3 and  b  =  7

a ++ ;  becomes 4 and a - - becomes 6

The unusual  aspect  is that  ++ and - - may be used  either as prefix ( before the variable as in ++a)  or post
fix (after the variable as in  a ++) . In both  case effect is to  increment a. But the expression ++a increments a
before its value is used, while a ++  increments a after its value has been used. This means that in a context
where the value is being used, not just the effect, + + a and a++ are different. For e.g., in the  assignment
statement  x = i ++, if  i =5,  then x = i++ sets  x= 5 , but x = ++ i sets x to 6. In both case i becomes 6. The
increment and decrement operators can only be applied to variables, an expression like (i +j) ++  is illegal. In
general, a prefix operator first adds  1 to the operand and then the result is assigned to the variable on the left.
On the other hand, a post fix  operator first assigns the value to the variable on left and then  increments the
operand.
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Similar is the case, when we use  ++ or - - in subscripted variable. That is, the statement

a[ i++ ] = 5;

Is equivalent to

a[i] =5;

i = i+1;

Rules for increment (++) and decrement (- - ) operators.

1.They are unary operators and require variable as their operands.

2.A postfix  ++ or - - operator  used with a variable in an expression, the expression is evaluated first

using the original value of the variable and then the variable is incremented( or decremented by one).

3 When prefix ++ or - - is used in an expression, the variable is incremented (or decremented) first and

then the expression is evaluated using the new value of the variable.

4.The precedence and   associativity  of  ++ and - - operators are the same as those of unary  +  and

unary -

1.7 Conditional Operator

Conditional operator (? : ) is a ternary operator ( that demands three operands)  consisting of symbols ” ?” and

“: “ and are used for decision  making  in C. The operator works by evaluating test expression, returning a
value if that expression is TRUE and different one if the expression is evaluated as FALSE. The general syntax

is:

identifier = ( test expression) ? expression1 : expression2;

This is an expression, not a statement, so it represents a value. If the condition (or test expression) is true , it

evaluates and returns expression1, otherwise it evaluates  and returns expression2 .Conditional operator  can be

used as a short hand for some if-else statements. For example, consider the statements,

a = 10;

b = 20;

x = ( a > b) ? a : b;

Here in this example, x will be assigned the value of b. This can be achieved using the if…..else statement as

follows:

If ( a > b)

x = a ;

else

x = b;
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.1.8 Bitwise Operators

Bit wise operations in C  are carried out by using operations on bits(or lowest form of data that can be

accessed in digital hardware) at  individual level. That means , Bit wise operators are used to perform bit

operations on given two variables. Four commonly used bit wise operators in C are ~ , & ,| , and ^. Generally,

Bitwise operators manipulate the value of individual bits(i.e.,  1 or 0). Further,  to understand “<< “and “>>” ,
there are two shift operators  which  are used to shift the position of a bit (or a set of bits)  to another location,

in a multi-bit value. Moreover, these operators  work only on a limited number of types: int and char. That

means, they may not be applied to  data types : float and double. Bit wise operators supported by C are listed

in the following Table 5.7.

Operator Description of the operator

& Binary AND operator copies a bit to the result if it exists in both operands(or

Bitwise AND)

| Binary OR operator copies a bit if it exists in either operand( or Bitwise Inclusive

OR).

^ Binary XOR operator copies the bit if it is set in one operand but not both (or

Bitwise   Exclusive OR).

~ Binary Ones complement operator is unary and it has the effect of flipping bits(or

Bitwise ones complement).

<< Binary left shift operator(or bitwise left shift). The left operands value is moved

left by the  number of bits specified by the right operand.

>> Binary right shift operator (or bitwise right  shift). The left operands value is

moved  right by the  number of bits specified by the right operand

1.9 Special Operators

C  language provides a number of special operators which have no counter parts in other languages. These

operators include comma operator, sizeof operator, pointer operators( & and *) and member selection

operator (. and -- > ) . Pointer operators will be discussed  while introducing  pointers and member selection

operators will be discussed with structures and union. The comma and sizeof operators are discussed in this

section.

Table 5.7  Bit wise operators
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The Comma  Operator

This operator is used to link the related expressions together.  A coma -linked  list of expressions are

evaluated left to right and the value of right most expression is the value of the combined expression. For

example, the statement

int x, y,z;

z =  ( x =10, y = 20, x * y);

Here the 1st statement will create three integer type variables : x, y,z .  In the 2nd statement, R.H.S will be

evaluated first. As a result, 10 will be stored in variable  x, then 20 will be stored in variable y and then  values

in x and y will be multiplied, result of which will    be stored in the variable z as 200  at the end of the

execution. Since comma operator has the lowest precedence of all operators, the use of parentheses are

necessary.

The size of Operator

The sizeof operator works on variables, constants and even on data types. It returns the number of  bytes,  the

operand occupies in the memory. It is a compile time operator and when used with an operand, it returns the

number of  bytes occupied by its operand on that particular machine.

Examples include:

m = sizeof (sum);

n =  sizeof( long int);

o =  sizeof ( 235L) ;

The sizeof operator is normally  used to determine the lengths of arrays and structures when their sizes are not

known to the programmer and  is also used  during program execution,  for  dynamic  memory space

allocation of variables.

1.10 Arithmetic Expressions

Arithmetic expressions have numbers and variables combined with the regular numeric operators (+ , - , *, /

) , as per  syntax of the language and simplify to a single number .Some of the examples of  C expressions are

(table 5.8) given below:

Algebraic Expression C   Expression

a×b-c a*b-c

ab/c a*b/c

ax2+bx+c a*x*x+b*x+c

Table 5.8 C Expressions

99

98

2.10

given in the table below.

37



School of Distance Education

‘C’ Programming for Mathematical Computing Page 71

1.11 Evaluation of Expression

Every expression is formed out of operands and operators. Expressions in C,  are evaluated  using an

assignment statement of the form:

variable = expression;

Usually when a statement is encountered, the expression ( on the RHS) is first evaluated  and  the result

obtained  thus, is used to  replaces the  previous value of  the variable on the LHS. All variables used in the

expression must be assigned values before evaluation is attempted. An example of a valid evaluation

expression is;

x =  a* b-c;

Remember that blank space around an operator is optional and adds only to improve the readability..

1.12. Precedence of Arithmetic Operators

The two distinct priority levels of arithmetic operators in C are:

*  /  %          High priority

+ - Low priority

An arithmetic operation without parentheses will be evaluated from left to right, using the rules of operator

precedence. The basic evaluation  procedure involves two left to right pass through the expression..During the

1st pass, high priority operators (if any) are applied. and during the 2nd pass low priority operators, if any , are

applied as they are encountered. For example, consider the statement,

x = a-b/3 + c*2-1

when         a= 9, b=12, and c =3 , the statement becomes

x = 9- 12/3 + 3*2 -1

1st pass

Step 1: x =  9- 4 + 3*2 -1

Step 2: x = 9-4+6-1

Second pass

Step 3: 5+6-1

Step 4: 11-1

Step 5: 10

However, one can change  the order if evaluation, by introducing  parentheses into  the expression. The

same above expression in parentheses reads as:

x = 9- 12/(3 + 3)*(2 -1)
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Whenever parentheses are used, the expression contained  in the left most set is evaluated first and the

expression on the right most the last. The steps are as follows:

First pass:

Step 1: 9-12/6*(2-1)

Step 2: 9-12/6*1

Second Pass

Step 3: 9-2*1

Step 4: 9-2

Third pass

Step 5: 7

Though the procedure here, involves three left to right passes, number of evaluation steps is equal to the

number of arithmetic operators. That is, the number of evaluation steps is same (equal to 5) for evaluation

without and with parentheses

It may happen  that parentheses may be nested, in which case evaluation will proceed outward from the inner

most set of parentheses as in eg;,  x = 9- (12/(3 + 3)*2) -1 = 4 .

Rules for evaluation of Expression

1. The arithmetic expressions are evaluated from left to right using the rules of precedence.

2. When parentheses are used , the expression with in the parentheses assume highest priority

3. First parenthesized sub expressions from left to right are evaluated.

4. The precedence rule is applied in determining the order of application of operators in evaluating sub

expressions.

5. The associativity rule is applied when two or more operators of the same precedence level appear in a

sub expression.

6. If parentheses are nested, the evaluation begins at the inner most sub expression

1.13 Some computational problems

On most computers, any attempt to divide a number by zero will result in an abnormal termination of the

program. In such instances, care should be taken to test the denominator that is likely to assume zero value so

that  the division by zero error may be avoided.  Further, one must specify the correct type of operands and it

should be of the correct range, so that any  error due to over flow / under flow  may be eliminated.
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1.14  Type conversion in expressions

C lets mixing of constants and variables of different types in an expression. It automatically, converts  any

intermediate values  to the proper type  so that expressions can be evaluated  without loosing any significance.

This automatic conversion is called implicit  type  conversion.  If the operands are of different types, the lower

type is automatically converted to the higher type before the operation proceeds. The result is of higher type.

The sequence of rules to be followed while evaluating an expression are given below.

Rules for evaluating expressions

All short and char are automatically converted to int: then

1. If one of the operand is long double, the other will be converted to long double and the result will be long
double.

2. else, if  one of the operands is double, the other will be converted to double and the result will be double.

3. else, if the operand is float, the other will be converted to float and the result will be float;
4. else if one of the operand is unsigned long int, the other will be converted to unsigned long int and the

result will be unsigned long int.
5. else, if one of the operands is long int and the other is unsigned int, then

(a) If unsigned int can be converted to long int, the unsigned int operand will be converted as such and the

result will be long int;
(b)else, both operands will be converted  to unsigned long int and the result will be unsigned long int;
6. else, one of the operands is long int, the other will be converted to long int and the result will be long  int;
7. else, if one of the operands is unsigned int, the other will be converted to unsigned int and the result will

be unsigned int.

Explicit conversion

Explicit conversion is used to tell the compiler to treat a variable as of a different type in a specific context.

The compiler will automatically change one type of data in to another ( or locally convert)  to make it sense.

For instance, if you assign an integer value to a floating point variable, the compiler will insert code to

convert the int to  a float. The general syntax is:

(type-name)expression

Where type-name is one of the standard C data types. The expression may be a constant, variable or an
expression. Casting allows you to make this type conversion explicit, or to force it when it would not normally
happen. To perform casting, put the desired type including modifiers like unsigned inside parentheses to the
left of the variable or constant you want to cast. For Example

float a = 5.25;

int b = (int)a; /*Explicit casting from float to int */

The value of b here is 5.
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1.15 Operator Precedence and associativity

Two operator characteristics  ( or precedence and associatively of operators) determines how operators group

with operators. Precedence is the priority for grouping different types of operators with their operands.

Associativity is the left to right  or right to left order for grouping operand to operators that have the same

precedence. An operator’s precedence is meaningful only if other operators with higher to lower precedence
are present. Expressions with higher-precedence operators are evaluated first. The grouping of operands can be

forced by using parentheses Operators that have the same rank have the same precedence.

For example, in the following statements, the value of 1 is assigned to both a and b because of the right-to-
left associativity of  the = operator. The value of c is assigned to b first, and then the value of b is assigned to
a.

b = 2;

c = 1;

a = b = c;

Because the order of sub expression evaluation is not specified, you can explicitly force the grouping of
operands with operators by using parentheses.

In the expression

a + b * c / d

the * and / operations are performed before + because of precedence. b is multiplied by c before it is divided

by d because of associativity. Table 5.8 gives a complete list of C operators, their precedence levels , and their

rules of association.

Operator Description Associativity

( )

[ ]

Function call

Array element reference

Left to right

Right to Left

+ Unary plus Right to left

- Unary minus

++ increment

- - decrement

! Logical negation

~ Ones  complement

* Pointer reference

& address

Sizeof

(type)

Size of an object

Type cast

* multiplication Left to right

/ division

% Modulo

103

102

2.15

41



School of Distance Education

‘C’ Programming for Mathematical Computing Page 75

+ addition Left to right

- subtraction

<< Left shift Left to right

>> Right shift

< Less than Left to right

< = Less than or equal

> Greater than

> = Greater than or equal to

= = equality Left to right

! = In equality

& Bitwise AND Left to right

^ Bitwise XOr Left to right

| Bitwise OR Left to right

&& Logical AND Left to right

| | Logical Or Left to right

?: Conditional expression Right to left

= Assignment operators Right to left

* = /=  % =

+ = - = & =

^ = | =

< < = > > =

, Comma operator Left to right

Table 5.8 Precedence and Associativity of operators

1.16 Mathematical Functions
Mathematical functions such as cos, sqrt,log etc are frequently used in the analysis of real life problems. Most

C compilers support these basic type functions. To use any of these functions in a program, we should include
the line

# include stdio.h.

In the beginning of the program. Table 5.9 shows  some standard mathematical functions

1.17 Summary:
1. An operator in C is used with operands to build functions.
2. Each expression in C should end with a semicolon.
3.Associativity is applied when more than one operator of the same precedence are used  in an expression.
4. All mathematical functions implement double type parameters and return double type values.
5. On either side of binary operator,  always use spaces to increase readability.
6.Care should be taken to increment/decrement operators to floating point variables.
7.Assignment =.  Operator should not be confused with  equality operator = = .
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Unit 2:Managing Input and output Operations
Structure

2.1 Introduction

2.2 Reading a Character

2.3 Writing a Character

2.4 Formatted Input

2.5 Formatted output

2.6 Summary

2.1 Introduction

In order to learn a program effectively in C language, one should  know,  how  to manage input and output

of data  to and from  the screen and  the key board.  Most programs take some data as input  and display the

processed data, often as results, on a suitable medium. The two methods so far used, for providing data to

program variables, rely on : (1)  Assigning values to variables through assignment statements and (2)  using the

input function scanf  (to read data from a key board). For getting the output results, usually the printf function

that sends results out to a  terminal,  is used.

The  Input and output operations are convenient for program that interact with the user,  takes input from the

user  and print the message. Unlike, other higher level languages, C does not provide any input-output (I/O)

statements as part of its syntax.  Instead , a set of library functions provided by the operating system for input

and output operations are borrowed and used by C. The standard library for I/O operations used in C is stdlib.

That is , Standard input ( or stdin) is a data stream used to receive  input from user / collects characters typed

at the keyboard and stdout,  is the data stream  for sending output to a device such as monitor etc., . In

otherwords, to include input and output functionality in C programs, the stdio header is needed. Each program

that uses a standard I/O function must contain the statement

# include < stdio.h >

at the beginning. This instruction tells the compiler, ‘to search for a file named stdio.h and place its contents

at the appropriate  place in the program . Indeed, the contents of the header file become part of the source code
when it is compiled. In fact, this  statement can be avoided  in situations, where the functions printf and scanf
have been defined as part of the C language.  Here, in this chapter, a brief introduction  of some common  I/O

function  that can be used  in many machines without  much change  is discussed.

2.2 Reading a Character

The simplest of all I/O operations is reading a character from the standard input unit(or key board) and

writing it to the standard output unit(or the screen). The most basic way of reading input is by calling the

function getchar. The C library function getchar gets  a character from stdin, regardless of what it is, and

Unit 8

106
105

Unit 3

3.1

3.2
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returns it to the program. That is, it is used to get a character from console, and  echoes to the screen. It is the

most basic input function in C, included in the stdio.h header file. The getchar takes the following form:

variable_name = getchar( );

Variable name is a valid C name that has been declared as of char type. When this statement is

encountered, the computer waits until a key is pressed and then assigns this character as a value to getchar
function. Since getchar is used on the RHS of an assignment statement, the character value of getchar is in

turn assigned to the variable name on the left. For example,

char = name;

name = getchar ( );

Will assign the character “a” to the variable name when we press the key a on the keyboard. Since getchar is a

function, it requires a set of parentheses as shown. The use of getchar function is illustrated in the program

(Table 6.1) below..

Program Output

#include <stdio.h>

#include<conio.h>

int main( )

{

char a;

clrscr( );

printf(“Enter a character\n”);

a=getchar( );

printf(“The character entered is  %c

\n”,a);

getchar( );

return 0;

}

Enter a character

b

The character entered is b

Table 6.1: use of getchar function

107
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The getchar function may be called successively to read the characters contained in a line of text..The

following program me segment , for example, reads  characters from key board one after another until the

‘return key’ is pressed

------------

------------

call  character;

character = ‘  ‘;

while ( character ! = ‘\n’ )

{

character = getchar ( );

}

-------------

-------------

The getchar returns the character it reads, or, if there are no more characters accessible, it will return the

special value EOF (“end of file”)  .That is, The getchar function accepts any character keyed in, This includes

TAB and RETURN . In other words, when we enter single character  input, the newline character  is waiting in

the input queue after getchar( ) returns. A  dummy getchar  or fflush function (to flush out unwanted

function) may be used to  get away the unwanted new line character , when we use getchar in a loop

interactively. However, getc is used to accept a character from standard input.

2.3 Writing a Character

Often there do occur circumstances, where we want to solve computational problems and to display  the

characters therein on the console. The two special functions  in C, that is designed to handle the output of

character to monitor is putch and putchar . That is, Like getchar, there is an analogous  companion C library

function putchar that writes a single  character to the standard output stream, (or console), specified by the

argument char to stdout(i.e., it is same as calling putc(c,stdout). The putchar function displays a single

character on the screen. The syntax is:

putchar (variable_name);

where variable_name is a type char variable containing a character. For e.g., the statement

answer = ‘N’

putchar (answer);

will display the character  N on the screen. The statement

putchar (‘\n’);

108
107
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would cause the cursor on the screen to move to the beginning of the next line. The following example

(Fig.6.1) explains the use of putchar( ) function. Putch( ) function, on the other hand is useful in writing the

output, character by character, on the display.

The puts Function

The puts function stands for put string (or a bit of text) to the screen and this function works inside the main

function. That means, the function puts( ) writes str to stdout, then writes a new line character. The general

form of the function is:

int puts (char A [ ] );

A puts() function automatically appends a new line character at the end of any text it display and it uses a

character array as parameter which is displayed on the screen. The puts() function performs a function that is

similar to printf( ) with a %s   conversion specifier (or  formatted text display). However, putc is used for

sending a single character to standard output.

2.4 Formatted Input
The standard formatted  input function in C is scanf (that supply input in a fixed format) and is the   input

analog of printf, providing  many of the conversion facilities in the opposite direction.. The scanf contains two
important things –the format string and the address list and it reads characters from the input file and
converts them to internal form.. That is, scanf reads characters from the standard input, interprets them
according to the specifications in format, and stores the results through the remaining arguments. Very often,
This is the function used to read an input from the command line. The general format of an input  statement
is:

# include <stdio.h>

int main ( )

{

char ch ;

for (ch = ‘A’; ch < = ‘Z’ ; ch++)  {

putchar (ch);

}

return (0);

}

Output

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Fig.6.1 Program  to read and write all the letters  in English alphabet

109
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Fig 1.1: Program to read and write all letters in English alphabet
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scanf(“ format string”, arg1,arg2,……, arg n);

Here the format string gives information to the computer on the type of data stored in the list of arguments

arg1, arg2,….arg n and in how many columns (or address of locations) they are found.  That  is, format
string specifies, how each input is read(.i.e.,  as a decimal integer, a decimal float, a character, a string  and

so on in matching arguments). The argument must be a pointer to a data type that is being read. In fact,

format string and arguments are separated by commas.

scanf stops when it exhausts its format string, or when some input fails to match the control specification.

It returns as its value the number of successfully matched and assigned input items. This can be used to

decide how many items were found. On end of file, EOF is returned; note that this is different ' from 0,

which means that the next input character does not match the first specification in the format string. The

next call  to scanf resumes searching immediately after the last character already converted. The format

string usually contains conversion specifications, which are used to control conversion of input. The format

string may contain:

• Blanks or tabs, which are ignored.

• Ordinary characters (not  % ), which are expected to match  the next non-white

space

• character of the input stream.

• Conversion specifications, consisting of the character %, an optional assignment

suppression

• character *, an optional number specifying a maximum field width, an optional h, 1, or L

indicating the width of the target, and a conversion character

A conversion specification directs the conversion of the next input field. Normally the result is placed in

the variable pointed to by the corresponding argument. If assignment suppression is indicated by the *

character, however, the input field is skipped; no assignment is made. An input field is defined as a string of

non-white space characters; it extends either to the next white space character or until the field width, if

specified, is exhausted. This implies that scanf will read across line boundaries to find its input, since

newlines are white space

Inputting Integer l numbers

The field specification for reading an integer number is

% w sd

The percentage sign (%)  indicates  that a conversion specification follows.. w is an integer number specifying

the field width of the number to be read and d the data type. For example, in the statement

scanf(“%3d  %5d”, &num1,&num2);

the two variables in which numbers are to be stored are num1 and num2 and are of integer type. The input data

items must be separated by spaces, tabs or new lines. A sample data line  may thus be;

110
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500          31246

The value 500  is assigned  to num1 and 31246  to num2. Observe that the symbol  & ( ampersand) should

precede  each variable name, that is used to indicate the address of the variable name.

The scanf statement causes data to be read from one or more lines till numbers are stored in all the specified

variable names. Also no blanks  are permitted between characters in the format-string. The data type character

d may be preceded by l to read long integers and h to read short integers.

Inputting real numbers

The scanf reads  real numbers using the specification  %f   for both decimal and exponential notation. The

input field specification  may be separated by any arbitrary blank spaces. If the number to be read is of  double

type, then

Program Output

main( )

{

float x,y;

double p,q;

printf(“values for x and y is :\n”);

scanf(“%f  %e” , &x ,&y);

printf(“\n”);

printf(“x=  %f\n  y= %f\n\n”,  x, y);

printf(“values of p and q is: ”);

scanf(“%lf  %lf ”, &p, &q);

printf(“\n\np = % .12lf \np = %.12e”,  p, q);

}

values for x and y is : 12.3456      17.5e-2

x=12.345600

y=0.175000

values of p and q is :4.142857142857

18.5678901234567890

p= 4.142857142857

q=   1.8567890123456e+001

Table 6.2 : Reading of real numbers.

the specification should be  %lf. Consider the statement

scanf(“%f  %f  %f”, &p,&q, ,&r ) ;

with the data line

462.85  41.23E-1  543

111

110

Program                                                            Output

Table 3.2: Reading of Real Numbers
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It will assign the value    462.85  to p,  41.23E-1  to q and  543.0 to r. T he program (Table 6.2) below shows

how to read real numbers in both decimal and exponential notation

Inputting character strings

A scanf function can input strings containing more than one character. The syntax is:

%ws   or    %wc

The corresponding arguments should  be a pointer to character array. When the argument is a pointer to a char

variable, then %c may be used to read a single character. Some scanf versions support the following string

conversion specification.:

% [characters]

% [^ characters]

The specification % [characters]  imply that only the characters within brackets are permissible in the input

string. Any encounter of  other string characters, will terminate the string.  The specification   % [^characters]
does exactly the reverse. That is , characters after the ^ are not permitted in the input string,  The reading of the

string will be terminated at the encounter of one of these characters.

Reading Mixed data types

scanf can be used to input data containing  mixed mode type. When one attempts to read an item that does  not

match the type , the scanf function does not read any further  and  immediately returns the value read. For e.g.,

scanf(“%d  %c  %f”, c  %s  “ , &count, &code, &ratio, &name) ;

will read the data line

15    p   1.453     coffee

Correctly and assign values in the order  in which they appear.

Rules for scanf

• Each variable to be read need a filed specification and a variable address of  proper type.

• For  any non -white space character  used  in the format string  there must be a matching character in

the user input.

• Ending the format string with white space will result in error.

• The scanf reads until:

1. A whitespace character is found in the numeric specification or

2. Maximum number of characters have been read

3. An error is detected.

4 .The EOF is reached

112
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2.5 Formatted output

Formatted output refers to an output data that has been arranged in a particular format, using certain

features, that are effectively exploited to control the alignment and spacing of print-outs on the terminals.. The

main output routine is printf , which writes a formatted string to the stdout stream. The printf( ) function is

used to print the character, string, float, integer, octal and hexa decimal values on to the output screen and it

returns the number of characters that was written  if an error occurs, it will return a negative value. The

required header for the printf function is:

#include <stdio.h>

The general form of printf statement is :

printf (“ control string”’ arg1,arg2,…., arg n);

Control string consists of  three types:

1.character that will be printed on the screen as they appear.

2.format specification

3.escape sequence characters like, \n,\t, and \n.

The control string specifies the number of arguments (or variables whose values are formatted and printed

according to the specification of control string)  that follow  with their types. The arguments should match in

number, order and type with the format specification. A simple format specification is as:

% w. p type-specifier

Where w , is an integer specifying the total  number of columns for output value and p is another  integer that

specifies the total number of digits  to the right of the decimal point or the number of characters to be printed

from a string.

Printf formatting is controlled by ‘format identifiers’  which in the simplest form are listed below:

%d   % i   decimal signed integer.

% o           octal integer

%x % X   Hex integer

%u            unsigned integer

% c           character

%s           string

%f           double

%e %E     double

%p           pointer

%n           number of characters written by this printf, no argument expected

%% % .No argument expected.

113
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Output of Integer Numbers
The format specification for printing an integer number is:

% w d

Where w specifies the minimum field width for the output and d , the value to be printed as an integer.

However, if a number (right justified in the given field width with leading blanks) is greater than the specified

field width, it will be printed in full, over riding the minimum specification.  It is possible to force the printing

to be left- justified by placing a minus sign directly after the % character. More over, it is possible to pad with

zeros the leading blanks by placing a zero before the field width specifier. Here, The minus (-) and zero (0) are

named as flags. For printing short integers we may specify hd . And for printing long integers the specifier ld
is used in place of d in the format specifier. Some examples of different format are:

Format                                                                       output

Printf(%d”’, 1076)

Printf(%6d”’, 1076)

Printf(%-6d”’, 1076)

Printf(%06d”’, 1076)

Output of Real Numbers:

Using the following form specification, the output of a real number may be displayed in decimal form:

% w.p f

The integer w indicates the number of positions that are to be used for the display of the value and the integer p

represents the number of digits to be displayed after the decimal point. That is, the values when displayed, is

rounded to p decimal places with right justification in the field of w columns, with leading trails and blanks.

The default precision is actually 6 decimal places. The negative numbers will be printed with the minus sign

and of  the form [ - ] mmm-nnn.

A real number can be displayed in exponential form using the specification:

% w. p e

The display is of the form

[ - ] m.nnnne[ ± ]xx

Where the length of the string n ‘s is specified by the precision p with the default precision being 6..Moreover,

the field width w should satisfy the condition

1            0           7          6

1          0        7        6

1          0        7         6

0        0                1          0        7       6
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w ≥ p +7

and will be rounded off  and printed  right justified in the field of w columns. Further,  padding the leading

blanks with zeros and printing with left justification using flags 0 or – before the field specifier is also

possible. Following are some examples:

Format                                            output

Printf(“%5.3f”,x)

Printf(%5.2f”’,x)

Printf(%-5.2f”’,x)

Printf(% -8.2e”’,x)

For dynamic format  specification during run time (i.e., with field width and precision given as arguments

for w and p) we have the special field specification:

printf( “%*.*f” , width, precision, number);

For e.g.,

printf(‘%*.*f”, 7,2, number);

Is equivalent to

printf(‘%7.2f”, number);

Printing of a single character

A single character can be displayed  in the keyboard at the desired position , right justified in the field of w

column ( with default value for w being 1) using the format

% wc

Printing of strings

The format specification for outputting strings is similar to that of real numbers.. The format being:

% w. ps

With w the field width for display and p indicates that only first p characters  of the string are to be displayed

with right justification..Some examples are:

9            .        8           7        6
6

9         .        7         6

9            .         7       6

9         .           7      6      e       +      0           1
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Table showing specification and out put

%s (specification) output

N E W D E L H I 1 1 0 0 0 1

%20s(specification)         output

N E W D E L H I 1 1 0 0 0 1

% 20.10s(specification)         output

N E W D E L H I

%.5s(specification)         output

N E W D

%-20.10s(specification)         output

N E W D E L H I

%5s(specification)         output

N E W D E L H I 1 1 0 0 1

Mixed data output

Mixed data types  in one  printf statement is permitted in C. For e.g.,

printf( “%d % f % s %c ,a,b,c,d); is a valid one.

code Meaning

116
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%c

%d

%e

%f

%g

%i

% o

%s

%u

%x

Print a single character

Print a decimal number

Print a floating point number in exponent form

Print a floating point number Without

exponent form

Print a floating point number                                                Either e-

type

or f-

type

Print a signed decimal integer

Print an octal integer without leading zero.

Print a string

Print an unsigned decimal integer

Print a hexagonal integer, without leading 0.s

Table 6.1 printf format codes

Remember that, the format specification should match the variables in number, order and type. Table 6.1

below shows commonly used printf format codes

The letters used as prefix for certain conversion characters are:

h         short integer

l          long or double

L          for long double    .

2.6 Summary

1. While using getchar, clear all unwanted characters on the console.

2. While using I/O functions always use the header < stdio.h >.

3. For functions that use character handling use the header< ctype.h>

4. For any variable to be read or printed, the proper field specification is to be done.

5. Always enclose format control strings in double quotes.

6. While using scanf the address specifier & ampersand is to be used.

7 Single character constants are to be enclosed in single quotes.

8. Avoid white space at the end of format string and use comma after he format string in scanf statements.

9. Do not use commas in the format string of a scanf statement.
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Table 3.3: Printf format codes
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Code          Meaning
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1.1    Introduction.

Decision making is one of the most important concepts in C programming. That is, the programs

should be able to make logical decisions based on the conditions they are in. C language has three

major decision making instructions- the if statement, the if else statement, and the switch statement.

These statements ‘control’ the flow of program execution (or they specify the order in which
computations are performed), and are known as control statements. Here we will learn each of these,

and discuss their features, capabilities and applications in more detail.

1.2 Decision Making with if statement

The key word, if statement, is a conditional branching statement. It, instructs the compiler that, what

follows is a decision control instruction. That is, it allows the program to select an action (i.e., a

condition is evaluated, and if it is true the statement is executed, and, the program skips past it if it is

found false) based upon the user’s input. The condition following the keyword if is always enclosed

within a pair of parenthesis. It takes the form:

If (test expression)

A decision control instruction can be implemented in C using (1) The simple if statement, (2) The if –
else statement (3) nested if-else statement and (4) else if ladder.

1.3 The Simple If Statement

The general form of if statement looks as:

if (test expression)

{

statement block;

}

statement –x;

Here the expression can be any valid expression including a relational expression. We can even use
arithmetic expressions in the if statement. In fact a compound statement composed of several
statements enclosed with in braces (braces are used to group declarations and statements together into
a compound statement or block), can replace the single statement. Remember, there is no semicolon
after the right brace that ends a block. If the test expression evaluates to true, then the compound
statement is executed. Otherwise the control jumps to the statement following the right brace ignoring
the compound statement.. Please do remember that in C, a non zero value is considered to be true,
where as a zero is considered to be false. Here is a simple program (Figure 7.1) using simple if
statement:
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Unit 9
Structure : DeStructure : Decision making and Branching
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4.2.1 Simple if statement
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/* Demonstration of if statement*/

# include < stdio.h >

# include < conio.h>

int main ( )

{

int number;

clrscr ( );

printf ( “ enter a number\n”);

scanf(“ %d”, &number);

If (number > 0)

printf(“ The given number is positive\n”);

getch( );

return 0;

}

output

enter a number

5

The given number is positive

r

Fig.7.1 program for illustration of simple if statement

110
120
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Fig. 4.1: Program illustrating simple if statement 
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On execution of this program, if you type a number greater than zero, you will get a message on the

If  logical

expression

screen through printf( ). If you type some other number(i.e., a number less than 0, the program

does not do anything.  The Flow chart given in Fig. 7.2 help you understand the flow of control in

simple if statement.

1.4 The IF…..ELSE Statement.

The if statement by itself will execute  a group of statements or a  single statement, when  the

expression following it evaluates to true and it does nothing when it evaluates to false .In fact, the if
–else statement is an extension of the simple if statement and is used to express decisions. It permits

the programmer to write a single comparison, and then execute one of the two statements depending

on whether the test expression (in parentheses) is true or false. That is, the if…else statement is used,

the intention of the programmer  is to execute the   group of statements  denoted  as  true ( .i.e., the

true  block of statements immediately following the if statements), or else the test expression

statements denoted as  false  are executed..In either case, either a true or a false block of

codes/statements, are executed not both .In both cases, control is transferred to the subsequent

statement-x. This is interpreted in the flow chart of Fig.7.3.

True

{ statement 1;

….

statement n;}

statement-x

False

next Statement

Fig.7.2   Flow chart I illustrating simple If conditional statement

entry

121

119

Fig 4.2: Flowchart I illustrating simple if statement

4

4.2.2: If-Else statement

4.3.

Fig 4.2: Flowchart illustrating simple if statement
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Test expression ?

Example 7.1: A  program to check whether the number is odd or even?

entry

Fig.7.3   Flow chart I illustrating simple If –else conditional statement

statement-x

False

{ statement 1;

….

statement n;}

{ statement 1;

….

statement n;}

True

# include < stdio.h >

int main ( ) {

int number;

printf(“ Enter a number.\n”);

scanf(“%d”, &number);

if ((number  % 2) = = 0)

printf(“%d is even,” , number);

else

printf(“%d is odd..” , number);

return 0;

}

Output

Enter  a number

22

22 is even.

Fig.7.4 A program to illustrate the  If ….else statement

122

120

Fig. 4.3: Flowchart illustrating if-else statement

4

Fig 4.4: Program to illustrate if-else statement
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There are a few points that deserve worth mentioning:

1.The group of statements after the if  up to and not including the else is the ‘ if  block’. Similarly, the
statements after the  else form the ‘else block’.

2.The statements in the if and those in the else block have been indented to the right.

3. As with the if statement, the default scope of else is also the statement immediately after the else.
In  order to override this default scope, a pair of braces  must be used.

1.5  Nested If-else statements.

The if….else statement can be used in nested form when a serious decision are involved. In nested if
..else construct, we write an entire  if-else construct with in either the body of the if statement or the
body of an else statement. The logic of execution is shown in Fig.7.5.The syntax is:

if  (test condition-1)

{

if  (test condition-2);

{

statement-1;

}

else

{

statement-2;

}

}

else

{

statement-3;

}

statement-x;

Here, if the test expression -1 is false, the statement -3 will be executed; otherwise control of the
program jumps to perform the second test condition. If the condition- 2 is true, the statement-1 will be
evaluated, otherwise the statement-2 will be evaluated and then the control is transferred to the
statement-x.

123

121

worth mentioning.

4.2.3: Nested If-else statement

4
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Test condition-1

?

Test condition-2

?

Example 7.2: A program to check whether the two numbers  is <, than  or > than  or equal.

trueFalse

entry

Fig.7.3   Flow chart I illustrating nested If –else statement

statement-x

true
False

statement-1
statement-2statement-3

Next   statement

124

122

Fig 4.5: Flowchart illustrating nested if-else statements
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1.6   The else -If Ladder

Another way of describing the nested if-else is the else-if ladder, where, every else is associated

with an if statement. That is, else-if, is a combination of if and else. Like else, it extends an if
statement to execute a different statement in case the original if expression is evaluated as False.

The syntax is:

# include < stdio.h >

int main ( ) {

int num1, num2;

printf(“ Enter two integers.”,\n);

scanf(“%d %d”; & num1, &num2);

if (num1= = num2)

printf( result: %d=%d”, num1,num2);

else

if(num1> num2)

printf(“result:%d > %d”, num1,num2);

else

print(“result: %d >%d “,num2,num1);

return 0;

}

Output

Enter two integers

4

2

Result:4>2

Fig.7.7: program illustrating nested if -else

125

123

Example 4.2: Program to check the validity of Law of Trichotomy for two real numbers.

Fig 4.6: Program illustrating nested if-else statement

4.2.4
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If  (condition-1)

statement-1;

else-if  (condition-2)

statement-2;

else-if  (condition-3)

statement-3;

else-if  (condition-n)

statement-n;

else

default-statement;

statement-x;

This construct is called the else-if ladder and is useful where two or more alternatives are

available for selection.  In else-if ladder various conditions are evaluated one by one starting from top

to bottom, on reaching a condition  evaluating to TRUE  the statement group associated with it are

executed and skip other statements. If none of   the expressions is evaluated to true, then the

statement or group of statements associated with the final else is executed. In this construct nesting is

allowed only in the else part . In fact, In else……if ladder, we do not have to pair if statements with

else statements. That is, there is no need to remember the number of braces opened as in nested

if….else. Moreover, else….if ladder produces the same effect as nested if-else with the benefit that it

is easy to code. The flow chart corresponding to else-if ladder is shown in fig.7.8

In this construct, the conditions are checked, starting from the top of the else-if ladder, moving

downwards. That is, firstly, condition-1 is checked, and  if it is true, statement-1 is executed and

control is transferred to statement-x. On the other hand, If condition-1 is false, condition-2 is checked

and if true, statement -2 is executed and control is transferred to statement-x skipping the rest of the

ladder .When all the n conditions are false, then the final default-statement is executed followed by

the execution of statement-x. The following program(Fig.7.9)  explains the else-if construct.
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True False

Fig.7.8   Flow chart I illustrating else- If  ladder

statement-x

FalseTrue

Default statement

statement-2

statement-1

Statement-n

entry

Condition -1

Condition -n

Condition -2

Condition -3

False

False

True

True
statement-3

Next statement
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Fig 4.7: Flowchart illustrating the else-if ladder
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Rules for Indentation.

The sections of this page cover the guidelines of acceptable code indentation. Indentation is important

for clarity and sticking to standard.  The guidelines that are to be followed while using indentation ,

for  control statements are listed below:

1. Indent statements that are dependent on the previous statements; provide at least three spaces of

indentation.

2.Align vertically else clause with their matching if clause.

3.Use braces on separate lines to identify  a block of elements.

4.Indent the statements in the block by at least three spaces to the right of the braces.

5.Align the opening and closing braces.

6. Indent the nested statements as per the above rules.

7. Code only one statement/clause  on each line.

#include < stdio.h>

#include <conio.h >

void main ( )

{

int num;

clrscr( );

printf(“enter a number.\n”);

scanf(“%d”, &num);

If( num = =0)

Printf(“Given number is Zero.\n”);

else if (number > 0)

printf(“Given number is positive.\n”);

else

printf(“Given number is negative.\n”);

getch ( );

}

Output

Enter a number.

5

Given number is positive.

Fig.7.9. program  for else if ladder  demonstration.
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Fig 4.8: Program illustrating the else-if ladder

Rules for indentation:
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1.7 The Switch Statement

The switch   statement is much like a nested if statement and it allows us to make a decision from a

number of choices. In fact, it is a powerful decision making statement that allows a variable to be

tested for equality against a list of values. The condition of a switch statement is a value. The case
says that if it has the value of whatever is after that case then do whatever follows the colon. That

is,.each value is called a case, and the variable being switched on is checked for each switch case.

More correctly, a switch-case default (since these keywords go together to make up the control

statement) accepts single input from the user and based on that input executes a particular block of

statements. The break is used to break out of the case statements, and is usually surrounded by

braces, which it is in. The syntax is:

switch   (integer expression)

{

case value-1;

block-1

break;

case value-2;

block-2

break;

…………

………….

default:

default-block

break;

}

statement-x;

The integer expression following the key word switch is any C expression that yields an integer

value. It could be an integer constant or an expression that evaluates to an integer. The keyword case
is followed by an integer or a character constant. Each constant in each case must be different from

all the others. When the switch is executed, the value of the expression is compared against  the

values value-1,value-2,…When a match is found, the program executes the statements following that
case, and all subsequent case and default statements as well .If no  match is found, with any of the
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case statements, only the statements following the default are executed. Moreover, the switch
statement transfers control to a statement within its body. Control passes to the statement whose

case constant-expression matches the value of switch (expression). Further, execution of the

statement body begins at the selected statement and proceeds until the end of the body or until a break

statement transfers control out of the body. A default is optional. When present, it will be executed if

the value of the expression does not match any of these case values .if not present, no action takes

place if all matches fail and the control goes to the statement-x.

The selection process of switch statement is explained by the following flow diagram (Fig.7.10).

(No match)default

entry

Fig.7.10 Flow chart I illustrating switch statement

statement-x

Expression= value -1

Block-2

Switch
expression

block-1

Default block

Expression= value -2
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below.

Fig 4.9: Flowchart illustrating switch statement
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The following program explain  how  this control structure works. Here is a program (Fig.7.11)using

switch statement:

#include <stdio.h>

int main ( )

{

char grade = ‘B’;

switch (grade)

{

case ‘A’ :

Printf( “very good!\n” );

Break;

case ‘B’:

case’C’ :

Printf(“good\n”);

Break;

case ‘D’:

Printf(“passed\n”);

Break;

case ‘F’:

Printf(“pl try again\n”);

Break;

default :

Printf(“grade invalid\n”);

}

Printf(“grade is %c\n”, grade);

Return 0;

}

Fig. 7.11 : An example showing switch statement
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Fig 4.10: Program using the switch statement
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This program on execution gives the following output:

Output

Good

Your grade is B.

Rules for using switch case :

1.The expression used in a switch statement must be an integral  or enumerated  type.

2.With in a switch statement one can have any number of case statements, with each case followed

by the

value to be compared to and  a colon.

3.case label must be unique ,  and must be constants or constant expressions. case labels must end

with

semicolon

4.case label must of integral type and should not  be of floating point type.

5.When the variable being switched on is equal to a case, the statements following that case will

execute

until a break statement is reached.

6.switch case should have at most  one default label and can be placed anywhere in the switch,
usually

placed at the end .  default label is optional. No break is needed in the default case.

7.break statements takes control out of the switch (or switch terminates and the flow of control

jumps to

the next line following switch statement) and it is possible to share two or more case statement to

have one break statement.

8.Nesting(switch within switch) is permitted  for switch statement.

9.It is not necessary that every case needs a break statement. If no break appears, the flow of control

will

fall through to subsequent cases until a break is reached.

10 relational operators are  not allowed in switch case statement .
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1.8  The ?: Operator

The operator ?:  is  just like an if..else statement except that because it is an operator one can use it

within expressions. This is a ternary operator in that it takes three values. The general form of use of

this operator is:

conditional expression ? expression 1 : expression 2

Here, the conditional expression is evaluated first and the  result if it  is  non zero, then expression

1 is evaluated and its value is  returned as the value of the conditional expression. Otherwise,

expression 2 is evaluated and its value is returned. For example the code segment,

If (x < 0)

flag = 0;

else

flag = 1;

can be written as

flag = (x< 0) ? 0 : 1;

consider  evaluation of yet another  function

y = 1.5x+3 for x≤ 2

2x +4 for x >2.

This can be done using the conditional operator ? : as:

y = ( x >2)  ? (2*x+4) : (1.5 *x+3);
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.On execution of the program, the maximum variable gives the maximum value of the three numbers .

1.9 The GOTO statement

In C, GO TO statement is used for altering the normal sequence of program execution by transferring

control to some other part of the program. That is ,A goto statement provides an unconditional jump

from the go to  a labeled statement in the function. The general form of a go to statement is:

goto label;

………….

…………

label:

Statement;

# include < stdio.h >

# include < conio.h >

Void main ( )

{

int a,b.c, maxm;

printf(“ program to find maxm value of three numbers:\n”);

printf(“enter the first number:\n”);

scanf(“%d”, &a);

printf(“enter the second number:\n”);

scanf(“%d”, &b);

printf(“enter the third number:\n”);

scanf(“%d”, &c);

max= a>b? (a>c?a: (b > c?b:c )) : (b>c? b:c);

printf(“the maximum  number is %d:”, maxm\n”);

}

Fig 7.12: illustration of the conditional operator.
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Fig 4.11: Program illustrating the conditional operator
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In this syntax label; is an identifier, to identify the place where the branch is to be made.? That is,

when the control of program reaches to go to statement, it will jump to the label:, and execute the

codes after it. Control may be transferred to anywhere within the current function. The label is placed

immediately before the statement where the control is to be transferred. A label: is any valid variable

name, followed by a colon and  can be any where in the program either  before or  after the go to

label; statement. During program execution when a statement like

go to begin;

Is met, the control flow will jump to the statement immediately following the label begin; This

happens unconditionally.

Note that though, using goto statement give power to jump to any part of program, using goto
makes the logic of the program complex and tangled .It breaks the normal sequential execution of the

program. If the label: is used before the statement goto label; a loop will be formed and some

statements will be executed repeatedly. Such a jump is called as a forward jump. On the other hand, if

the label: is placed after the goto label; some statements will be skipped and the jump is called a

forward jump.

A goto is often used at the end of a program to direct the control to go to the input statement, to

read further data, in fact,  such goto statements  puts one to enter in a permanent loop called infinite

loop, until one take some special steps to terminate the program. Such infinite loops are to be

avoided. Another use of goto  is to transfer control out of a loop 9or nested loop) when certain

peculiar conditions are encountered. Use of goto statement is highly discouraged in any programming

language because it makes difficult to trace the control flow of a program, making the program hard

to understand and hard to modify. An example to explain the control flow of goto statement is shown

in fig 7, 12.Here in this  program,

we want to display the numbers from 0 to 9. For this, we have defined the label statement loop above

the goto statement. The given program declares a variable n initialized to 0. The n++ increments the

value of n till the loop reaches 10. Then on declaring the goto statement, it will jumps to the label

statement and prints the value of n.

1.10 Summary:

1. There are three ways of taking decisions in a C program. - The if statement, the if else statement,

and the switch statement. The default scope of the if statement is only the next statement.

2 An if block need not always be associated with an else block. However, an else block is always

Associated with an if statement.\

135

135133

. 4.12

71



School of Distance Education

‘C’ Programming for Mathematical Computing Page 107

3. If the outcome of an if else ladder is only one of two answers then the ladder should be    replaced

either with an else-if or by    logical operators.

4. When we need to choose one among number of alternatives, a switch statement is used.

5. The switch key word is followed by an integer or an expression that evaluates to an integer. the

case

key word  is followed by an integer or a character constant. the control jumps through all  the

cases

unless the break statement is given.

6. The usage of goto is to be avoided as it obstructs the normal flow of execution.

#include< stdio.h>

#include< conio.h>

int main( )

{

int n =0;

loop: ;

printf(“ \n%d”,  n);

n++;

if(n <10)

{

goto loop;

}

getch( );

return 0

}

Fig.7.12 Use of go to statement
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Fig 4.12: Use of the go to statement
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Unit 2: Decision making and looping
Structure
2.1 Introduction
2.2 The While statement
2.3 The Do Statement
2.4 The For Statement
2.5 Jumps in loops
2.6 The continue statement
2.7 Summary:
2.1 Introduction

The multifunctional ability of the computer lies in its adaptability to perform a set of instructions repeatedly. This

involves repeating some portion of the program either a specified number of times or until a particular condition is being

satisfied. This repetitive operation is done through a loop control instruction. During looping, a set of statements are

executed until some conditions for termination of the loop is encountered .A program loop consists of two segments, one

is the body of the loop and the other known as the control statement. The control is tested always for execution of body

of the loop.

Depending on the position of the control statement in the loop, a control may be classified as the entry controlled loop
or as the exit controlled one (Fig.8.1). In the entry controlled loop, the control condition is tested first and if satisfied

then only body of the loop is executed. In the exit controlled loop, the test is made at the end of the body, so the body is

executed unconditionally first time.

test

condition

Body of loop

entry

false

true

True

test

condition

Body of loop

entry

false

Fig.8.1 loop control s
tructures

(b) Exit controlled loop
t controlled loop

(a) Entry controlled loop
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Structure

While statement
Introduction

Continue statement

Do while statement
For statement
Jumps in loops

Unit 5

5.1

Fig 5.1: Loop control structure

5.

false

true

Body of the loop

Test
Condition

Entry
Entry

False
True

Body of the loop

Test
Condition

(a) Entry controlled loop                                                      (b) Exit controlled loop

73



School of Distance Education

‘C’ Programming for Mathematical Computing Page 109

A looping process, in general, would include the following four steps:

1. Setting and initialization of a counter.

2. Execution of the statement in the loop

3. Test for a specified condition for execution of the loop.

4. Incrementing the counter.

The three loop constructs in C language for  performing loop operations are:

1. The while statement

2. The do-while statement

3. The for statement.

2.2 The While statement.

While statement is a sentinel controlled repetition which can be iterated infinite number of times. Number

of iterations is controlled using the sentinel variable (test expression). It is one of the simplest looping

structures. The basic format of the while statement is:

Sentinel loops

Based on the nature of control variable, and the type of value assigned to it, for testing the

control expression, there are two types of loops:

1. counter controlled

2. sentinel controlled loops (repetition).

Counter controlled repetitions are the loops which the number of repetitions needed for the

loop is known before the loop begins; these loops have control variables to count repetitions.

Counter controlled repetitions need initialized control variable (loop counter), an increment

(or decrement) statement and a condition used to terminate the loop (continuation condition).

Sentinel controlled repetitions are loops with an indefinite repetitions; this type of loop

use  a special value, called sentinel value, to change the loop control expression from true to

false(i.e., to indicate end of iteration) .
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The while is an entry-controlled loop statement. The test condition is evaluated and only if the condition is

true the body is executed. After execution of the body, the test-condition is once again evaluated and if it is

true, the body is executed once again. This process of repeated execution of the body continues until the test-

condition finally becomes false and the control is transferred out of the loop. On exit, the program continues

with the statement immediately after the body of the loop. If the body contains only one statement it is not

necessary to put the braces, but placing them is a good programming practice. Let us look at a simple example,

which uses a while loop.

While (test condition)

{

body of the loop

}

# include< stdio.h>

int main( )

{

int p,n,count;

float r,si;

count =1;

while(count <= 4)

{

printf (”enter values for p,n,r\n”);

scanf ( “%d %d %f “, &p,&n,&r”);

si = p*n*r/100;

printf(“Simple interest is: Rs. %\n f”, si);

count = count +1;

}

return 0;

}

Fig 8.2: program to illustrate while loop
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Fig 5.2: Program to illustrate the while statement
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Here, the program executes all the statements after while 4 times. The logic for calculating the simple interest

is written within a pair of braces (i.e., the statements form body of while loop) immediately after the keyword

while. The parentheses after the while contain a condition. So long as this condition remains true, all

statements within the body of the while loop keeps getting executed repeatedly. .Also, to start with, the

variable count is initialized to 1 and every time the logic of simple interest is executed, the value of count is

incremented by one .The index variable count here, is called the  loop counter .

The following points about while are worth noting.

1. The statements within while loop would keep on getting executed till the condition  being  tested

remains true. When the condition becomes false, the control passes to the first statement that follows

the body of the while loop.

2. In the place of condition there can be any other valid expression. So long as the expression evaluates to

a non zero value, the statements  within the loop would get executed.

3. The condition being tested may be relational or logical operators as in the example below.

while (i < = 4)

while (i > = 4 && j < = 5)

while (i >. = 4 && ( j < 5 || c< 10))

4. The statements within the loop may be a  single line(i.e., here braces optional) or a block of

Statements    as in example shown below.

while( i < =5)

i = i+1;

is same as, while( i < =5)

{

i = i+1;

}

5. Almost always, the while must test a condition that will eventually become false, otherwise the loop

Will  be executed for ever.

6. Instead of incrementing a loop counter (not necessarily integer it can be a float), one can    Decrement

it and can still manage the body of  the   loop to be executed repeatedly.

2.3 The Do Statement

The do while loop is also a kind of loop, which is similar to the while loop, in contrast to while loop, the do

while loop tests at the bottom of the loop after executing the body of the loop. Since the body of the loop is

executed first and then the loop condition is checked we can be assured that the body of the loop is executed at

140
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5.3 Do while statement
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least once. The while on the other hand, will not execute its statements if the condition fails for the first time.

That is, the while tests the condition before executing any of the statements within the while loop. As  against

this, the do-while tests the condition after having executed the statements within the loop. Since the test

condition is evaluated at the bottom of the loop, the do-while statement is

an exit controlled loop statement. The do-while loop looks like this: Here the statement is executed first, and

next the expression is evaluated. If the condition in the expression is true then the body is executed again and

this process continues till the conditional expression becomes false. When the expression becomes false the

loop terminates. This difference is brought about more clearly by the following program.

Here the, since the condition fails the first time itself, the printf ( ) will not get executed at all. The same

program using the do-while construct is

do

{

body of the loop

}

while (test condition);

#include<stdio.h>

int main ( )

{

while ( 4<1)

printf(“hello\n”);

return 0;

}

#include<stdio.h>

int main ( )

{

do

{

printf(“hello\n”);
} while ( 4<1);

return 0

}
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In this program, the printf ( ) would be executed once, since first the body of the loop is executed and then the

condition is tested. Break and continue are used with do while just as they would be in a while. A break takes

one out of the do-while by passing the conditional test. A continue sends you straight to the test at the end of

the loop.

2.4 The For Statement

The  for loop is another entry-controlled loop that provides a more concise loop control structure. It

is a counter controlled repetition. Therefore the number of iterations must be known before the loop

starts (or predetermined). The body of a for statement is executed zero or more times until an

optional condition becomes false. Also one can use optional expressions with in the for statement to

initialize and change values during the for statements execution. The general form of the for loop is:

That is, in the control block of the for loop statement there are three expressions separated by

semicolon (;).The execution of the for loop is as :

1. The initialization: Initialization of the control variables is done first using assignment

statements .It is typically used to initialize a loop counter variable.

2. The value of the control variable is tested using the test condition. The test condition is a

relational expression, such as i <5 that determines when the loop will exit. That is, the loop

condition expression is evaluated at the beginning of each iteration. The execution of the loop

continues until the loop condition evaluates to false.

3. Increment: The increment expression is evaluated at the end of   each iteration. It is used to

increase or decrease the loop counter variable.

Let us write down the simple interest program(which we have written earlier using while
statement) using for (Fig.8.3). If  this program is compared with the one written using while
construct,  we can see that , the three steps  of  for loop construct have now been  incorporated  in the

for statement. Here in this program (fig 8,3), when the for statement is executed for the first time,

the value of count is set to an initial value 1. Next the condition count <=3 is tested. Since the count

was set to 1, the condition is satisfied and the body of the loop is executed for the first time. Up On

reaching the closing brace of for, control is sent back to the for statement, where the value of count

for (initialization; test condition; increment;)

{

body of the loop

}
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is incremented by 1. Again the test is performed to check whether the new value of count exceeds 3.

If the value of count is less than or equal to 3, the statements within braces of for are executed

again,. The body of the for loop continues to get executed  till count does not exceed the final value

3.The control exits from the loop , when count reaches the value 4.and  the control is transferred to

the statement(if any) immediately after the body of for.

.

Additional Features of for loop

1. More than one variable can be initialized at a time in the for statement as in :

for (p =1, n =6; n <11; ++n)

Statement. That is, initialization section has two parts p = 1 and n = 6 , separated by comma..Like

initialization section, increment section  too can have more than one part. The multiple arguments

in

the   increment section too are separated by commas.

2. The test condition may have any compound relation and the testing need not be limited only to the

Loop control variable. For eg:

#include<stdio.h>

int main( )

{

int p,n,si;

float,si;

for(count =1; count <=3; count= count+1)

{

printf(enter the values for p.n,r\n”);

scanf(“%d %d %f”,&p,&n,&r);

si = p*n*r/100;

printf(“ simple interest + rs. %f\n”, si);

return 0

}

}

Fig 8.3: Program using for loop
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Fig 5.3 Program using for loop
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sum = 0;

for ( i =1 ;i<10 && sum< 19; ++i )

{

S = s+1;

printf(“%d %d \n”,i,sum):

}

Here the loop uses a compound test condition with the counter variable i and variable sum .The

loop is executed as long as both the conditions i<10 && sum < 19 are true. The sum is evaluated

inside the loop.

3. It is also permissible to use expressions in the assignment statements of initialization and increment

Sections. For  eg. A statement of the type

for( x= (m + n)/2; x > 0; x = x/2)

is valid.

4. One or more sections can be omitted if necessary as in eg.,

Here, both initialization and increment sections are omitted in the for statement. The initialization

has been done before the for statement and the control variable is incremented inside the loop. Though

the sections remains blank, the semicolons separating the sections must remain. If  the test condition is

not present, the for statement sets up an infinite loop. Such loops can be broken using break or goto
statements in the loop..

5.Time delay loops in for loop  can be set up using  the null statement as:

for ( i = 100; i > 0; i = i-1)

;

-------------------

m=5;

for (; m ! = 100 ;)

{

printf( “ %d\n”, m);

m = m+3;

}
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Here this loop is executed 100 times without any output. The body of the loop contains only a

semicolon.

Known as  null statement.

Nesting of For Loops

The way IF statements can be nested, similarly whiles and fors can also be nested; two loops can be

nested as follows:

………….

…………..

for ( i =1; i <10; ++ i)

{

…………

for ( j= 1; j!  = 5: ++ j)

{

………..

}

………..

}

………..

The nesting may continue up to any desired level. To understand how nested loops work, we look at

the program below.

Inner loop
Outer loop
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Here for each value of r, the inner loop  cycles  through twice, with variable c taking values 1and

2.The inner loop terminates when c exceeds 2 and the outer loop terminates when r exceeds 3.

# include< stdio.h>

int main ( )

{

int r,c,sum;

for ( r =1; r < =3; r ++)

{

for( c=1; c<=2; c++)

{

sum = r+c;

printf(“r= %d sum = %d \n”, r,c,sum);

}

}

return 0;

}

output

r =1 c=1 sum=2

r =1 c=2 sum=3

r =2 c=1 sum=3

r =2 c=2 sum=4

r =3 c=1 sum=4

r =3 c=2 sum=5

Fig 8.4. Program to explain nested for
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Fig 5.4 Program to illustrate nested for loop
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2.5 Jumps in loops

We often come   across situations, where we want to jump out of a loop instantly, without waiting to

get back to the conditional test. The   keyword break allows to do this. When break is encountered

in a loop , control automatically passes to the first statement after the loop. A beak is usually

associated with an if. The key word break, breaks the control  only from the while in which it is

placed. As an example we have :

2.6 The continue statement

The keyword continue, allows us to take the control to the beginning of the loop, by passing the

statements inside the loop, which have not yet been executed. That is , when the key word continue is

encountered inside any loop, control automatically passes to the beginning of the loop .A continue is

usually associated with an if. The syntax is:

# include < stdio.h>

int main( )

{

int num, i;

printf(“ enter a number”);

scanf(“%d”, & num);

i =2;

while( i < = num-1)

{

if (num% ! = = 0)

{

printf( “not a prime number\n”);

break;

}

i++;

}

if ( i = = num)

printf(“prime number\n”);

}

Fig 8.5 use of break statement
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5.5

break

Fig 5.5: Use of break statement

5.6 The continue statement
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Continue;

As an example consider the program of Fig.8.6. The use of continue statement in loops is illustrated in

fig 8.7.In while and do while loops, continue, causes the control to go directly to the test condition

and then to continue the iteration process. In the case of for loop, , the increment section of the loop is

executed before the test condition is evaluated.

#include < stdio.h >

main()
{

int i;
int j = 10;

for( i = 0; i <= j; i ++ )

{

if( i == 5 Goods 1

)
{

continue; Goods 1

}
printf("goods %d\n", i );

}
}

Output

Goods 1

Goods 2

Goods 3

Goods 4

Goods 5

Goods 6

Goods 7

Goods 8

Goods 9

Goods 10

Fig .8. 6 .Use of continue statement
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Fig 5.6: Use of continue statement 

Fig 5.6. The b-
elow.
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Jumping  out of the program.

We have seen that we can jump out of a loop using either the break or goto statement. In the same

way  we can jump out of a program by using the library function exit( ).. The use of exit( ) function is

shown in fig. 8.8  below:

2.7 Summary:

1.The three types of loops available in C are for, while, and do while.

2. A Break statement takes the execution  control out of the loop.

3.a continue skips the execution of the statements after it and takes he control to the beginning of the

loop.

4. A do while loop is used to ensure that the statements with in the loop are executed at least once.

5 when we need to choose one among number of alternatives, a switch statement is used.

6.The switch key word is followed by an integer or an expression that evaluates to an integer.

7. the case keyword is followed by an integer or a character constant.

8. the usage of goto keyword should be avoided as it usually violates the normal flow of execution.

While (test condition)                  do                                          for(initialization; test condition; increment)

{                                                   {                                          {

………………..                           ……… ……………..

If (……………)                          if(………)                            if(…………..)

Continue;                                     continue; continue;

………………                              ………..                             ……………..

………………                              …………                           ……………..

} } (while test condition );      }

Fig.8.7 continue command in while, do while and for loop statements

…………..

………….

If (test condition) exit (0);

……………

……………

Fig.8.8. use of exit ( ) function.
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Jumping out of loops

below.

that we can jump out of a loop using either the break or goto statement.
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Module IV: Introduction
This module is designed as an introduction to Data structures. It is about structuring and organizing data as

a fundamental aspect of developing computer application. The standard data  structures which are often

used and which forms the basis for complex data structures is the array. An array is a homogenous data

structure in which all elements are of the same type. In the first unit of the module, we describe different

types of arrays in general. The next unit is devoted to a useful introduction to User defined functions.

Unit 1 :Arrays
Structure
1.1 Introduction

1.2 One dimensional Arrays.

1.3 Declaration of one dimensional Arrays

1.4 Initialization of one dimensional Array.

1.5 Two dimensional Arrays.

1.6 Initializing 2-D arrays

1.7 Multi dimensional Arrays

1.8 Dynamic Arrays

1.9 Summary:

1.1 Introduction

An array is a collection of similar elements. These similar elements could be all integers, or all
floats, , or all characters, etc. Usually, an array of characters is called a ‘ string’, where as an array of
integers or floats is simply called an array. All elements of any given array must be of the same type.
That is, we cannot have an array of 10 numbers, of which five are of integers and five of float type.

C supports a rich set of derived and user defined data types, in addition to a variety of fundamental
data types.as detailed below:

Arrays                           Integral types                         Structures

Functions                      Float types                             Unions

Pointers                         Character  Types                   Enumerations.

Data Types

Derived
Types

User defined  TypesFundament
al  Types

Unit 10

Arrays

150

Unit 10

150148

Unit 6

Structure

Two dimensional arrays

Introduction

Dynamic Arrays

Initialization of one dimensional arrays

Multi-dimensional arrays
Initialization of two dimensional arrays

One dimensional arrays
Declaration of one dimensional arrays

6.1 Introduction

data types a detailed in the figure below:
  C supports a rich set of derived and user defined data types, in addition to a variety of fundamental 

is, we cannot have an array of 10 numbers, of which five are integrs and five are float.

ats, or all characters, etc. Usually, an array of characters is called a 'string', whereas an array of integ-
   An array is a collection of similar elements. These similar elements could be all integers, or all flo-

ers or floats is simply called an array. All elements of any given array must be of the same type. That
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Arrays and structures are referred to as structured data types because they can be used to

represent data values that have a structure of some sort. Structured data types provide an

organizational scheme that shows the relationship among the individual elements and facilitate

efficient data manipulation. In programming language such data types are known as data structures.

1.2 One dimensional Arrays.

As already discussed, an array is a collective name given to a group of similar variables .The values

in an array is called as elements of array, and  are accessed by numbers called subscripts. The array

which is used to represent and store data  in a linear form ( or accessing its elements involve only a

single subscript) is called as single or one dimensional array. As an example consider the C

declaration:

int number [5];

Here in this declaration, the array  variable number contain 5 elements of any value  available to the

int type .and the computer reserves 5  storage locations. The values to the array elements can be

assigned as:

number [0]= 12;

number [1]=13;

number [2]=15;

number [3]=20;

number [4]=25;

This would cause the array number to store the values as shown below:

12

13

15

20

25

These elements may be used in programs just like any C variable

number [0]

number [1]

number [2]

number [3]

number [4]

151
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6.2
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1.3 Declaration of one dimensional Arrays

To begin with, like other variables an array needs to be declared before they are used so that the

compiler will know what kind of an array and how large an array we want. The general form of array

declaration is:

type variable-name [size];

The type specifies the type of element that will be contained in the array, such as int, float or char and

the size indicates the maximum number of elements that can be stored inside the array .For example,

int marks [10];

Declares the marks  as an array to contain a maximum of 10 integer constants. This number is often

called the dimension of the array .The bracket ([ ])  tells the compiler that we are dealing with an

array.

The C treats character strings simply as array of characters. The size in a character string represents

the maximum number of characters that the string can hold. For instance,

char name[13];

Declares the name as a character array(string) variable that can hold a  maximum of 13 characters.

Suppose   we read the following string constant in to the string variable name

“GOOD MORNING”

In this, each character of the string is treated as an element of the array name and is stored in the

memory as:

‘G’
‘O’
‘O’
‘D’
‘ ‘

‘M’
‘O’
‘R’
‘N’
‘I’
‘N’
‘G’
‘\o’

152
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When the compiler sees a character string , it terminates with an additional null character \o. Thus the
element name[13]  holds the null character ‘\o’. Remember that, while declaring character arrays, we
must allow one extra space for the null terminator.

1.4 Initialization of one dimensional Array.
After an array is declared, its elements must be initialized. If they are not given any specific value,

they  are supposed to contain garbage values. An array can be initialized at either of the following
stages:

• at compile time
• at run time

Compile time initialization

Whenever we declare an array we can initialize it directly at compile time. In this type of
initialization, we assign certain set of values to array elements before executing program The general
form of initialization of arrays is:

type array-name[ size ] = [ list of values ];

the values in the list  are separated by commas. The type size can be specified directly as :

int num [5] = { 2.3,4,5,6};

Here the size of the array is specified directly as 5 in the initialization statement. The compiler will
assign values to the particular elements of the array. i.e., At the  time of compilation all, the elements
are at specified positions as shown below.

num [0] = 2

num [1] = 3

num [2] = 4

num [3] = 5

num [4] = 6

Also the type size can be specified indirectly as in:
int num [ ] = { 2.3,4,5,6};

The compiler counts the number of elements written with in the  braces and determines the size of the
array.
Character arrays may be initialized in the same manner. Thus the statement

char name [ ] = { ‘j’, ’o’, ’h’, ’n’, ‘\o’};
Declares the name to be an array of  five characters, initialized with the string ’john’ ending with the
null character. Alternatively, we can assign the string literal directly as :

char name [ ] = ‘john’;

153
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6.4
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Run time initialization

An array can also be explicitly initialized at run time usually; .this approach is applied for
initialization of large arrays. For example, consider the following program segment;

for (i  = 0; i < 5; i++)

{

scanf ( “% d “’  & x [ i ] );

}

The above segment will initialize the array elements with the values entered through the keyword .In
this type of initialization (run time initialization) of the arrays.  looping elements are almost
compulsory. Looping statements are used to initialize the values of the arrays one by one by using
assignment operator or through the keyboard by the user. we can also use read function such as scanf
to initialize an array  as in example below.

int x [2] ;

# include < stdio.h >
void  main  ( )
{

int array [3], i;
printf( “ enter 3 numbers to store them in an array\n” );
for ( i =0; i < 3; i ++)
{

scanf ( “ % d “, & array [ i] ) ;
}
printf ( “ elements  in the array are: \ n”);
for  i =0; i < 3; i ++)
{

printf (“ elements stored at a [ %d] = %d\n”,i, array [ i]);
}
getch ( );

}

output
enter  3 elements in the array : 2 3 4
elememts in the array are :
element stored at a[ 0] = 2
element stored at a[ 1] = 3
element stored at a[ 2] = 4

Fig 9.1: program to illustrate  an array
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Fig 6.1: Program using an array
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scanf ( “ %d % d”,  & x[0], & x[1] );

will initialize the array elements with the values entered through the key word. Here is a sample

program  (Fig.9.1) to store the elements in the array and to print them from this array.

Searching and sorting are two operations performed on arrays. Searching is the process of arranging

elements in the list according to their values, in ascending or descending order. An ordered list is a

sorted one. The three simple and important sorting  methods are:

Bubble sort

Selection sort

Insertion sort.

Other sorting methods include, Merge sort, quick sort and Shell sort.

Searching is the process of finding the location of the specified element in a list. The specified

element is often called the search key. If the process of searching finds a match of the search key

with a list element value, then the search is sad to be successful. Otherwise it is unsuccessful. Two

most commonly used searching methods are ;

Sequential search

Binary Search.

1.5 Two dimensional Arrays.

So far, we have explored arrays with only one dimension. It is also possible to have two or more

dimensions. The 2-D array is also called a matrix. The 2-D arrays are declared as :

type array-name  [ size   of row] [ column size ];

2-D arrays are stored in memory as shown below. In memory, whether, it is single or two

dimensional array, the array elements are stored in one continuous chain .Each dimension of the array

is indexed from zero to its maximum size minus one: the first index selects the row and the second

index selects the column within that row,

155
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110 205                               130

214                                            270                                         370

20                                180                                             310

300                                  345                                        380

Column 0

Column 0
Column 2Column 1

[ 2] [ 0] [ 2] [ 2][ 2] [ 1]

Column 0
Column 2Column 1

[ 0] [ 0] [ 0] [ 2][ 0] [ 1]

Column 0
Column 2Column 1

[ 1] [ 0] [ 1] [ 2][1] [ 1]

Column 0
Column 2Column 1

[ 3] [ 0] [ 3] [ 2][ 3] [ 1]

Row 2

Row 1

Row 0

Row 3

Fig 9,2 : Representation of 2-D array in memory
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Fig 6.2: Representation of 2D array in memory
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Here is a sample program:

This program stores the roll number and marks obtained by a student side by side in a matrix. In the

first part of the program, i.e., in the first for loop, we read in the  values of roll number and marks,

where as in the second for loop, we print out these values. Also, in the first scanf , the first subscript

of the  variable student   is row number which changes for every student. The second subscript  tells

which of the two columns are we talking about- the zeroth column which contains the roll number or

the first column which contains the mark. The counting of rows and columns begins with zero.

Remember that two dimensional array is a collection of a number of one dimensional arrays placed

one below the other .In this program, the array elements have been stored row wise and accessed row

wise. Although it is possible to access the elements column wise, row-wise strategy is accepted

widely.

# include< stdio.h>

int main( )

{

int students [4] [2];

int i,j;

for (i = 0; i < = 3; i ++)

{

printf ( “enter the roll no of student and marks\n”);

scanf(“ %d %d”,  &student [i] [0], &student[i][1]);

}

for (i =0; i< = 3; i ++)

printf( “ %d %d “, student [i] [0],student [i] [1]);

return 0;

}

9.3. program to illustrate 2-D array
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Fig 6.3: Program to illustrate 2D array

93



School of Distance Education

‘C’ Programming for Mathematical Computing Page 129

1.6 Initializing 2-D arrays

Like 1-D arrays, 2-D arrays could be initialized  by following their declaration with a list of initial

values enclosed in braces as in ,

int table  [2][3] = { 0,0,0,1,1,1};

which initializes the first row to zero and second row to one. Equivalently one can write the above

statement as:

int table  [2][3] = {{ 0,0,0} ,{ 1,1,1}};

We can also initialize a 2-D  array in matrix form as:

int table  [2][3] = {

{0,0,0},

{1,1,1}

};

More over, the declaration

int table  [ ][3] =  {

{ 0,0,0},

{1,1,1}

};

Is perfectly valid.

If the values are missing in the initatializer, they are automatically set to zero. For instance, the

statement

int table  [2][3] = {

{1,1}

{2}

};

will initialize the first two elements of the first row to one, the first element of the second row to 2

and all other elements  to zero.

In situations where we have to initialize all the elements to zero,  a short cut method as in,

int m [3] [5] = { { 0}, { 0},{0} };
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may be used. Here the first element of each row is explicitly initialized to zero, while all other

elements are automatically initialized to zero. the following statement would also work.

int m [ 3] [5] =- { 0,0};

1.7 Multi dimensional Arrays

The general form of a multidimensional Array is:

Type array-name [ s1] [s2] [s3] …….[sm] ;

Where si is the size of the ith dimension. A 3-D array can be thought of as an array of arrays of array.

The outer array has three elements, each of which is 2-d array of four 1-D arrays., each of which

contains two integers. That is, a 1-D array of two elements is constructed first, followed by placing

four 1-D arrays placed one below the other. So that a 2-d array containing four rows is obtained.

Thereafter, three 2-D arrays  are placed one behind the other to yield a 3-D array containing three 2-D

arrays.

1.8 Dynamic Arrays

In C it is possible to allocate memory to arrays at run time. The arrays created at run time are called

dynamic arrays .Dynamic arrays are created using  memory management functions like malloc,

calloc, realloc, that are included in the header file< stdlib.h > The concept of dynamic arrays is used

in creating and manipulating data structures like lists, stack and queues.

1.9 Summary:

1,An array is similar to an ordinary variable except that it can store multiple elements of similar type.

2.The array variable acts as a pointer to the zeroth element of the array.  In 1-D array, zeroth element

is a

single valued one, whereas in a 2-D array this element is a 1-D array. During multidimensional

initialization, omission of array size other than the first dimension may result an error.

3. While initializing character array, enough space is to be provided  for the terminating null

character.

4. The subscript variables in a  array need to be initialized before they are used.
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