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Unit 1

Conjugate Space

Course Structure

• Terminologies related to epidemic

• Simple epidemic

• SIS Epidemic Model

• SIS Epidemic Model with Specific Rate of Infection as a Function of time

• SIS Model with Constant Number of Carriers

• Simple Epidemic Model with Carriers

• SEIR Epidemic model

• SEIRS Mathematical Model

1.1 Introduction

The study of mathematical theory of epidemic can be look upon as a continuation of our previous study in the
sense that here also our concern is about the population sizes when effected by epidemics. In fact, we will
draw our attention in modelling of problems of epidemics in mathematical terms. Sometimes such study is
also called the study of mathematical epidemiology.

In order to pose a problem of epidemic, let us think of a small group of individuals who can carry a commu-
nicable infection to a large group of individuals, who can therefore be consider to be capable of the conducting
the disease. Our immediate problem is to investigate how the disease is develop. In order to have a mathe-
matical model of such situation we need some assumption regarding the characteristic of the disease as well
as the mixing of the population. For this we need to consider the basic definition.

1



2 UNIT 1. CONJUGATE SPACE

• Susceptible Individuals: An individual who is capable of conducting the disease directly or indirectly
from another infected individual and is thereby become an infectious.

• Infective Individuals: An individual who is capable of transmitting the disease to others.

• Removed Individuals: An individual who had the disease and has recover or is death and is permanently
immune or is latent (existing but not developed) until recovering an permanent immunity occurs.

• Latent Period: This it the period during which a disease is developed within a newly infected individual
in purely internal way.

• Infections Period: This is the period during which the infected is liable to communicate infectious ma-
terial to susceptible.

• Incubation Period: This is the interval between the exposer to disease and the appearance of symptoms.

• Genial Period: This is the time interval between the appearance of symptoms in one case and the ap-
pearance of symptoms in another case infected from the first.

Remark 1.1.1. • The disease under consideration confers permanent immunity upon any individuals who
has completely recovers from it and has a negligible short incubation period.

• An individuals who conduct the disease becomes infective immediately.

• The population is obviously divided into three classes, viz. susceptible class, infective class and re-
moved class.

We next consider some simple cases depending on the nature of the epidemic. We consider three types of
epidemic, viz. simple, general and recurring epidemic.

1.2 Simple Epidemic Model

This is the simplest type of epidemic in which a disease may spread among a group of susceptible but there is
removal by death or by recovering or by isolation. In reality this may be taken as the reasonable approxima-
tion to the early stages of the upper respiratory infection. Over a long time may elapse before an infective is
removed.

Let there n susceptible (S) and let us introduce an simple infective (I) into this group at time t = 0, so
that we have a group of (n + 1) individuals. Let S(t) and I(t) be the respective number of susceptible and
infective at time t so that

S(t) + I(t) = n+ 1 (1.2.1)

We now assume that the disease spread in such a way that the average number of new cases of the disease in
an interval ∆t is proportional to both the number of susceptible and the infective.

Let γ > 0 be the constant rate between the members at time ∆t so that

∆S = −γSI∆t (1.2.2)



1.2. SIMPLE EPIDEMIC MODEL 3

Procedding to the limit ∆t→ 0, we have
dS

dt
= −γSI (1.2.3)

which can also be written as

dS

dτ
= −SI where τ = γt

⇒ dS

dτ
= −S[n+ 1− S] [using Eq. (1.2.1)] (1.2.4)

The solution of Eq. (1.2.4) subject to the initial conditions S = n at τ = 0 is given by

S =
n(n+ 1)

n+ e(n+1)τ
(1.2.5)

Therefore the rate which new cases occur is given by

−dS
dτ

= S[n+ 1− S] =
n(n+ 1)2e(n+1)τ

{n+ e(n+1)τ}2
(1.2.6)

The rate
dS

dτ
< 0 because it represents change in S, and S, the number of susceptible is decreasing as the

epidemic develop.

Fig. 1.1 is known as epidemic curve and has a maximum at τ =
ln(n)

n+ 1
. We therefore, conclude that the

rate appearance of the new cases increases rapidly to begin with rises to a maximum and there after falls to
zero.

O

dI
dt

t

Figure 1.1: Epidemic Curve

Remark 1.2.1. The above analysis does not less tell us the rate at which the infection is spreading. To do this
we take the basic equation

S + I = N (1.2.7)
dS

dt
= −γSI (1.2.8)

where N is size of total population. Therefore we have,

d

dt
(N − I) = −γ(N − I)I

⇒ dI

dt
= γ(N − I)I [∵ N is time independent] (1.2.9)
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On integration of the Eq. (1.2.9), with the condition I(0) = 1, we have

I(t) =
N

(N − 1)e−γNt + 1
(1.2.10)

Since γ is positive, I(t) goes to N as t → ∞ one can conclude that every individual in the population will
eventually contact the disease. Thus one can calculate S(t) using Eq. (1.2.7) in the form

S(t) =
N(N − 1)e−γNt

1 + (N − 1)e−γNt
(1.2.11)

The rate at which the infection takes place is given by

dI

dt
=

N2(N − 1)γe−γNt

[1 + (N − 1)e−γNt]2
(1.2.12)

The curve representing dI
dt vs t is known as the epidemic curve. Now to investigate the maximum value, the

rate at which the infections takes place let us compute

d2I

dt2
=

[
(N − 1)N3γ2e−γNt

1 + (N − 1)e−γNt

] [
(N − 1)e−γNt − 1

]
(1.2.13)

Now the factor inside the first bracket is positive for all values of t. Thus the sign of
d2I

dt2
only depends on

the other factor namely
[
(N − 1)e−γNt − 1

]
. At t = 0, this factor is positive and becomes negative when

t→ ∞, so there exist an extreme value when (N − 1)e−γNt − 1 = 0. So the rate has a maximum at

t =
ln(N − 1)

γN
= tmax (1.2.14)

Then
(
dI

dt

)
max

=
N2γ

4
and Imax = N

2 .

Note:

1. One can note from the expression of tmax that if γ is small tmax tends to the large, i.e., smaller the γ
longer it take to reach the peak value. Also the epidemic will be complete in a much shorter time for a dense
population than for a sparse one.

2. A serious limitation of this epidemic model is that everyone in the population will contact the disease as
many susceptible still remain in the population.

1.3 SIS Epidemic Model

In this model, a susceptible person can become infected at a rate proportional to SI and an infected person
can recover and become susceptible again at a rate γI so that we get the model

dS

dt
= −βSI + γI, (1.3.1)

dI

dt
= βSI − γI (1.3.2)
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which gives
S(t) + I(t) = N = S(0) + I(0) = S0 + I0 (I0 ̸= 0). (1.3.3)

From (1.3.1)-(1.3.3),
dI

dt
= (βN − γ)I − βI2 = kI − βI2. (1.3.4)

Integrating (1.3.4), we obtain

I(t) =


exp(kt)

β[exp(kt)− 1]/k + I−1
0

(k ̸= 0)

1

βt+ I−1
0

(k = 0)
(1.3.5)

As t→ ∞,

I(t) →
{
N − ρ if N > ρ = γ/β
0 if N ≤ ρ = γ/β

(1.3.6)

1.3.1 SIS Model with Specific Rate of Infection as a Function of t

In this case, (1.3.4) becomes
dI

dt
=
[
β(t)N − γ

]
I − β(t)I2 (1.3.7)

or
dJ

dt
+
[
β(t)N − γ

]
J = β(t), (1.3.8)

where
J(t) =

[
I(t)

]−1
. (1.3.9)

Integrating (1.3.8), we get

J(t)

[
exp

{ t∫
0

[
β(t)N − γ

]
dt

}]
=

t∫
0

β(t)

[
exp

{ t∫
0

[β(t)N − γ]dt

}]
dt+ J0. (1.3.10)

Simplifying this equation and using (1.3.9)

I(t) =

exp

[
N

t∫
0

β(u)du− γt

]
t∫
0

β(v) exp

[
N

v∫
0

β(u)du− γv

]
dv + I−1

0

. (1.3.11)

1.3.2 SIS Model with Constant Number of Carriers

In this model, infection is spread both by infectives and a constant number C of carriers so that (1.3.1) and
(1.3.2) becomes

dI

dt
= β(I + C)S − γI = βCN + β(N − C − ρ)I − βI2. (1.3.12)

Integrating, we get

I(t) =
α1(I0 − α2)e

βα1t + α2(α1 − I0)e
βα2t

(I0 − α2)eβα1t + (α1 − I0)eβα2t
(1.3.13)
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where

α1, α2 =
1

2

[
(N − C − ρ)± {(N − C − ρ)2 + 4CN}

]1/2]
; (1.3.14)

α1, α2 correspond to the positive and negative roots respectively of the equations I2−(N−C−ρ)I−NC = 0.
Now, as t→ ∞,

I(t) → α1 (1.3.15)

so that I(t) is asymptotic to a positive constant for all values of N and ρ. Thus, with a constant number of
carriers, I(t) does not tend to zero.

1.4 Simple Epidemic Model with Carriers

In this model, only carriers spread the disease and their number decreases exponentially with time as they
are identified and eliminated. Here, if S(t), I(t) and C(t) respectively represent the number of susceptibles,
infectives, and carriers at time t, we have

dS

dt
= −βC(t)S(t) + γI(t),

dI

dt
= βC(t)S(t)− γI(t),

dC

dt
= −αC

(1.4.1)

so that

S(t) + I(t) = S0 + I0 = N, C(t) = C0 exp[−αt],

dI

dt
= βC0N exp(−αt)− [βC0 exp(−αt) + γ]I (1.4.2)

whose solution is

I(t) =

βC0N
t∫
0

exp[−αv − βC0 exp(−αv)/α+ γv]dv + I0 exp(−βC0/α)

exp[−(βC0/α) exp(−αt) + γt]
(1.4.3)

It can be now shown that

lim
t→∞

I(t) = 0. (1.4.4)

1.5 SEIR Epidemic Model

The Susceptible-Exposed-Infectious-Recovered (SEIR) epidemic model is a mathematical framework used to
study the spread of infectious diseases within a population. In this model, individuals can transition through
four states: susceptible (S), exposed (E), infectious (I), and recovered (R). Exposed individuals are infected
but not yet infectious, and recovered individuals are assumed to be immune to further infection.
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1.5.1 Detailed Description of SEIR Mathematical Model

Let S(t), E(t), I(t), and R(t) denote the number of individuals in each state at time t. The dynamics of the
SEIR epidemic model can be described by the following system of ordinary differential equations (ODEs):

dS

dt
= −βSI

N
dE

dt
= β

SI

N
− σE

dI

dt
= σE − γI (1.5.1)

dR

dt
= γI

where:

• β is the transmission rate (rate of infection).

• σ is the rate at which exposed individuals become infectious.

• γ is the recovery rate (rate of recovery or transition from infectious to recovered).

• N is the total population size.

This system variant of the SIR model of Kermack and McKendrick. Here, we neglect the birth and death
rates, i.e., we consider a model without vital dynamics. The average incubation period is 1

α , the parameter β
is the product of the average number of contacts per person and per unit time by the probability of disease
transmission in a contact between a susceptible and an infectious individual, γ is a transition rate so that 1

γ
measures the duration of the infection of an individual and N is the total population size. In the Covid-19
pandemic, the average incubation period is of several days and this is why an SEIR model has to be preferred
to a simple SIR model. Many qualitative features are the same in the two models but the compartment E of
exposed individuals makes the analysis significantly more delicate and realistic. Unreported cases or asymp-
tomatic individuals are not taken into account here: this is an important aspect of the Covid-19 epidemic,
with important consequences on the epidemic size, but probably not so much on the qualitative issues. Other
factors, like delays for the transmission of the information studied, certainly also play a pivotal role in the
current outbreak.

Figure 1.2: The peak of the outbreak in the SEIR model. The time t is counted in days. The vertical axis
represents the fraction of the population. The basic reproduction ratio is either R0 = 2.33 (left) or 1.37 (right)
corresponding to a reduction of social interactions by a factor q = 1.7. This illustrates the flattening of the
curves.
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1.5.2 Equilibrium Points

The equilibrium points of the SEIR epidemic model can be found by setting the rates of change of all com-
partments to zero. Solving the resulting system of equations yields the equilibrium points.

For the SEIR model, the equilibrium points are:

S∗ =
γ

β

E∗ = 0

I∗ =
σ

γ

(
1− γ

β

)
R∗ = N − S∗ − I∗

where N is the total population size.

1.5.3 Stability Analysis

Similar to the SIS model, stability analysis of the SEIR model involves linearizing the system of ODEs around
the equilibrium points and examining the eigenvalues of the resulting Jacobian matrix.

1.5.4 Conclusion

The SEIR epidemic model provides a more detailed understanding of disease dynamics by incorporating an
exposed compartment, representing individuals who have been infected but are not yet infectious. By studying
the behavior of the model and analyzing its equilibrium points and stability, researchers can gain insights into
the spread and control of infectious diseases within populations.

1.6 SEIRS Mathematical Model

The Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) epidemic model is a mathematical frame-
work used to study the spread of infectious diseases within a population. This model extends the SEIR model
by incorporating a temporary immunity period, allowing recovered individuals to become susceptible again
after a certain period.

1.6.1 Model Description

Let S(t), E(t), I(t), R(t), and Snew(t) denote the number of individuals in each state at time t. The dynamics
of the SEIRS epidemic model can be described by the following system of ordinary differential equations
(ODEs):

dS

dt
= −βSI

N
+ ξSnew

dE

dt
= β

SI

N
− σE

dI

dt
= σE − γI (1.6.1)

dR

dt
= γI − ξR

dSnew

dt
= ξR− ξSnew
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where:

• β is the transmission rate (rate of infection).

• σ is the rate at which exposed individuals become infectious.

• γ is the recovery rate (rate of recovery or transition from infectious to recovered).

• ξ is the rate at which recovered individuals become susceptible again.

• N is the total population size.

1.6.2 Equilibrium Points

The equilibrium points of the SEIRS epidemic model can be found by setting the rates of change of all
compartments to zero. Solving the resulting system of equations yields the equilibrium points.

For the SEIRS model, the equilibrium points are:

S∗ =
γξ

β(ξ + γ)

E∗ = 0

I∗ =
σ

γ

(
1− γξ

β(ξ + γ)

)
R∗ =

ξ

ξ + γ
N

S∗
new = N − S∗ − I∗ −R∗

where N is the total population size.

Figure 1.3: Trajectories of SEIRS model

1.6.3 Linearization

The Jacobian matrix of the system evaluated at the equilibrium points can be calculated and then used to
determine the stability of the equilibrium points.
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1.6.4 Eigenvalues

The eigenvalues of the Jacobian matrix determine the stability of the equilibrium points. If all eigenvalues
have negative real parts, the equilibrium is stable. If any eigenvalue has a positive real part, the equilibrium is
unstable.

1.6.5 Conclusion

In summary, the SEIRS epidemic model offers a nuanced understanding of disease dynamics by incorporating
a temporary immunity period. By comprehensively analyzing the model’s behavior, equilibrium points, and
stability, one can glean valuable insights into the transmission and control of infectious diseases within popu-
lations. This holistic approach aids in devising effective strategies for disease management and public health
interventions, ultimately contributing to the safeguarding of community well-being.
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2.1 General Epidemic Model

The study of general epidemic involves with infection as well as removal. Let us assume that S(t), I(t) and
R(t) be the respective population sizes of susceptible, infected and removal individual at time t.

Let us make few assumption about the nature of S, I and R as follows:

• The population is treated as closed (constant) and continuous which can be represented by S moving
over to I moving over to R (we ignore both birth and immigration).

• The rate of change of susceptible population is proportional to the number of contacts between the
members of the class S and I , in which we take in term, the number of contacts to be proportional to
the product of the numbers of S and I . This assumption takes care of uniform mixing of the population.

• Individuals are recovered at a rate proportional to the number I .

Let r > 0 be the infective rate and γ > 0 be the removed rate and if S0, I0 be the initial number of members
of S and I respectively, then the governing equations are given by

dS

dt
= −rSI (2.1.1)

dI

dt
= rSI − γI (2.1.2)

dR

dt
= γI (2.1.3)

11
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We are to study these equation with the following conditions given by S = S0, I = I0 and R = 0 initially at
t = 0. In addition to these we have

S(t) + I(t) +R(t) = constant i.e.,
d

dt
(S + I +R) = 0 (2.1.4)

From Eq. (2.1.2), we have
dI

dt
= r

(
S − γ

r

)
I (2.1.5)

If S0 <
γ

r
then

dI

dt
< 0 and since S(t) < S0, one can conclude that

dI

dt
< 0 for all t. Therefore, it is

such a case in which the infection dies out, i.e., non epidemic takes place. This is known as a “Threshold
Phenomena”. We therefore conclude that there exist a critical value for which the initial susceptible has to
exceed for their to be an epidemic, in other words the relative removal rate

γ

r
must be sufficiently small so as

to allow the epidemic to spread.

The Eqs. (2.1.1)–(2.1.4) also enable us to study another behaviour relative to spread of the disease. Since

S(t) is non-increasing and positive lim
t→∞

S(t) → S(∞) exists and since
dR

dt
≥ 0 and R(t) ≤ N then R(∞)

exists. Again we have I(t) = N −R(t)− S(t) is follows the lim
t→∞

I(t) → 0.

Now we consider some other values in dividing Eq. (2.1.1) by Eq. (2.1.3) when we have

dS

dR
= − r

γ
S (2.1.6)

On integration we have

S = S0 exp

{
− r
γ
R

}
(2.1.7)

Now since R ≤ N which implies −R ≥ −N , so that

S = S0 exp

{
− r
γ
R

}
≥ S0 exp

{
− r
γ
N

}
> 0 = α (say). (2.1.8)

Therefore, lim
t→∞

S(t) is always positive, one can interpreted this by saying that there will always be susceptible
remaining in the population. Thus we conclude that some individual will escape the disease all together and in
particular the spread of disease does not stop for the lack of susceptible population. Let us consider a function

f(z) = S0 exp

{
−1

ρ
(N − z)

}
− z in which ρ =

γ

r
(2.1.9)

Now, f(0) > 0 and f(N) = S0 − N < 0. Therefore, there must be a positive root for f(z) = 0. Let z0 be
the root, then we have

f ′(z) =
1

ρ
S0 exp

{
−1

ρ
(N − z)

}
− 1 (2.1.10)

and f ′′(z) =
1

ρ2
S0 exp

{
−1

ρ
(N − z)

}
(2.1.11)

Now since f ′′(z) > 0 and f(N) < 0, there is only one such root z0 < N . Now we have seen that

S = S0 exp

(
−R
ρ

)
i.e., S∞ = S0 exp

{
−1

ρ
(N − S∞)

}
(2.1.12)

Hence, we can say that S∞ is the root of the equation f(z) = 0. Now we can sum up all the results in the
form of a theorem as follows:
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Theorem 2.1.1. If S0 < ρ then I(t) decreases monotonically to zero. If S0 > ρ then the number of infective
increases as time t increases and then tends monotonically to zero. Further limt→∞ S(t) exits and S∞ is a
root of the transcendental equation.

Remark 2.1.1. The equation
dS

dR
= − r

γ
S can be solved under certain approximations when R is known.

2.2 Approximate Solution

We have the Eq. (2.1.6) as
dS

dR
= − r

γ
S (2.2.1)

where S is given by the Eq. (2.1.7) as S = S0 exp

(
− r
γ
R

)
. Now substituting Eq. (2.1.7) in the Eq. (2.1.3),

we have
dR

dt
= γ

[
N − S0 exp

(
− r
γ
R

)
−R

]
(2.2.2)

The Eq. (2.2.2) can be solved by standard method by taking some approximate value after expanding upto
some power of R. But we are interested in looking for values of R when t → ∞. We note that as t → ∞,
dR

dt
→ 0. Further as t→ ∞, taking S0 ≈ N , we have

0 = γ

[
N −N exp

(
− r
γ
R

)
−R

]
or, 0 = γ

[
N −N exp

(
−R
ρ
R

)
−R

]
(∵ ρ =

γ

r
)

Now we expand the exponential term in the right hand side in powers of
R

ρ
, which becoming smaller and

smaller as t→ ∞ and can be approximate upto second power of
R

ρ
. Therefore, we have

0 ≈ γ

[
N −N

(
1− R

ρ
+
R2

2ρ2

)
−R

]
⇒ R ≈ N

(
R

ρ
− R2

2ρ2

)
⇒ 1

N
≈ 2ρ−R

2ρ2

⇒ 2ρ2

N
≈ 2ρ−R

⇒ R ≈ 2ρ
(
1− ρ

N

)
This is approximate as t → ∞ and hence one should get the ultimate size of the epidemic. If ρ > N , there is
no true epidemic and hence the appearance of epidemic will be there only when ρ < N , i.e., when the effective
removal rate is less than the initial number of susceptible and in this case all persons do not get infected. A
stage may be reached when all the infected person are immediately removed. So in order of epidemic may
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occur, we have N = ρ+ γ, where γ > 0 is small. Thus we have

R(∞) ≈ 2ρ

(
1− ρ

ρ+ γ

)
≈ 2ρ

[
1−

(
1 +

γ

ρ

)−1
]

≈ 2ρ

[
1− 1 +

γ

ρ

]
≈ 2γ

This shows that the initial density of susceptible namely S0(= N = ρ+ γ) is reduced to S∞(= ρ− γ) which
means that the final number of susceptible falls at a point as far below the threshold value ρ as originally it
was above it. This is known as “Kermack & McKendric Threshold Theorem” .

Remark 2.2.1. • The above theorem corresponds to the general observation of the epidemic tends to built
up more rapidly for the density of susceptible is high on account of over crowding and the removal rate
is relatively low because of the factors that ignorance and inadequate isolation.

• The Eq. (2.2.2) can also be integrated when the approximation is taken upto second powers to R.

Integration leading to approximate solution. We have

dR

dt
= γ

[
N −R− S0 exp

(
−R
ρ

)]
(2.2.3)

Substituting exp

(
−R
ρ

)
= 1− R

ρ
+
R2

2ρ2
into the above equation, one get

dR

dt
= γ

[
N −R− S0

(
1− R

ρ
+
R2

2ρ2

)]
⇒ dR

dt
= γ

[
N − S0 +R

(
S0
ρ

− 1

)
− S0

2

R2

ρ2

]
⇒ dR

dt
= a+ bR− cR2

where a = γ(N − S0), b = γ

(
S0
ρ

− 1

)
and c =

γS0
2ρ2

. On integration, we obtain

2

q
tanh−1

(
2cR− b

q

)
= t+ c1, c1 being a constant and q =

√
b2 + 4ac

⇒ R(t) =
1

2c

[
b+ q tanh

(
qt

2
+ c2

)]
, c2 is a different constant

⇒ R(t) =
1

2c

[
b+ q

{
1− e−qt+c3

1 + e−qt+c3

}]
Since q > b and since tanhx increases monotonically from −1 to +1 when x increases from −∞ to +∞,
it follows that the constant c2 and c3 exists and have real values. These constants can also be chosen in such
a way that R(0) = 0. Behaviour of R(t) for large values of time or in other words asymptotic behaviour of
R(t) can be found as

lim
t→∞

R(t) =
1

2c
(b+ q) (2.2.4)
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or in terms of the old parameters of the mode we have,

R∞ =
1

S0

[
ρ(S0 − ρ) + ρ{(S0 − ρ)2 + 2S0I0}1/2

]
(2.2.5)

Let us now see if some additional assumption regarding the relative size of the parameter gives some result of
the threshold theorem mention early.

In particular, it is customary to assume that an epidemic is generated through the introduction of a small
number of infected individuals to a population of susceptible. Mathematically, S0 > ρ and I0 > 0. We now
use the quantity

lim
I0→0

R(∞) =
2(S0 − ρ)ρ

S0
(2.2.6)

to represents the asymptotic size of an epidemic resulted from the introduction of a small number of infective
into a group of susceptible.

Finally, let us assume that S − 0 is closed to the threshold value ρ, then the epidemic develop only of
S0 > ρ, i.e., S0 = ρ+ γ, where γ > 0 is small. Therefore,

lim
I0→∞

R∞ =
2γR

ρ+ γ
= 2γ

(
1 +

γ

ρ

)−1

≈ 2γ (2.2.7)

Therefore the asymptotic size of the epidemic is approximately equal to 2γ. Hence, we can state as follows:

The total size of the epidemic resulting from an introduction of trace infection into a population of suscep-
tible whose size S0 is closed to the threshold value ρ is approximately equal to 2(S0 − ρ).

Remark 2.2.2. • It may be remarked that this result is also taken as a part of threshold theorem of epi-
demiology.

• We can rewrite the expression of R(t) also in the form

R(t) =
ρ2

S0

[
S0
ρ

− 1 + α tanh

(
αγt

2
− ϕ

)]
(2.2.8)

where α =

[(
S0
ρ

− 1

)2

+
2S0
ρ2

(N − S0)

]1/2
and ϕ = tanh−1 1

α

(
S0
ρ

− 1

)
.

Differentiating, we get
dR

dt
=
γρ2α2

2S0
sech2

(
1

2
αγt− ϕ

)
(2.2.9)

This equation defines a symmetrical bell-shaped curve in t− dR

dt
plane (see Fig. 2.1). It may be noted that

“Kermack & McKendric” compared the values of
dR

dt
from this equation and found complete agreement with

the data from an actual plague which occur during 1905-06 in Bombay. The typical variations of S(t), I(t)
and R(t) can be represented graphically in Fig. 2.2.
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O

dR
dt

t

Figure 2.1: Symmetrical bell-shaped curve
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Figure 2.2: Variation of S(t), I(t) and R(t) with time t.

2.3 Recurring epidemic

There are many disease that tend to recur in various population with a certain amount of regularity often
assuming the character of an epidemic. For example, measles. We assume that the stock of susceptible is
replenished at a constant rate µ in time ∆t, so that we can take the group of susceptible to be increase by
the amount µ∆t, which losing rSI∆t due to new infections. We can take the total population size to remain
constant. By assuming the influx of the new susceptible balanced by an appropriate death rate affecting ony
the removed individuals. We can then have the governing equation as

dS

dt
= −rSI + µ (2.3.1)

dI

dt
= rSI − γI (2.3.2)

The steady state conditions are given by
dS

dt
= 0 =

dI

dt

Therefore the steady states are given by

S =
γ

r
= S0 and I =

µ

γ
= I0

Let us now study about the equilibrium position through the use of

S = S0(1 + u) and I = I0(1 + v)
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where u and v are small quantities. Substituting the above quantities in Eqs. (2.3.1) and (2.3.2), we have

1

rI0

du

dt
= −(u+ v + uv) ⇒ σ

du

dt
= −(u+ v + uv) where σ =

γ

rµ
(2.3.3)

dv

dt
= γu(1 + v) ⇒ τ

dv

dt
= u(1 + v) where τ =

1

γ
(2.3.4)

Since u and v are small, so their products may be neglected so that the Eqs. (2.3.3) and (2.3.4) reduced to

σ
du

dt
= −(u+ v) (2.3.5)

τ
dv

dt
= u (2.3.6)

From these equations, we get

τ
d2v

dt2
=
du

dt
= − 1

σ
(u+ v) = − 1

σ

(
τ
dv

dt
+ v

)
⇒ d2v

dt2
+

1

σ

dv

dt
+

1

τσ
v = 0 (2.3.7)

The general solution of the Eq. (2.3.7) is given by

v(t) = Ae−t/2σ cos ξt+Be−t/2σ sin ξt, (2.3.8)

where ξ =

√
1

στ
− 1

4σ2
. Using the initial conditions v = v0 and

dv

dt
= 0 at t = 0, we havev0 =

A and B =
v0
2σξ

. Therefore,

v(t) = v0e
−t/2σ cos ξt+

v0
2σξ

e−t/2σ sin ξt

= v0e
−t/2σ

[
cos(ξt) +

1

2σξ
sin ξt

]
(2.3.9)

Using Eq. (2.3.9), from Eq. (2.3.6) we get

u(t) = τ
dv

dt

= τv0

[
− 1

2σ

(
cos ξt+

1

2σξ
sin ξt

)
+

(
−ξ sin ξt+ 1

2σ
cos ξt

)]
e−t/2σ

= τv0e
−t/2σ

[
1

4σ2ξ
sin ξt− ξ sin ξt

]
= τv0e

−t/2σ

(
1

4σ2ξ
− ξ

)
sin ξt

This clearly represents damp harmonic motion to discuss the small departure from equilibrium.

2.4 Behaviour of Seasonal Dynamics in Recurrent Epidemics

Seasonality is a driving force that has a major effect on the spatio-temporal dynamics of natural systems and
their populations. This is especially true for the transmission of common infectious diseases (such as influenza,
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measles, chickenpox and pertussis), and is of great relevance for host–parasite relationships in general. Here
we gain further insights into the nonlinear dynamics of recurrent diseases through the analysis of the classical
seasonally forced SIR (susceptible, infectious or recovered) epidemic model. Our analysis differs from other
modelling studies in that the focus is more on post-epidemic dynamics than the outbreak itself. Despite the
mathematical intractability of the forced SIR model, we identify a new threshold effect and give clear analyti-
cal conditions for predicting the occurrence of either a future epidemic outbreak, or a ‘skip’—a year in which
an epidemic fails to initiate. The threshold is determined by the population’s susceptibility measured after the
last outbreak and the rate at which new susceptible individuals are recruited into the population. Moreover,
the time of occurrence (that is, the phase) of an outbreak proves to be a useful parameter that carries important
epidemiological information. In forced systems, seasonal changes can prevent late-peaking diseases (that is,
those having high phase) from spreading widely, thereby increasing population susceptibility, and controlling
the triggering and intensity of future epidemics. These principles yield forecasting tools that should have
relevance for the study of newly emerging and re-emerging diseases controlled by seasonal vectors.

The driving force maintaining recurrent epidemic dynamics has long been recognized to be the continuous
birth and recruitment of new susceptible individuals into the population. As an outbreak progresses, suscepti-
bles (S) become infected, drop to a minimum level (S0) in the wake of the epidemic, and then grow in number
as the birth process begins to dominate once again. The pattern of epidemics from year to year is controlled
by the population’s periodically changing annual contact rate. Mathematical analysis has shown it useful to
focus on S0, defined as the local minimum number of susceptibles left in the wake of an epidemic. S0 controls
whether there will be an outbreak in the year ahead or the number of ensuing skips that follow. To a good ap-
proximation, it is obligatory to show that to generate k or more consecutive skips in successive years requires
that S0 fall below:

Sc(k) =
γ + µ

β0
− (k + 1)µχ

2
. (2.4.1)

The critical threshold is defined in terms of classical epidemiological parameters: γ represents the rate at
which infected individuals recover; µ is the per capita rate at which members of the population reproduce and
die; and β0 is the rate of effective contacts between infected and susceptible individuals averaged over the
year. The seasonal forcing modulates the contact rate and is taken to be annual with period χ = 1 (χ having
time units of years). For example, the commonly used sinusoidally forced contact rate changes annually in
time (t) according to the relation β(t) = β0[1 + δ sin 2πt], with δ setting the strength of the forcing. More
specifically, for k = 0, one obtains:

S0 > Sc =
γ + µ

β0
− µχ

2
⇒ Epidemic (2.4.2)

whereas if S0 < Sc, there is a skip in the following year.

The above threshold rests on the principle that after a large epidemic the infected population recovers and
passes through a period of long-term immunity. A large epidemic is able to exhaust the susceptible pool (S0),
and should the latter fall below the critical threshold level (Sc), there is a skip—it becomes impossible for
a major epidemic to be triggered in the following year. Interestingly, the above criteria (equations (2.4.1)
and (2.4.2)) go beyond the predictions of the classical theory based on the unforced epidemic model, which
sometimes proves to be a misleading guide. For instance, during the skip marked in Fig. 2.4a, there is a period
in which infectives begin to increase rapidly owing to favourable seasonal conditions (high disease transmis-
sion). This increase is an indicator that the reproductive number R0 is greater than unity (R0 > 1) and thus,
according to the classical theory, suggests a major epidemic is under way. But instead, the growth of infectives
is cut short, owing to a change of seasons (diminished disease transmission) which curtails the build-up of the



2.4. BEHAVIOUR OF SEASONAL DYNAMICS IN RECURRENT EPIDEMICS 19

epidemic process, and results in a skip. Whereas predictions based on R0 prove unhelpful here, the criterion
of equation (2.4.2) is able to correctly differentiate skips from large-scale outbreaks.

The effectiveness of the threshold prediction may be demonstrated through the study of simulated epidemic
time series. The seasonally forced SIR model was integrated in the chaotic regime, which advantageously
generates time series with skips and variability similar to real world data. The threshold point (Sc) may
thus be easily checked. at ant time t between two successive large-scale epidemics A and B, as a function
of the susceptibles S0 left after the first outbreak A. For the given model parameters, the theoretical critical
susceptible threshold (Sc = 0.031 from equation (2.4.2)) corresponds to the number of susceptibles that
separates the annual dynamics (τ ≈ 1) from the biennial dynamics (τ ≈ 2) in which there is a skip between
two outbreaks. Our formalism provides an exact topological distinction that differentiates a skip from an
outbreak, even if small. During a skip, susceptibles always increase in time, whereas during an outbreak they
must decrease (Fig. 2.4 legend). This overall analysis shows explicitly how S0, which characterizes population
susceptibility, gives accurate predictions of future outbreaks.

Figure 2.3: Epidemic time series together with their associated phase relationship and synchronization
effects. a, c, Time series of reported measles infective cases (I, in thousands) from the largest city in the
US (New York, monthly sampling) and in the UK (London, weekly sampling) in the pre-vaccination era. b,
d, The maximum number of infectives of each epidemic is plotted as a function of the time of year (phase
in months) at which this maximum occurred. Minor epidemic peaks (skips) have been plotted in red to
emphasize that all skips occur at the end of the ‘high’ season, and are thus synchronized. The probability
of finding all red points only in the late phase regime is P < 0.001, making the synchronization significant.
Limitations of conventional prediction schemes are as follows. Consider the New York time-series (a) where
two similar sized ‘intermediate’ outbreaks occurred in 1931 and 1935 (red arrows). The former was followed
by a skip, whereas the latter was followed by another intermediate outbreak in 1936 (green arrow). Given the
very different outcomes, peak-to-peak predictions become untenable. The problem intensifies when trying to
predict outbreaks that occur after skips. The latter skips can be followed by a variety of different sized peaks,
ranging from a successive skip (for example, New York in 1940) to extremely large epidemics (for example,
New York in 1941).
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Figure 2.4: Effects of seasonality on population dynamics. a, Phase plane diagram with the number of
infectives log(I) plotted as a function of susceptible numbers (S) for a typical biennial cycle. The trajectory
of the SIR model (system (2.4.3) rotates anti-clockwise around the phase plane. The trajectory is attracted to
the quasi-equilibrium associated with each season (each marked as a filled blue circle). As the seasons (and
contact rates β±) change, the trajectory is kicked from one equilibrium to the next. The symbols β+ and β−

are marked on the curve to indicate those periods of time when the contact rates are associated with high and
low seasons respectively.In this biennial cycle, an epidemic occurs in the upper part of phase plane, after which
susceptibles pass through a minimum (S0, marked by the red square), with a skip occurring in the following
year (lower part of phase plane). During a skip, the susceptibles slowly build up, and a small maximum in
infective numbers develops one year after the major outbreak. This maximum is prevented from reaching
large numbers, as it is curtailed by the change of seasons (β+ → β−). In contrast to a skip, susceptibles
decrease in number during an outbreak. We now consider the relationship between peak outbreak magnitude
and initiation time. b, An infected individual enters the population early in the high season, and a full scale
epidemic develops (solid line). Susceptible numbers fall below the critical level Sc. c, An infected individual
enters the population very late in the high season. The epidemic (solid line) is cut short at the end of the high
season, and prevented from reaching its full potential (dashed-dotted line). Susceptible numbers remain above
the critical level Sc. Although the outbreak is curtailed, it should not be viewed as a skip (as susceptible levels
decrease over the epidemic).

2.4.1 Classical Forced SIR Model

The classical forced SIR model has the following equations:

Ṡ = µ− µSβ(t)S(I + ϵ),

İ = β(t)S(I + ϵ)− γI − µI, (2.4.3)

Ṙ = γI − µR.
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where the population is composed of susceptible (S), infected (I) and recovered (R) individuals, and are
scaled here as proportions. The rate of birth and mortality is µ, infected individuals recover at rate γ. Here,
we consider ϵ = 10−12 is a small immigration term. For the case of two seasons each year, the contact rate
β(t) may be approximated as β+ = β0(1 + δ) in the high season and as β− = β0(1 − δ) in the low season,
where 0 < δ < 1 represents the strength of the seasonal forcing. Over time, the seasons change sequentially:
high → low → high → low → . . . . . .

A mathematical analysis of the forced (δ > 0) model’s epidemic dynamics is worthy noting. The effects
of forcing, but do not develop a language of skips attempted here. For a given S0, it is possible to derive
mathematical expressions for the model’s orbit in the lower part of phase plane in Fig. 2.4, and calculate
the resulting number of skips. The analysis uncovers the threshold point separating annual and biennial (or
higher-order) dynamics. An intuitive understanding may be gained by removing seasonal forcing (δ = 0)
altogether. Let w = log(I), and consider the model’s trajectory in the lower part of the S–w phase plane.
Beginning in the wake of a large epidemic, with (S,w) = (S0, w0), equations (2.4.3) may be approximated
as: ẇ = β0S − γ − µ and Ṡ ≈ µ. Susceptibles build up linearly, S(t) ≈ S0 + µt, and w(t) follows a simple
parabola, first descending to very low numbers, and later increasing when the turning point is reached. The
recovery time between major epidemics is approximately

tτ =
2(γ + µ− β0S0)

β0µ
, (2.4.4)

the time needed for w(t) to return to w = w0. The number of skips is k = tτ
χ − 1 where χ = 1− year. Rear-

ranging the last equation for tτ gives the maximum level of S0 susceptibles required to generate k consecutive
skips, namely Sc(k) = γ+µ

β0
− (k + 1)µχ

2 . We have shown that the above results hold when forcing δ > 0 is
fully taken into account.
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Unit 3

Course Structure

• Discrete Mathematical Modelling

• Stochastic Epidemic Model without Removal

• Basic System of Equations

• Solution of the System of Equation

3.1 Discrete Mathematical Modelling

A basic three dimensional ODE-based mathematical model for exploring the fundamental features of the dis-
ease leprosy is presented. While dealing with continuous systems, a discrete cell dynamical model of leprosy
has not yet been proposed and investigated previously. In this regard, recent experimental studies suggests
that population growth rate plays a synergistic effect in describing the various aspects of the proliferation of
Mycobacterium leprae bacteria. It is necessary to understand the density-dependent growth to forecast a more
realistic population trend of M. leprae into the human body.

Introducing theta logistic growth rate instead of classical logistic growth makes the dynamics of a living
system more complicated but it adds more pliability and flexibility in terms of the key relationship of per
capita growth rate with the population density of M. leprae. Indeed, the intraspecific competition for a safe
and sustainable intracellular environment with necessary metabolic activities performed by the organism in-
side Schwann cells ensure the density dependency when abundance in the bacterial concentration increases.
Theta logistic equation is represented generally in the form of density dependence where introduction of a new
parameter θ in the growth term is necessary. Here, we denote the curvature of relationship by the parameter θ
and more formally, it is called the shape parameter. In fact, θ determines the shape of the curve of per capita
growth rate (PGR) vs. population density for the bacterial population. It plays a deterministic role on how
abruptly the per capita growth rate of M. leprae declines whenever abundance interacts with the intraspecific
competition for the available intracellular resources. The pattern of the growth response is concave for θ < 1.
The convex relationship between per capita growth rate (PGR) and population density is noted for θ > 1. For
the specific case of θ = 1, the growth term actually reflects the classical logistic growth.

23
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Also, this approach is mathematically more practical and plausible as it considers the bacteria population
not to grow unboundedly. In this Section, we have considered a three-dimensional non-linear mathematical
model with healthy Schwann cell, infected Schwann cell, and M. leprae bacteria population. We have in-
corporated a theta logistic growth in the M. leprae bacteria population due to its vital density dependence
property. We have discussed how different values of the shape parameter θ plays a key role on interpreting the
impacts for the infection and dissemination of leprosy through cell-to-cell interactions into the human body.
The stability of the system and also bifurcation analysis has been investigated in detail.

3.1.1 Model Formulation with Suitable Assumptions

Firstly, we have reconsidered the following three dimensional mathematical model.

dxh
dt

= r1xh(1−
xh
K

)− λxhMl,

dxi
dt

= λxhMl − δxi, (3.1.1)

dMl

dt
= r2Ml(1−

Ml

N
)− γxhMl + νxi.

Here, xh(t), xi(t) and Ml(t) are the concentrations of healthy Schwann cells, infected Schwann cells and
M. leprae bacteria, respectively, for any time t. Logistic growth rate is assumed for both healthy Schwann
cells and bacteria population where we have denoted the intrinsic growth rate and the carrying capacity of
the healthy Schwann cell population by r1 and K and the same for the bacteria population are denoted by
r2 and N respectively. The rate at which healthy Schwann cells getting infected by the M. leprae bacteria is
represented by λ. New free bacteria proliferates from infected cells at a rate ν. The natural mortality rate of
infected Schwann cells and the rate of bacterial clearance due to infection are represented by δ and γ, respec-
tively.

Theta logistic growth curve is more realistic and accurate than the classical logistic growth model. Here,
we incorporate the discrete version of the model (3.1.1). Based on the above perception along with the theta
logistic growth in M. leprae bacteria population using the Forward Euler Scheme for discretization, we have
revised the system (3.1.1) as follows:

xht+1 = xht + p
[
r1xht(1−

xht

K
)− λxhtMlt

]
,

xit+1 = xit + p [λxhtMlt − δxit ] , (3.1.2)

Mlt+1 = Mlt + p

[
r2Mlt

[
1−

(
Mlt

N

)θ
]
− γxhtMlt + νxit

]
.

Here, θ(> 0) describes the curvature of the relationship and the parameter p(> 0) denotes the step size.

3.1.2 Equilibria and Stability Analysis

System (3.1.2) has two equilibrium points, namely, the disease-free equilibriumE0 = (K, 0, 0) and the unique
positive interior equilibrium E∗ = (x∗h, x

∗
i ,M

∗
l ), where the values of x∗h, x

∗
i ,M

∗
l are given by

x∗i =
r1
δ
x∗h

(
1−

x∗h
K

)
, M∗

l =
r1
λ

(
1−

x∗h
K

)
and x∗h is the positive root of the following equation,
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Figure 3.1: Bifurcation diagram of the densities of xh cells, xi cells and Ml bacteria with respect to the shape
parameter θ for system (3.1.2). Values of the parameters used here are given as: r1 = 0.4, r2 = 0.1,K = 780,
N = 550, λ = 0.00036, ν = 0.31, γ = 0.0003.

g(x∗h) = r2

[
1−

{
1− r1

λN
(1−

x∗h
K

)
}θ
]
+

(
νλ

δ
− γ

)
x∗h = 0.

Here, it is important to note that both x∗i > 0 and M∗
l > 0 because x∗h < K always holds true as the density

of healthy Schwann cells can never exceed its carrying capacity K at the endemic steady state. Now, from the
second equation of system (3.1.2), it follows that the values of x∗h, x∗i , M∗

l are interconnected and actually, x∗h
can be written as

x∗h =
δ

λ

x∗i
M∗

l

. (3.1.3)

Now, as we have already obtained x∗i > 0, M∗
l > 0, we can see that equation (3.1.3) clearly ensures the

positivity of x∗h.

3.1.3 Stability of the Disease-free Equilibrium

The Jacobian matrix of the system (3.1.2) at the disease-free equilibrium point E0 = (K, 0, 0) is as follows:

J0 =

1− pr1 0 −pλK
0 1− pδ pλK
0 pν 1 + p(r2 − γK)

 . (3.1.4)

The eigenvalues of J0 are ζi for i = 1, 2, 3 where ζ1 = 1 − pr1 and ζ2, ζ3 are the roots of the following
equation:

f(ζ) = ζ2 +A1ζ +A2 = 0. (3.1.5)

Here,

A1 = p(γK + δ − r2)− 2,

A2 = 1 + p(r2 − γK − δ)− p2(λνK + δ(r2 − γK)).

Now, by analyzing the nature of the roots ζi for i = 1, 2, 3 of equation (3.1.5) according to the well-known
Jury conditions, we can conclude the following theorem about the stability situation of E0.
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Theorem 3.1.1. The disease-free equilibrium E0 = (K, 0, 0) of system (3.1.2) will be locally asymptotically
stable if |ζ1| < 1 and also if the following three conditions are satisfied:

f(1) > 0, f(−1) > 0 and A2 < 1. (3.1.6)

3.1.4 Stability Analysis of the Interior Equilibrium

Here, we will discuss the stability of the system (3.1.2) at the interior equilibrium point E∗ = (x∗h, x
∗
i ,M

∗
l ).

The Jacobian matrix of system (3.1.2) at E∗ is given by,

J (E∗) =

 M11 0 −pλx∗h
pλM∗

l 1− pδ pλx∗h
−pγM∗

l pν M33

 (3.1.7)

where,

M11 = 1 + p(r1 −
2r1
K
x∗h − λM∗

l ),

M33 = p[r2 − r2(θ + 1)(
M∗

l

N
)− γx∗h].

From the Jacobian matrix J (E∗) given by (3.1.7), we get the characteristic equation of system (3.1.2) at E∗

as follows:

|J (E∗)− ξI| = 0. (3.1.8)

Expanding equation (3.1.8), we get
ξ3 + φ1ξ

2 + φ2ξ + φ3 = 0 (3.1.9)

where,

φ1 = δp−M11 −M33 − 1,

φ2 =M11 +M33 +M11M33 − δp(M11 +M33)− p2λx∗h(ν + γM∗
l ),

φ3 =M11M33(δp− 1) + p2λx∗h(νM11 + γM∗
l ) + p3λx∗hM

∗
l (λν + γδ).

Hence, using the Jury conditions, we now obtain the following theorem which ensures the stability of E∗.
This clearly indicates the following theorem.

Theorem 3.1.2. System (3.1.2) will be locally asymptotically stable at the the interior equilibrium E∗ if and
only if

|φ1 + φ3| < 1 + φ2, |φ3| < 1 and |φ2 − φ1φ3| < |1− φ2
3|. (3.1.10)

3.1.5 Bifurcation Analysis

In this Section, we will derive conditions for which Hopf bifurcation occurs around the interior equilibrium
E∗ as θ varies in the open interval (0, 1).
Let, Ψ : (0,∞) → R be a continuously differentiable function of θ defined by

Ψ(θ) = φ1(θ)φ2(θ)− φ3(θ). (3.1.11)
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Figure 3.2: (a) Time series plot of the densities of xh, xi and Ml for θ = 0.5 for system (3.1.2). Values of
the parameters are chosen as K = 800, N = 530, λ = 0.00038, ν = 0.34, γ = 0.0003. (b) Time series plot
of the densities of xh, xi and Ml for θ = 0.3 for system (3.1.2). We choose the values of the parameters as
K = 800, N = 530, λ = 0.00038, ν = 0.34, γ = 0.0003.

For the occurrence of Hopf bifurcation there should exist a θ∗ ∈ (0, 1) such thatRe ξ(θ∗) = 0 and Im ξ(θ∗) =
ω0 > 0 where the complex conjugate pair of eigenvalues ξ(θ∗), ξ̄(θ∗) ∈ σ(θ). The transversality condition is
given by

d(Reξ(θ))

dθ

∣∣∣
θ=θ∗

̸= 0; (3.1.12)

Also, let us define σ(θ) = {ρ : D(ρ) = 0} is the spectrum of the characteristic equation (3.1.9). For the
appearance of Hopf bifurcation, it is necessary for all the other elements of σ(θ) to have negative real parts.

To prove the existence of such θ∗, we have to solve the equation for ξ(θ∗). Now using equation (3.1.11),
we can rewrite the characteristic equation (3.1.9) as

ξ3 + φ1ξ
2 + φ2ξ + φ1φ2 = 0 [ As φ1φ2 − φ3 = 0]

⇒ ξ2(ξ + φ1) + φ2(ξ + φ1) = 0

⇒ (ξ + φ1)(ξ
2 + φ2) = 0. (3.1.13)

This equation contains three roots ξi for i = 1, 2, 3 which are given by

ξ1 = +i
√
φ2,

ξ2 = −i√φ2,

ξ3 = −φ1.

So, there exists a pair of purely imaginary eigenvalues for φ1φ2 − φ3 = 0. To obtain the transversality
condition, differentiating equation (3.1.9) with respect to θ, we get that
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Figure 3.3: Phase plot of xh cells, xi cells and Ml for system (3.1.2) for the value of θ = 0.3 for system
(3.1.2). The initial values are taken as (xh, xi,Ml) = (30, 5, 15).

dξ

dθ
= −ξ

2φ̇1 + ξφ̇2 + φ̇3

3ξ2 + 2ξφ1 + φ2

∣∣∣
ξ=i

√
φ2

= −
(φ̇3 − φ2φ̇1 + i

√
φ2φ̇2)

(−2φ2 + 2i
√
φ2φ1)

=
(φ̇3

√
φ2 − φ2

√
φ2φ̇1 −

√
φ2φ1φ̇2) + i(φ1φ̇3 − φ1φ2φ̇1 + φ2φ̇2)

2
√
φ2(φ2

1 + φ2)

=
φ̇3 − (φ̇1φ2 + φ̇2φ1)

2(φ2
1 + φ2)

+ i

√
φ2(φ1φ̇3 + φ2φ̇2 − φ̇1φ1φ2)

2φ2(φ2
1 + φ2)

. (3.1.14)

Now, using (3.1.14),

Re

(
dξ

dθ

)∣∣∣
θ=θ∗

=
d(Reξ)

dθ

∣∣∣
θ=θ∗

=
φ̇3 − (φ̇1φ2 + φ̇2φ1)

2(φ2
1 + φ2)

> 0. (3.1.15)

i.e.
φ̇3 > (φ̇1φ2 + φ̇2φ1). (3.1.16)

Thus, we achieve the transversality condition (3.1.16) for which Hopf bifurcation occurs at the critical value
of θ = θ∗.
In view of the above discussion, we now present the following theorem.

Theorem 3.1.3. The system (3.1.2) exhibits Hopf bifurcation around the interior equilibrium E∗ at θ = θ∗ ∈
(0, 1) if and only if the following conditions hold:

1. Ψ(θ∗) = 0

2. φ̇3 > (φ̇1φ2 + φ̇2φ1)
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3. All the other eigenvalues have negative real parts

where ξ(θ) is purely imaginary at the critical value of θ = θ∗.

This discrete mathematical model emphasizes a special importance for the investigation of Hopf bifurcation
for our discrete-time based system (3.1.2). The bifurcation diagram of the densities of our model populations
with respect to the shape parameter θ has been depicted in Figure 3.1. From the appearance of periodic
solutions and presence of limit cycles in the phase diagram, we can confirm that system (3.1.2) undergoes a
Hopf bifurcation whenever the value of θ crosses the critical value θ = θ∗ = 0.48, which completely clarifies
our analytical findings in section 3.1.5.

In Figure 3.2, we have shown that for θ = 0.5, trajectories of the cell populations oscillate more rapidly
about 1.2×104 days and then gradually tend to proceed toward its stable region. If the value of θ is decreased
further to θ = 0.3 then behaviour of the system trajectories suddenly alters which is illustrated in Figure 3.2.
For θ = 0.3 < 0.48, the system (3.1.2) becomes unstable and periodic oscillations are observed after almost
2000 days. From this findings, it is evident that for θ > 0.48, our system is asymptotically stable at the interior
equilibrium point E∗ = (x∗h, x

∗
i ,M

∗
l ) and for θ < 0.48, Hopf-bifurcating periodic solution begins to exist.

Hence, we can interpret that our system (3.1.2) exhibits a rich dynamics if the value of θ decreases from the
value of θ = 1. Thus incorporating theta-logistic growth instead of classical logistic one for the growth rate
of M. leprae bacteria is more realistic and flexible in nature.

The phase portrait of the system populations displayed in Figure 3.3 indicates occurrence of limit cycles. In
particular, it reflects the periodic oscillatory behaviour of the densities of the model cell populations starting
from the same initial values.

3.2 Stochastic Epidemic Model Without Removal

A stochastic epidemic model without removal is a mathematical framework used to study the spread of in-
fectious diseases in populations where infected individuals do not leave the system after recovering. In this
model, recovered individuals do not acquire immunity or are immediately susceptible again.

3.3 Essence in Mathematics

The essence of using stochastic epidemic models without removal in mathematical biology lies in their ability
to capture the inherent randomness and complexity of infectious disease transmission dynamics.

1. Realism: Stochastic models more accurately reflect the unpredictable nature of disease outbreaks in real
populations by considering stochastic transmission events, population heterogeneity, and variability in
disease progression.

2. Population Heterogeneity: These models allow for the incorporation of population heterogeneity, such
as variations in contact rates, susceptibility, and infectiousness among individuals, which can signifi-
cantly impact disease dynamics.

3. Small Population Sizes: Stochastic effects can play a crucial role in determining the trajectory of an
outbreak, especially in small populations or early stages of an epidemic. Stochastic models provide
insights into the probability of different outcomes and the likelihood of rare events.

4. Effect of Interventions: Stochastic models are useful for evaluating the impact of interventions, such
as vaccination campaigns or social distancing measures, on disease transmission dynamics. They can
assess the effectiveness of interventions under different scenarios and account for uncertainty in their
implementation.
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5. Understanding Uncertainty: By explicitly accounting for randomness in the system, stochastic models
help quantify uncertainty in disease forecasts and predictions. This is crucial for decision-making and
risk assessment in public health planning and policy-making.

Overall, stochastic epidemic models without removal provide a more realistic and nuanced understanding of
disease transmission dynamics compared to deterministic models. They are valuable tools for understanding
infectious disease dynamics, assessing the effectiveness of control measures, and informing public health
interventions in real-world settings. They provide a more realistic and nuanced understanding of disease
transmission dynamics compared to deterministic models, allowing researchers to better predict and manage
disease outbreaks.

3.4 Basic System of Equation

Let us suppose that pn(t) be the probability that there are n susceptible individuals at time t in the system. Let
fj(n)∆t+ o(∆t) be the probability that the number changes from n to n+ j in the time interval (t, t+∆t).
Here, j is any positive or negative integers, and o(∆t) denotes an infinitesimal which is such that

o(∆t)

∆t
→ 0 as ∆t→ 0. (3.4.1)

The probability that there is no change in the time interval (t, t+∆t) is then given by

1−
∑
j

fj(n)∆t+ o(∆t) (3.4.2)

Using the theorem of total and compound probabilities, we get

pn(t+∆t) = pn(t)

1−∑
j

fj(n)∆t

+
∑
j

pn−j(t)fj(n− j)∆t+ o(∆t) (3.4.3)

so that
pn(t+∆t)− pn(t)

∆t
= −pn(t)

∑
j

fj(n) +
∑
j

pn−j(t)fj(n− j) +
o(∆t)

∆t
. (3.4.4)

Proceeding to the limit as ∆t→ 0, we obtain

dpn
dt

= −pn(t)
∑
j

fj(n) +
∑
j

pn−j(t)fj(n− j). (3.4.5)

Multiplying (3.4.5) by xn, summing for all n, and using the definition of the probability generating function,
namely,

ϕ(x, t) =
∞∑
n=0

pn(t)x
n, (3.4.6)

we get
∂ϕ

∂t
= −

∑
j

∑
n

fj(n)pn(t)x
n +

∑
j

∑
n

pn−j(t)fj(n− j)xn−j (3.4.7)

which gives the partial differential equation

∂ϕ

∂t
=
∑
j

(x−j − 1)fj

(
x
∂

∂x

)
ϕ(x, t). (3.4.8)
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Now we make use of the relations(
x
∂

∂x

)
ϕ =

∑
n

npn(t)x
n

(
x
∂

∂x

)2

ϕ =
∑
n

npn(t)x
n (3.4.9)

· · · · · · · · ·(
x
∂

∂x

)m

ϕ =
∑
n

nmpn(t)x
n, m = 1, 2, 3, . . .

to get

ψ

(
x
∂

∂x

)
ϕ =

∑
n

ψ(n)pn(t)x
n, (3.4.10)

where ψ(x) is any polynomial functions of x. In order to find all the probabilities, we either sove the finite
system of differential-difference equations (3.4.5) or solve the partial differential equation (3.4.8) subject to
the initial conditions

ϕ(x, 0) =
∑
n

pn(0)x
n = xn0 , (3.4.11)

where n0 is the number of susceptible in the system at t = 0.

3.4.1 Solution of the System of Equation

Initially, at t = 0, let there be n susceptibles and one infective in the system. Also, let the probability that
there are r susceptible person at time t be pr(t). We assume that the probability of one more person becoming
infected in time ∆t is

β(n+ 1− r)∆t+ o(∆t) (3.4.12)

so that

fj(r) = βr(n+ 1− r) (j = 1)

= 0 (j ̸= 1) (3.4.13)

Substituting (3.4.13) in (3.4.8), we get

∂ϕ

∂t
= β(x−1 − 1)

[
x
∂

∂x

(
n+ 1− x

∂

∂x

)
ϕ

]
⇒ ∂ϕ

∂t
= β(x−1 − 1)

[
x
∂

∂x
(n+ 1)ϕ− x

∂ϕ

∂x

]
⇒ ∂ϕ

∂t
= β(1− x)

[
(n+ 1)

∂ϕ

∂x
− ∂ϕ

∂x
− x

∂2ϕ

∂x2

]
⇒ ∂ϕ

∂t
= β(1− x)

(
n
∂ϕ

∂x
− x

∂2ϕ

∂x2

)
(3.4.14)

Since there are n susceptibles at time t = 0,

ϕ(x, t) =
∑
r

pr(0)x
r = pn(0)x

n = xn. (3.4.15)
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Substituting ϕ(x, t) =
n∑

r=0

pr(t)x
r in (3.4.14) and equating the coefficients of the various powers of x, we get

dpr
dt

= β(r + 1)(n− r)pr+1 − βr(n− r + 1)pr (r = 0, 1, 2, . . . , n− 1), (3.4.16)

dpn
dt

= −βnpn (3.4.17)

with initial conditions
pn(0) = 1, pr(0) = 0 (r = 0, 1, 2, . . . , n− 1). (3.4.18)

We can now follow either of the two procedures:

• We can solve the partial differential equation (3.4.14) subject to initial condition (3.4.15), or

• We can solve the system of n+1 differential differential equations, namely, (3.4.16) and (3.4.17), subject
to initial conditions (3.4.18). We adopt the second procedure here.

Solving (3.4.17) subject to (3.4.18), we get

pn(t) = e−βnt (3.4.19)

Equation (3.4.16) then gives
dpn−1

dt
+ 2β(n− 1)pn−1 = nβe−nβt. (3.4.20)

Integrating (3.4.20) subject to (3.4.18), we obtain

pn−1(t) = e−2β(n−1)t

t∫
0

nβe−nβte2(n−1)βtdt =
n

n− 2

[
e−nβt − e−(2n−2)βt

]
. (3.4.21)

We can proceed in this way systematically step by step to find pn−2(t), pn−3(t), . . . , p0(t).

Alternatively, we can use the Laplace transform method to solve (3.4.16) and (3.4.17) subject to (3.4.18).
Let

qr(s) =

∞∫
0

e−stpr(t) dt. (3.4.22)

Multiplying both sides of (3.4.16) and (3.4.17) by e−st and integrating over the range 0 to ∞, we get

∞∫
0

e−stdpr
dt
dt = β

∞∫
0

e−st(r + 1)(n− r)pr+1dt− βr(n− r + 1)

∞∫
0

e−stpr dt

∞∫
0

e−stdpn
dt

dt = −βn
∞∫
0

e−stpn dt.

Using the conditions given by (3.4.18), we obtain

sqr(s) = β(r + 1)(n− 1)qr+1(s)− βr(n− r + 1)qr(s), r = 0, 1, 2, . . . , n− 1, (3.4.23)

sqn(s) = 1− βnqn(s) (3.4.24)
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From (3.4.23),

qr(s) =
β(r + 1)(n− r)

[s+ r(n− r + 1)β]
qr+1(s)

=
β2(r + 1)(n− r)(r + 2)(n− r − 1)

[s+ r(n− r + 1)β][s+ (r + 1)(n− r)β]
qr+2

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

=
βn−r[(r + 1)(r + 2) · · · (r + n− r)][(n− r)!]

n−r+1∏
j=1

[
s+ j(n− j + 1)β

]
=

βn−r[ n! ][ (n− r)! ]

r!

n−r+1∏
j=1

1[
s+ j(n− j + 1)β

] (r = 0, 1, 2, . . . , n− 1) (3.4.25)

qn(s) =
1

s+ nβ
. (3.4.26)

By inverting the Laplace transforms, we can find pr(t). This can be easily done by splitting the product on the
right-hand side of Eq. (3.4.25) into partial fractions.

• If r > n/2, there are no repeated factors, and this is relatively easier.

• If r ≤ n/2, repeated factors occur, and care has to be exercised.

The mean of the distribution is found by using

m(t) =

n∑
r=1

rpr(t). (3.4.27)
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Unit 4

Course Structure

• Stochastic Epidemic Model with Multiple Infections

• Stochastic Epidemic Model with Removal

• Stochastic Epidemic Model with Removal, Immigration and Emigration

• Stochastic Epidemic Model with Carriers

• Stochastic Epidemic Model with Infectives and Carriers

4.1 Other Stochastic Epidemic Models

The Essence of Stochastic Epidemic Model with Multiple Infections

The essence of a stochastic epidemic model with multiple infections lies in its ability to capture the complexity
of infectious disease dynamics in populations where individuals can be infected with multiple strains or types
of the pathogen. Here are some key aspects that highlight the essence of such a model:

1. Realistic Representation: In many real-world scenarios, infectious diseases can involve multiple vari-
ants, strains, or types of the pathogen circulating simultaneously within a population. A stochastic
epidemic model with multiple infections provides a realistic representation of this complexity.

2. Dynamic Interactions: The model allows for dynamic interactions between different strains of the
pathogen, including competition, coexistence, and potential interactions such as cross-immunity or
cross-enhancement.

3. Emergence of New Variants: By considering the co-circulation of multiple strains, the model can
help in understanding the emergence of new variants through processes such as genetic reassortment,
recombination, or mutation.

4. Epidemiological Implications: The model enables the investigation of epidemiological implications
of multiple infections, such as the impact on disease transmission dynamics, the effectiveness of inter-
ventions, and the potential for outbreaks or pandemics.

35
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5. Public Health Strategies: Insights from the model can inform public health strategies and interven-
tions aimed at controlling the spread of infectious diseases with multiple variants, including vaccination
strategies, surveillance efforts, and targeted control measures.

6. Uncertainty and Stochasticity: Stochasticity inherent in the model accounts for uncertainty and ran-
domness in transmission events, individual behavior, and other factors affecting disease spread. This
stochastic component allows for the exploration of uncertainty in epidemic outcomes and the assessment
of intervention effectiveness under different scenarios.

7. Research and Policy Decision Support: Stochastic epidemic models with multiple infections serve
as valuable tools for researchers, policymakers, and public health officials to better understand and
mitigate the impact of complex infectious disease dynamics on public health.

In essence, a stochastic epidemic model with multiple infections provides a comprehensive framework for
studying the intricate interplay between different strains of a pathogen, offering valuable insights into disease
transmission, evolution, and control in real-world populations.

4.1.1 Epidemics with Multiple Infections

Particular case for the epidemics with multiple infections. When epidemics with multiple infection occur,
there can be j infections in the time interval (t+∆t) with the probability βjs(n+ 1− s)∆t+ o(∆t) where
j = 1, 2, . . . ,m and s be the number of susceptibles at time t and n be the initial number of susceptibles.

Here rj be the contact rates for j infections. In such a case, the basic partial differential equation will have
the form

∂ϕ

∂t
=

m∑
j=1

(x−j − 1)βj x
∂

∂x

[(
n+ 1− x

∂

∂x

)
ϕ

]

⇒ ∂ϕ

∂t
=

m∑
j=1

1

xj−1
(1− xj)βj

[
(n+ 1)

∂ϕ

∂x
− ∂ϕ

∂x
− x

∂2ϕ

∂x2

]

⇒ ∂ϕ

∂t
=

m∑
j=1

1− xj

xj−1
βj

[
n
∂ϕ

∂x
− x

∂2ϕ

∂x2

]

⇒ ∂ϕ

∂t
=

(
n
∂ϕ

∂x
− x

∂2ϕ

∂x2

)[
β1(1− x) + β2

(
1

x
− x

)
+ β3

(
1

x2
− x

)
+ · · ·+ βm

(
1

xm+1
− x

)]
This results is equivalent to (3.4.14) if one takes for m = 1 and βm = β. We can also write the system of
differential difference equations from first principle and solve those one-by-one directly or by using Laplace
transformation technique.

4.1.2 Stochastic Epidemic Model with Removal

Stochastic epidemic models with removal (or recovery) are used in mathematical biology for several reasons,
each contributing to a more comprehensive understanding of infectious disease dynamics. Here’s why they
are commonly used:

1. Realism in Modeling: Stochastic epidemic models with removal reflect the real-world dynamics of
infectious diseases, where individuals who have been infected can recover and become immune to
the disease. This reflects the natural course of many infectious diseases and allows for more realistic
modeling of disease spread and control strategies.
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2. Incorporation of Recovery Dynamics: Including a removal (or recovery) component in the model
allows for the explicit modeling of the recovery process, including the duration of infectiousness and
the rate at which individuals recover from the disease. This is essential for accurately capturing the
dynamics of disease transmission over time.

3. Assessment of Disease Control Measures: Stochastic epidemic models with removal allow researchers
to assess the impact of various disease control measures, such as vaccination, treatment, isolation, and
social distancing, on disease spread and population-level outcomes. This helps policymakers and public
health officials make informed decisions about disease control strategies.

4. Study of Endemic and Epidemic Dynamics: These models can be used to study both endemic dis-
eases (those that persist at a relatively constant level in a population) and epidemic outbreaks (sudden
increases in disease incidence). By incorporating removal dynamics, researchers can investigate the
factors influencing the transition between endemic and epidemic states and the conditions under which
outbreaks occur.

5. Exploration of Stochastic Effects: Stochastic epidemic models with removal capture the inherent
randomness and uncertainty in disease transmission and recovery processes. This allows researchers to
explore the role of stochastic effects in shaping epidemic outcomes, such as the probability of outbreak
occurrence, the size and duration of outbreaks, and the effectiveness of interventions.

6. Comparison with Empirical Data: These models can be compared with empirical data on disease
incidence, prevalence, and recovery rates to validate model predictions and improve our understanding
of disease dynamics. By calibrating model parameters to fit observed data, researchers can gain insights
into the underlying mechanisms driving disease transmission and recovery.

In summary, stochastic epidemic models with removal are used in mathematical biology to provide a re-
alistic and flexible framework for studying infectious disease dynamics, assessing disease control measures,
and understanding the complex interplay between pathogens, hosts, and the environment. They play a crucial
role in informing public health policies and interventions aimed at controlling and mitigating the impact of
infectious diseases on populations.

Let pm,n(t) be the probability that there are m susceptibles and n infectives in the population at time t. If
N is the total size of the population, then the number of persons in the removed category is N −m− n.

Let the probability of susceptible being infected in the time interval (t, t + ∆t) be βmn∆t + o(∆t), and
let the corresponding probability of one infected being removed in the same time interval be γn∆t + o(∆t).
The probability of not having any change in this time interval is

1− βmn∆t− γn∆t+ o(∆t). (4.1.1)

Now there can be m susceptibles and n infected persons at time t+∆t if there are

(i) m+ 1 susceptibles and n− 1 infectives at time t and if one person has become infected in time ∆t, or

(ii) m susceptibles and n + 1 infectives at time t and if one infected person has been removed in time ∆t,
or

(iii) m susceptibles and n infectives at time t and if there is no change in time ∆t.
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We assume, as usual, that the probability of more than one change in time ∆t is o(∆t). Then, using the
theorem of total and compound probability, we get

pm,n(t+∆t) = pm+1,n−1(t)β(m+ 1)(n− 1)∆t+ pm,n+1(t)γ(n+ 1)∆t

+pm,n(t)(1− βmn∆t− γn∆t) + o(∆t)

⇒ pm,n(t+∆t)− pm,n(t)

∆t
= β(m+ 1)(n− 1)pm+1,n−1(t)− βmnpm,n(t)

+γ(n+ 1)pm,n+1(t)− γnpm,n(t) +
o(∆t)

∆t
.

Proceeding to the limit as ∆t→ 0, we get

d

dt

[
pm,n(t)

]
= β(m+ 1)(n− 1)pm+1,n−1(t)− βmnpm,n(t)

+γ(n+ 1)pm,n+1(t)− γnpm,n(t). (4.1.2)

Initially, let there be s susceptibles and a infectives. Then we define the probability generating function by

ϕ(x, y, t) =
s∑

m=0

s+a−m∑
n=0

pm,n(t)x
myn. (4.1.3)

Multiplying (4.1.2) by xmyn and summing over n from 0 to s+ a−m and m from 0 to s, we get

∂

∂t

s∑
m=0

s+a−m∑
n=0

pm,n(t)x
nyn = βy2

s∑
m=0

s+a−m∑
n=0

pm+1,n−1(t)(m+ 1)(n− 1)xmyn−2

−βxy
s∑

m=0

s+a−m∑
n=0

pm,n(t)mnx
m−1yn−1

+γ
s∑

m=0

s+a−m∑
n=0

pm,n−1(t)(n+ 1)xmyn

−γy
s∑

m=0

s+a−m∑
n=0

pm,n(t)nx
myn−1. (4.1.4)

From (4.1.3) and (4.1.4), we get

∂ϕ

∂t
= β(y2 − xy)

∂2ϕ

∂x∂y
+ γ(1− y)

∂ϕ

∂y
. (4.1.5)

Now the equation (4.1.5) can be solved subject to the initial condition

ϕ(x, y, 0) = xsya since pm,n(0) =

{
1 ; m = s, n = a
0 ; otherwise.

(4.1.6)

An Alternative Derivation of the Partial Differential Equation

The stochastic model with removal can be represented as follows:

Event Transition Transition rate Probability
a susceptible becomes infected (m,n) → (m− 1, n+ 1) βmn βmn∆t+ o(∆t)
an infective becomes removed (m,n) → (m,n− 1) γn γn∆t+ o(∆t)
there is no change (m,n) → (m,n) −(βmn+ γn) 1− (βmn+ γn)∆t+ o(∆t)
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From the tabular representation, we get

f−1,1(m,n) = βmn, f0,−1(m,n) = γn (4.1.7)

so that the partial differential equation representing the model becomes

∂ϕ

∂t
= (x−1y1 − 1)βxy

∂2ϕ

∂x∂y
+ (x0y−1 − 1)γy

∂ϕ

∂y

⇒ ∂ϕ

∂t
= β(y2 − xy)

∂2ϕ

∂x∂y
+ γ(1− y)

∂ϕ

∂y
(4.1.8)

It is worthwhile to note here that Eq. (4.1.5) and Eq. (4.1.8) are identical.

Stochastic Epidemic Model with Removal, Immigration, and Emigration

The model can be represented as follows:

Event Transition Transition rate Probability
a susceptible is removed (m,n) → (m− 1, n+ 1) βmn βmn∆t+ o(∆t)
an infective is removed (m,n) → (m,n− 1) γn γn∆t+ o(∆t)
a new susceptible joins (m,n) → (m+ 1, n) µ µ∆t+ o(∆t)
an infective joins (m,n) → (m,n+ 1) ν ν∆t+ o(∆t)
a susceptible leaves (m,n) → (m− 1, n) δm δm∆t+ o(∆t)

This model gives

f−1,−1(m,n) = βmn, f0,−1(m,n) = γn, f1,0(m,n) = µ, f0,1(m,n) = γ, f−1,0(m,n) = δn

so that the partial differential equation representing the model becomes

∂ϕ

∂t
= (x−1y1 − 1)βxy

∂2ϕ

∂x∂y
+ (x0y−1 − 1)γy

∂ϕ

∂y
+ (xy0 − 1)µϕ

+(x0y1 − 1)νϕ+ (x−1y0 − 1)δx
∂ϕ

∂x

⇒ ∂ϕ

∂t
= β(y2 − xy)

∂2ϕ

∂x∂y
+ γ(1− y)

∂ϕ

∂y
+ µ(x− 1)ϕ+ ν(y − 1)ϕ+ δ(1− x)

∂ϕ

∂x
. (4.1.9)

In the absence of immigration and emigration, (4.1.9) gives

∂ϕ

∂t
= β(y2 − xy)

∂2ϕ

∂x∂y
+ γ(1− y)

∂ϕ

∂y
. (4.1.10)

It is worthwhile to note here that Eq. (4.1.8) and Eq. (4.1.10) are identical.

Stochastic Epidemic Model with Carriers

Here we consider a disease spread only by carriers so that our interest is in the two classes of individuals,
namely, susceptibles and carriers. Carriers are eliminated by external action. Thus we get the following
model:

Event Transition Transition rate Probability
a susceptible becomes infective (m,n) → (m− 1, n) βmn βmn∆t+ o(∆t)
a carrier is removed (m,n) → (m,n− 1) γn γn∆t+ o(∆t)
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From the tabular representation, we get

f−1,0(m,n) = βmn, f0,−1(m,n) = γn (4.1.11)

so that the partial differential equation representing the model becomes

∂ϕ

∂t
= (x−1y0 − 1)βxy

∂2ϕ

∂x∂y
+ (x0y−1 − 1)γy

∂ϕ

∂y

⇒ ∂ϕ

∂t
= βy(1− x)

∂2ϕ

∂x∂y
+ γ(1− y)

∂ϕ

∂y
(4.1.12)

If we allow immigration and emigration of susceptibles and carriers, we get

∂ϕ

∂t
= βy(1− x)

∂2ϕ

∂x∂y
+ γ(1− y)

∂ϕ

∂y
+ µ(x− 1) + ν(y − 1)ϕ+ δ(1− x)

∂ϕ

∂x
. (4.1.13)

Further Discussion on Epidemic with Carriers

In Eq. (4.1.12), we allow β and γ to be functions of t so that we get

∂ϕ

∂t
= β(t)y(1− x)

∂2ϕ

∂x∂y
+ γ(t)(1− y)

∂ϕ

∂y
. (4.1.14)

We have to solve this subject to the initial condition

ϕ(x, y, 0) = xMyN , (4.1.15)

where M and N are the initial number of susceptibles and carriers. We try the solution

ϕ(x, y, t) =
n∑

r=0

Mcr(x− 1)rfr(y, t). (4.1.16)

Substituting (4.1.16) in (4.1.14), we obtain
n∑

r=0

Mcr(x− 1)r
{
∂fr
∂t

+ [(rβ + γ)y − γ]
∂fr
∂y

}
= 0 (4.1.17)

Since the polynomials Pr(x) =Mcr(x− 1)r, r = 0, 1, 2, . . . , n are linearly independent, we get

∂fr
∂t

+ [(rβ + γ)y − γ]
∂fr
∂y

= 0, (r = 0, 1, 2, . . . , n) (4.1.18)

For each r, this is a linear partial differential equation of the first order. The auxiliary equations for solving
(4.1.18) are

dt

1
=

dy

(rβ + γ)y − γ
=
df

0
. (4.1.19)

An intermediate integral is obtained by solving

dy

dt
− (rβ + γ)y = −γ (4.1.20)

so that if Fr(t) =

t∫
0

[rβ(t) + γ(t)] dt, the solution of (4.1.20) is

fr(y, t) = ψr

ye−Fr(t) +

t∫
0

γ(t)e−Fr(t) dt

 . (4.1.21)
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Stochastic Epidemic Model with Infectives and Carriers

A stochastic epidemic model with infectives and carriers is a mathematical framework used to study the spread
of infectious diseases within a population, taking into account both individuals who are actively infectious (in-
fectives) and those who are carriers (asymptomatic or subclinical individuals who can transmit the disease).
This type of model is particularly useful for understanding the dynamics of diseases where individuals may
be infectious before showing symptoms.

A common way to represent the dynamics of such a model is through a transition table, which outlines the
possible transitions between different states of individuals within the population. The states typically include
susceptible individuals, infectives, carriers, and recovered individuals. Each transition is associated with a
certain rate, representing the probability of that transition occurring within a given time interval. Let m, n, p
denote the number of susceptibles, infectives and carriers respectively. A susceptible can become infective by
contact with either an infected or a carrier. The result is represented in the following model:

Event Transition Transition rate Probability
a susceptible becomes an infective (m,n, p) → (m− 1, n+ 1, p) βmn βmn∆t+ o(∆t)
a susceptible becomes an infective (m,n, p) → (m− 1, n+ 1, p) γmp γmp∆t+ o(∆t)
due to contact with a carrier
a carrier is removed (m,n, p) → (m,n, p− 1) δp δp∆t+ o(∆t)

From the tabular representation, we get

f−1,1,0(m,n, p) = βmn+ γmp, f0,0,−1(m,n, p) = γp (4.1.22)

so that the partial differential equation representing the model becomes

∂ϕ

∂t
= (x−1y1z0 − 1)

(
βxy

∂2ϕ

∂x∂y
+ xz

∂2ϕ

∂x∂z

)
+ (x0y0z−1 − 1)δz

∂ϕ

∂z

⇒ ∂ϕ

∂t
= (y − x)

(
βy

∂2ϕ

∂x∂y
+ γz

∂2ϕ

∂x∂z

)
+ δ(1− z)

∂ϕ

∂z
. (4.1.23)
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Unit 5

Course Structure

• Basic model for inheritance of genetic characteristic

• Hardly Wienberg law

• Solved Examples on the Application of the Hardy-Weinberg Law

5.1 Introduction

Population genetics deals with genetic differences within and between populations, and is a part of evolu-
tionary biology. Studies in this branch of biology examine such phenomena as adaptation, speciation, and
population structure. Population genetics was a vital ingredient in the emergence of the modern evolutionary
synthesis. Traditionally a highly mathematical discipline, modern population genetics encompasses theoreti-
cal, lab, and field work. Population genetic models are used both for statistical inference from DNA sequence
data and for proof/disproof of concept.

5.2 Basic Model for Inheritance

The basic model for the inheritance of genetic characteristics is provided by Gregor Mendel’s laws of in-
heritance, which laid the foundation for modern genetics. Mendel conducted experiments with pea plants in
the mid-19th century and formulated several principles that describe how traits are passed from parents to
offspring.

The key components of Mendel’s model include:

• Dominance and Recessiveness: Mendel observed that certain traits, such as tallness and yellow seed
color in pea plants, appeared to dominate over other traits, such as shortness and green seed color.
He referred to the dominant trait as the one that was expressed in the offspring’s phenotype (physical
appearance), while the recessive trait was not expressed when paired with the dominant trait.

• Segregation: Mendel proposed that each individual possesses two alleles (variants of a gene) for a
particular trait, one inherited from each parent. During gamete formation (the process of producing sex
cells), these alleles segregate randomly into separate gametes. As a result, each gamete carries only one
allele for each trait.

43
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• Independent Assortment: Mendel also observed that the inheritance of one trait is independent of the
inheritance of other traits. In other words, the alleles for different traits assort independently during
gamete formation, leading to a variety of possible combinations in the offspring.

• To represent these principles mathematically, geneticists often use Punnett squares and probability cal-
culations. Punnett squares are grids that show all possible combinations of alleles from two parents and
predict the genotypes (genetic makeup) and phenotypes of their offspring.

For example, if we consider a single trait controlled by a pair of alleles, where capital letters represent
dominant alleles and lowercase letters represent recessive alleles, we can use a Punnett square to illustrate
the possible outcomes of a cross between two heterozygous individuals (individuals with different alleles for
the trait). In this example, there is a 3 : 1 ratio of dominant to recessive phenotypes among the offspring,
reflecting Mendel’s principle of dominance.

Overall, Mendel’s model provides a basic framework for understanding how genetic characteristics are
inherited and passed from one generation to the next. While modern genetics has uncovered more complexity
in inheritance patterns, Mendel’s laws remain fundamental principles in the field of genetics.

Table 5.1: Punnett square for a single genetic trait

Dominant allele Recessive allele
Dominant allele DD Dd
Recessive allele Dd dd

Genetic Matrices

In genetics, a genetic matrix is essentially a table or grid used to predict the outcomes of a cross between
two individuals, usually in terms of their genetic makeup and the traits they carry. It’s a tool to visualize and
understand how genetic traits are inherited from parents to offspring.

Here’s a simplified example of a genetic matrix for a single genetic trait, such as flower color in pea plants,
where capital letters represent dominant alleles and lowercase letters represent recessive alleles:

Pp pp
PP Pp Pp
Pp Pp pp

In this example:

• The letters represent the alleles for the flower color trait.

• ”P ” represents the dominant allele for purple flowers.

• ”p” represents the recessive allele for white flowers.

• The rows and columns represent the alleles contributed by each parent.

• The cells in the matrix show the possible genotype combinations and their probabilities in the offspring.
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So, if you cross two plants heterozygous for flower color (Pp), you’d expect a 1 in 4 chance of getting a
homozygous dominant offspring (PP ), a 2 in 4 chance of getting a heterozygous offspring (Pp), and a 1 in 4
chance of getting a homozygous recessive offspring (pp).

This is a basic example, and genetic matrices can become much more complex when considering multiple
traits or multiple alleles for a single trait. Additionally, factors like genetic linkage, incomplete dominance, or
codominance can add further complexity to the matrix. But the basic principle remains the same: using a grid
to predict the possible outcomes of genetic crosses.

Each characteristic (e.g., height, colour of the eye and type of blood) of an individual is determined by two
genes, either of these being received from each of the parents. Each gene may be in two forms, the dominant
G or the recessive g. Thus an individual may belong to one of the following three genotypes:

(i) (G,G) which is called dominant and denoted by D.

(ii) (G, g) or (g,G) which is termed hybrid and denoted by H .

(iii) (g, g) which is called recessive and denoted by R.

When two individuals mate, the offspring gets from each parent either of the two forms of genes with the
same probability 1/2. Thus, if (G,G) is crossed with (G, g), there are four possibilities:

(i) The offspring gets the first G from the first parent and G from the second parent. The probability of this
is 1/2× 1/2 = 1/4, and the offspring is D.

(ii) The offspring gets the first G from the first parent and g from the second parent. The probability of this
is 1/2× 1/2 = 1/4, and the offspring is H .

(iii) The offspring gets the second G from the first parent and G from the second parent. The probability of
this is 1/2× 1/2 = 1/4, and the offspring is D.

(iv) The offspring gets the second G from the first parent and g from the second parent. The probability of
this is 1/2× 1/2 = 1/4, and the offspring is H .

Thus the probabilities of the offspring being D,H,R are 1/2, 1/2, 0 respectively. Arguing in the same
way, we get the results given in below which gives the probabilities of the offspring being D, H, R when
these are crossed with D, H, R, in that order.

Results of Crossing by Two Genotypes
D H R

D H R D H R D H R
D 1 0 0 1/2 1/2 0 0 1 0
H 1/2 1/2 0 1/4 1/2 1/4 0 1/2 1/2
R 0 1 0 0 1/2 1/2 0 0 1

The three fundamental genetic matrices which refer to mating with D, H, R, respectively, are obtained as
follows:

A =

 1 0 0
1/2 1/2 0
0 1 1

 , B =

1/2 1/2 0
1/4 1/2 1/4
0 1/2 1/2

 , C =

0 1 0
0 1/2 1/2
0 0 1

 . (5.2.1)
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Each of these matrices is a stochastic matrix since all of its elements are non-negative and the row sums are
unity (this is so because in each case the probability that the offspring is a D or H or R is unity).

Let us consider a population in which the probabilities of a person being D, H , R are p, q, r, respectively,
so that p+ q + r = 1. We shall call P = (p, q, r) the probability vector of the population.

If each individual in this population is mated with a dominant, then the first matrix gives:

the probability of the dominant (D) offspring as

1 · p+ 1

2
· q + 0 · r = p+

1

2
q; (5.2.2)

the probability of the hybrid (H) offspring as

0 · p+ 1

2
· q + 1 · r = 1

2
q + r; (5.2.3)

the probability of the recessive (R) offspring as

0 · p+ 0 · q + 0 · r = 0. (5.2.4)

Thus the probability vector for the first generation, on population being mated with pure dominants, is ob-
tained by taking the product of the row matrix P with the first matrix A, i.e., it is given by PA. Similarly, the
probability vector for the first generation when population with the probability vector P is mated with pure
hybrids (pure recessives) is given by PB (PC).

If the original population is mated with dominants, hybrids, dominants, recessives, hybrids, in that order,
the probability vector for the fifth generation is given by PABACB.

When mated with dominants, the first generation has the same probability vector as the original probability

vector if PA = P i.e., if
(
p+

1

2
q,

1

2
q + r, 0

)
= (p, q, r). In other words, if p = 1, q = 0, r = 0, then

PA = P ⇒ P = (1, 0, 0). (5.2.5)

Similarly,

PB = P ⇒ P =

(
1

4
,
1

2
,
1

4

)
, (5.2.6)

PC = P ⇒ P = (0, 0, 1) . (5.2.7)

Now, if the population with the probability vector P is crossed with pure dominant n times, the probability
vector of the n-th generation is given by PAn. To find this,An has to be determined, and this is easily done by

first diagonalising the matrix A. Thus, since the eigenvalues of the matrix A are easily found to be
(
1,

1

2
, 0

)
and the corresponding eigenvectors are (1, 1, 0), (0, 1, 2) and (0, 0, 1), we can write

A =

1 0 0
1 1 0
1 2 1

1 0 0
0 1/2 0
1 0 0

 1 0 0
−1 1 0
1 −2 1

 = S ∧ S−1 (5.2.8)
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so that

An = (S ∧ S−1)(S ∧ S−1) · · · (S ∧ S−1) = S ∧n S−1

=

1 0 0
1 1 0
1 2 1

1 0 0
0 1/2n 0
1 0 0

 1 0 0
−1 1 0
1 −2 1


=

 1 0 0
1− 1

2n
1
2n 0

1− 1
2n−1

1
2n−1 0

 , (5.2.9)

Therefore,
PAn =

(
1− q

2n
− r

2n−1
,
q

2n
+

r

2n−1
, 0
)

(5.2.10)

As n tends to infinity, PAn approaches to the vector (1, 0, 0).

Thus, if any population is mated at random with only dominants successively, we find that (i) the recessives
never appear, (ii) the proportion of hybrids tends to zero, and (iii) the proportion of dominants tends to unity.

Even if the original population consists of only recessives, we shall have a proportion 15/16 of dominants
in the fifth generation and a proportion of 511/512 of dominants in the tenth generation. Thus, if dominants
are desired, we can transform even a breed of recessives into a breed of dominants in a number of generations
by repeated mating with dominants.

Exercise 5.2.1. 1. Prove that PAB ̸= PBA, PBC ̸= PCB, and PCA ̸= PAC. What conclusions
can you draw?

2. Suppose an individual of unknown genotype is crossed with a recessive and the offspring is again
crossed with a recessive, and so on. Show that, after a long period of such breeding, it is almost certain
that the offspring will be a recessive genotype.

3. Find An, Bn, Cn, PAn, PBn, PCn, and consider the limiting cases when n approaches infinity. Do
the limiting vector depend on P ? Interpret the results obtained.

4. Find P (AB)n, and interpret the limit of this as n tends to infinity.

5.3 Hardy-Weinberg Law

The Hardy-Weinberg law, also known as the Hardy-Weinberg equilibrium, is a fundamental principle in pop-
ulation genetics that describes the relationship between allele frequencies and genotype frequencies in a pop-
ulation that is not evolving. It provides a baseline against which we can measure evolutionary changes in
populations over time.

5.3.1 Assumptions

The Hardy-Weinberg law is based on several key assumptions:

1. Random Mating: Individuals in the population mate randomly with respect to the gene in question.



48 UNIT 5.

2. Large Population Size: The population is infinitely large, or at least large enough to prevent genetic
drift.

3. No Mutation: There are no new mutations occurring in the population.

4. No Migration: There is no migration of individuals into or out of the population.

5. No Natural Selection: There is no natural selection acting on the gene in question.

5.3.2 Equations

The Hardy-Weinberg law is described by two equations:

Allele Frequency Equation

The frequency of alleles in a population can be described by the equation:

p+ q = 1

where:

p = frequency of the dominant allele

q = frequency of the recessive allele

5.3.3 Genotype Frequency Equation

The frequency of genotypes in a population can be described by the equation:

p2 + 2pq + q2 = 1

where:

p2 = frequency of homozygous dominant individuals

2pq = frequency of heterozygous individuals

q2 = frequency of homozygous recessive individuals

5.3.4 Applications

The Hardy-Weinberg law has several important applications in population genetics, including:

• Estimating allele frequencies in populations.

• Detecting evolutionary forces such as genetic drift, gene flow, mutation, and natural selection.

• Testing for deviations from expected genotype frequencies, which may indicate the presence of evolu-
tionary forces.
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5.3.5 Conclusion

The Hardy-Weinberg law provides a useful framework for understanding how allele and genotype frequencies
are maintained in populations over time in the absence of evolutionary forces. It serves as a null hypothesis
against which we can test for evolutionary change.

Consider random mating or panmixia in a population with probability vector P . The probability vectors for
mating with D, H, R are given by PA, PB, PC, but the relative proportions of D, H, R in the population
are p, q, r so that the probability vector for the first generation, say F1, is given by

p PA+ q PB + r PC =

[(
p+

1

2
q

)2

, 2

(
p+

1

2
q

)(
r +

1

2
q

)
,

(
r +

1

2
q

)2
]

= (p′, q′, r′) = P ′ (say). (5.3.1)

The three components of the probability vector for the second generation, say F2, are then given by

(
p′ +

1

2
q′
)2

=

[(
p+

1

2
q

)2

+
1

2
· 2
(
p+

1

2
q

)(
r +

1

2
q

)]2

=

(
p+

1

2
q

)2(
p+

1

2
q + r +

1

2
q

)2

=

(
p+

1

2
q

)2

= p′, (5.3.2)

2

(
p′ +

1

2
q′
)(

r′ +
1

2
q′
)

= 2

[(
p+

1

2
q

)2

+

(
p+

1

2
q

)(
r +

1

2
q

)]

×

[(
r +

1

2
q

)2

+

(
p+

1

2
q

)(
r +

1

2
q

)]

= 2

[(
p+

1

2
q

)(
p+

1

2
q + r +

1

2
q

)(
r +

1

2
q

)(
r +

1

2
q + p+

1

2
q

)]
= 2

(
p+

1

2
q

)(
r +

1

2
q

)
= q′, (5.3.3)(

r′ +
1

2
q′
)2

=

[(
r +

1

2
q

)2

+

(
p+

1

2
q

)(
r +

1

2
q

)]2

=

(
r +

1

2
q

)2(
r +

1

2
q + p+

1

2
q

)2

=

(
r +

1

2
q

)2

= r′, (5.3.4)

Thus the probability vector for F2 is the same as that for F1. This shows that, due to random mating, the
probability vectors for the first generation and all succeeding generations are same. This is known as the
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Hardy-Weinberg law, called after the mathematician G. H. Hardy and the geneticist W. Weinberg.

In any population in which random mating takes place, we have P = P ′ so that

p =

(
p+

1

2
q

)2

, q = 2

(
p+

1

2
q

)(
r +

1

2
q

)
, r =

(
r +

1

2
q

)2

. (5.3.5)

Simplifying (5.3.5), we get

p = (1−
√
r)2, q = 2

√
r(1−

√
r), r = r. (5.3.6)

The ratios p : q : r in a genetically stable population are known as Hardy-Weinberg ratios. There is only
one parameter r that depends on the particular gene under consideration.

Note: We may note that the Hardy-Weinberg law holds for a gene if the mating is random with respect to
that gene. Thus, in human populations, the law is likely to hold for genes for blood groups, since, in general,
people do not worry about blood groups when marrying, but the law may not hold for the gene determining
heights since tall people, in general, tend to marry tall people.

Note: If we can identify the three genotypes for a particular gene in a population and if their relative pro-
portions verify (5.3.6), then it confirms that mating is likely to be random for that gene. If (5.3.6) can not be
verified, it may be due to non-random mating or differential mortality of dominant and recessive genes.

Note: In general, however, it is not easy to distinguish between the three genotypes. If G is dominant to
g, then individuals having (G,G) (G, g) have the same appearance and belong to the same phenotype. Thus,
while there are three genotypes, only two distinct phenotypes exist, namely, {(G,G), (G, g) } and {(g, g},
with respect to a gene.

The individuals with (G,G), (g, g) are said to be homozygous and the individual with (G, g) are said to be
heterozygous.

The Hardy-Weinberg law can also be stated in terms of gene frequencies. If P, Q are the relative gene
frequencies in a population and (p, q, r) are the relative frequencies of (G,G), (G, g) and (g, g), then it is
easily seen that

P = p+
1

2
q, Q =

1

2
q + r. (5.3.7)

Knowing p, q, r, we can find P and Q uniquely, but knowing P and Q, we cannot find p, q, r uniquely.
However, for random mating, (5.3.6) and (5.3.7) give

P = 1−
√
r, Q =

√
r. (5.3.8)

Now, in any generation, if the relative frequencies of genes G and g are P and Q provided P +Q = 1, in both
males and females, then, in random mating, the probability of an offspring getting G from both parents is P 2,
the probability of its getting G from one parent and g from the other parent is 2PQ, and the probability of its
getting g from both parent is Q2, so that the proportions in F1 are

(G,G) : P 2, (G, g) : 2PQ, (g, g) : Q2. (5.3.9)

From (5.3.2) - (5.3.4) and (5.3.7), wet the Hardy-Weinberg ratio. The relative gene frequencies in F1 are

G : 2P 2 + 2PQ = 2P (P +Q) = 2P, g : 2PQ+ 2Q2 = 2Q(P +Q) = 2Q (5.3.10)
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so that the proportions of genes are the same as in the original population and F2 has the ratios given by
(5.3.9). This again confirms the Hardy-Weinberg law.

The Hardy-Weinberg principle is a fundamental concept in population genetics that describes the relation-
ship between allele frequencies and genotype frequencies in a population that is not evolving. Here, some
solved examples regarding this are presented.

Solved Examples on the Application of the Hardy-Weinberg Law

Example 1:

In a population of rabbits, the frequency of the dominant allele (A) for coat color is 0.6, and the frequency
of the recessive allele (a) is 0.4. According to the Hardy-Weinberg principle, what are the expected genotype
frequencies?

Solution: Let p = frequency of allele A = 0.6
Let q = frequency of allele a = 0.4

According to the Hardy-Weinberg equation:

Genotype frequency of AA = p2 = (0.6)2 = 0.36

Genotype frequency of Aa = 2pq = 2× 0.6× 0.4 = 0.48

Genotype frequency of aa = q2 = (0.4)2 = 0.16

So, the expected genotype frequencies are 0.36 (AA), 0.48 (Aa), and 0.16 (aa).

Example 2:

In a population of 500 individuals, 250 are homozygous dominant (AA), 200 are heterozygous (Aa), and 50
are homozygous recessive (aa). What are the allele frequencies?
Solution:

Total number of individuals = 500

Frequency of AA = 250
500 = 0.5

Frequency of Aa = 200
500 = 0.4

Frequency of ‘aa = 50
500 = 0.1

Allele frequencies:

Frequency of A = p = frequency of AA+ 0.5× frequency of Aa = 0.5 + 0.5× 0.4 = 0.7

Frequency of a = q = frequency of aa+ 0.5× frequency of Aa = 0.1 + 0.5× 0.4 = 0.3

Example 3:

In a population of 1000 individuals, 360 are homozygous dominant (AA), 480 are heterozygous (Aa), and
160 are homozygous recessive (aa). What are the allele frequencies?

Solution:

Total number of individuals = 1000

Frequency of AA = 360
1000 = 0.36

Frequency of Aa = 480
1000 = 0.48

Frequency of aa = 160
1000 = 0.16
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Allele frequencies:

Frequency of A = p = frequency of AA+ 0.5× frequency of Aa = 0.36 + 0.5× 0.48 = 0.6

Frequency of a = q = frequency of aa+ 0.5× frequency of Aa = 0.16 + 0.5× 0.48 = 0.4

Example 4:

In a population of butterflies, the frequency of the recessive allele for wing color (b) is 0.3. According to the
Hardy-Weinberg principle, what is the frequency of the homozygous dominant genotype (BB)?

Solution: Let q = frequency of allele b = 0.3.
Since, p+ q = 1, p = 1− q = 1− 0.3 = 0.7,

According to the Hardy-Weinberg equation:

Genotype frequency of BB = p2 = (0.7)2 = 0.49.

So, the frequency of the BB genotype is 0.49.

Example 5:

In a population of 800 birds, 400 are homozygous for a particular gene (AA), and 200 are heterozygous (Aa).
What are the allele frequencies?

Solution:

Total number of individuals = 800

Frequency of AA =
400

800
= 0.5

Frequency of Aa =
200

800
= 0.25

Frequency of aa can be calculated as1− 0.5− 0.25 = 0.25

Allele frequencies:

Frequency of A = p = frequency of AA+ 0.5× frequency of Aa = 0.5 + 0.5× 0.25 = 0.625

Frequency of a = q = frequency of aa+ 0.5× frequency of Aa = 0.25 + 0.5× 0.25 = 0.375

Example 6:

In a population of 5000 individuals, 2250 are homozygous recessive (bb). If the population is in Hardy-
Weinberg equilibrium, what is the frequency of the dominant allele (B)?

Solution: Since 2250 individuals are homozygous recessive (bb), q2 = 2250
5000 = 0.45.

Solving for q, we find q =
√
0.45 ≈ 0.67.

Since p+ q = 1, p = 1− q = 1− 0.67 = 0.33
So, the frequency of the dominant allele (B) is 0.33.

Example 7:

In a population of 2000 individuals, 900 are heterozygous (Aa) for a particular gene. What are the expected
genotype frequencies in the population?

Solution: Similar to Example 1, you can use the Hardy-Weinberg equation to calculate the expected geno-
type frequencies using the allele frequencies.
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Example 8:

In a population of plants, 25% are homozygous dominant (AA), 50% are heterozygous (Aa), and 25% are
homozygous recessive (aa). What are the allele frequencies?

Solution: Similar to Example 2, you can calculate the allele frequencies using the given genotype frequen-
cies.

Example 9:

In a population of 3000 individuals, 700 are homozygous dominant (AA), and 500 are homozygous recessive
(aa). What is the frequency of the heterozygous genotype (Aa)?

Solution: Similar to previous examples, you can use the given genotype frequencies to calculate the fre-
quency of the heterozygous genotype (Aa).

Example 10:

In a population of mice, 70% are homozygous dominant (AA) for a particular trait. What is the frequency of
the recessive allele (a)?

Solution: Since 70% are homozygous dominant (AA), p2 = 0.7.
Solving for p, we find that p =

√
0.7 ≈ 0.84.

Since p+ q = 1, q = 1− p = 1− 0.84 = 0.16
So, the frequency of the recessive allele (a) is 0.16.
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Unit 6

Course Structure

• Correlation between Genetic Composition of Siblings

• Bayes Theorem and Its Applications in Genetics

6.1 Correlation between Genetic Composition of Siblings

As an example of the use of our basic model, we find the correlation between genetic composition of off-
springs from the same parents, assuming random mating and a genetically stable population. In the original
population, let the proportion of dominants, hybrids and recessives be given by (5.3.6), i.e.,

p = (1−
√
r)2, q = 2

√
r(1−

√
r), r = r. (6.1.1)

Let Y1, Y2 be the offspring from parents X1, X2. Then using the theorems of total and compound probabili-
ties, we get

P (Y1 = D,Y2 = D) = P (Y1 = D,Y2 = D;X1 = D,X2 = D)

+P (Y1 = D,Y2 = D;X1 = D,X2 = H)

+P (Y1 = D,Y2 = D;X1 = H,X2 = D)

+P (Y1 = D,Y2 = D;X1 = H,X2 = H)

= P (X1 = D,X2 = D)P (Y1 = D,Y2 = D/X1 = D,X2 = D)

+P (X1 = D,X2 = H)P (Y1 = D,Y2 = D/X1 = D,X2 = H)

+P (X1 = H,X2 = D)P (Y1 = D,Y2 = D/X1 = H,X2 = D)

+P (X1 = H,X2 = H)P (Y1 = D,Y2 = D/X1 = H,X2 = H)

= p2 · 1 + pq · 1
2
· 1
2
+ pq · 1

2
· 1
2
+ q2 · 1

4
· 1
4

= p2 +
1

2
pq +

1

16
q2

= (1−
√
r)4 +

√
r(1−

√
r)3 +

1

4
r(1−

√
r)2

=
1

4
(1−

√
r)2(2−

√
r)2. (6.1.2)
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Similarly,

P (Y1 = D,Y2 = H) = P (Y1 = H,Y2 = D) =
1

2

√
r(1−

√
r)2(2−

√
r), (6.1.3)

P (Y1 = D,Y2 = R) = P (Y1 = R, Y2 = D) =
1

4
r(1−

√
r)2, (6.1.4)

P (Y1 = H,Y2 = R) = P (Y1 = R, Y2 = H) =
1

2
r(1−

√
r)(1 +

√
r), (6.1.5)

P (Y1 = H,Y2 = H) =
√
r(1−

√
r)(1 +

√
r − r), (6.1.6)

P (Y1 = R, Y2 = R) =
1

4
r(1 +

√
r)2, (6.1.7)

If we assign arbitrary values 1, 0, - 1 to D, H and R, receptively, we get the bivariate probability distribution
as follows:

Y1 Y2 Probability

1 1
1

4
(1−

√
r)2(2−

√
r)2

- 1 - 1
1

4
r(1 +

√
r)2

0 0
√
r(1−

√
r)(1 +

√
r − r)

1 0
1

2

√
r(1−

√
r)2(2−

√
r)

0 1
1

2

√
r(1−

√
r)2(2−

√
r)

1 - 1
1

4
r(1−

√
r)2

- 1 1
1

4
r(1−

√
r)2

0 - 1
1

2
r(1−

√
r)(1 +

√
r)

- 1 0
1

2
r(1−

√
r)(1 +

√
r)

The marginal distributions of Y1 and Y2 are the same and are given by

Y1 or Y2 1 0 - 1
Probability (1−

√
r)2 2

√
r(1−

√
r) r

From these we easily deduce

Y 1 = Y 2 = 1− 2
√
r, (6.1.8)

σ2Y1
= σ2Y2

= 2
√
r(1−

√
r), (6.1.9)

cov(Y1, Y2) =
√
r(1−

√
r), (6.1.10)

ρY1,Y2 =
1

2
. (6.1.11)

Thus, the correlation coefficient comes out to be independent of the value of r, i.e., it is the same for all genes.

6.2 Bayes Theorem and Its Applications in Genetics

At any time, we have some hypotheses to explain genetic events and probabilities associated with these hy-
potheses to measure our degrees of confidence in the hypotheses. These probabilities are called a priori



6.2. BAYES THEOREM AND ITS APPLICATIONS IN GENETICS 57

probabilities. The occurrence of an event changes our degrees of confidence in the sense that the probabilities
of some hypotheses may increase and of other may decrease. The new probabilities are called a posteriori
probabilities. Bayes theorem connects a posteriori and a priori probabilities.

LetH1, H2, . . . ,Hn be nmutually exclusive hypothesis, and let their a priori probabilities beP (H1), P (H2),
. . . , P (Hn). Now let an event A happen, and let the probabilities of happening of this event on the basis of
various hypotheses be given by P (A/H1), P (A/H2), . . . , P (A/Hn). Our object is to find the posteriori
probabilities P (H1/A), P (H2/A), . . . , P (Hn/A) in terms of the known probabilities P (Hi), P (A/Hi), i =
1, 2, . . . , n.

From the theorem of compound probability,

P (AHi) = P (Hi)P (A/Hi) = P (A)P (Hi/A)

so that

P (Hi/A) =
P (Hi)P (A/Hi)

P (A)
, i = 1, 2, . . . , n. (6.2.1)

SinceH1, H2, . . . ,Hn are mutually exclusive and exhaustive hypotheses under consideration, we have, by the
theorem of total probability,

P (A) = P (AH1) + P (AH2) + . . .+ P (AHn) =

n∑
j=1

P (AHj) =

n∑
j=1

P (Hj)P (A/Hj). (6.2.2)

From (6.2.1) and (6.2.2), we get

P (Hi/A) =
P (Hi)P (A/Hi)

n∑
j=1

P (Hj)P (A/Hj)

(6.2.3)

which is the required Bayes theorem.

Illustration - I

As an illustration of Bayes theorem in genetics, we investigate the probability that two blue-eyed boy twins
are monovular (i.e., from the same egg). Here we have two possible hypothesis:

(i) H1 : Both are from the same egg, i.e., both are monovular;

(ii) H2 : Both are from the different eggs, i.e., both are binovular.

To find P (H1) and P (H2), we remember that observation that 32 percent of all twin pairs are of unlike sex;
of the remaining 68 percent, half are expected to be monovular and the other half are expected to be binovular
so that

P (H1) =
0.36

0.68
=

9

17
, P (H2) =

0.32

0.68
=

8

17
. (6.2.4)

To find P (A/H1) and P (A/H2), we assume that mating is random and is genetically stable so that the
proportions of D, H, R are given by

p = (1−
√
r)2, q = 2

√
r(1−

√
r), r = r (6.2.5)



58 UNIT 6.

Also, blue eyes are known to arise due to a recessive gene so that:

P (A/H1) = probability that both boys are recessive when they are from the same egg

= r, (6.2.6)

P (A/H2) = probability that both boys are recessive when they are from the different egg

= P (parents are Bb, Bb, and both children are bb)

+P (parents are Bb, bb, and both children are bb)

+P (parents are bb, Bb, and both children are bb)

+P (parents are bb, bb, and both children are bb)

= q2 · 1
4
· 1
4
+ qr · 1

2
· 1
2
+ qr · 1

2
· 1
2
+ r2 · 1 · 1

=
r(1−

√
r)2

4
+
r
√
r(1−

√
r)

1
+ r2

=
1

4
r(1 + r − 2

√
r + 4

√
r − 4r + 4r)

=
1

4
r(1 +

√
r)2. (6.2.7)

Using (6.2.3), (6.2.4), (6.2.6) and (6.2.7), we can find P (H1/A) and P (H2/A).

Illustration - II

To illustrate another application of Bayes theorem, we consider the following problem. For mating of two
dominant-looking individuals, a dominant-looking individual is obtained. What is the probability that both
the parents are real dominants?

There are four possible hypotheses about parents:

H1 : parents are GG,GG,

H2 : parents are GG,Gg,

H3 : parents are Gg,GG,

H4 : parents are Gg,Gg.

The event A is that the offspring is GG or Gg, so that

P (A/H1) = 1, P (A/H2) = 1, P (A/H3) = 1, P (A/H4) =
3

4
.

Also, in the absence of any knowledge, we make use of Bayes hypotheses which postulates that all the four
hypotheses have the same a priori probability so that

P (H1) =
1

4
, P (H2) =

1

4
, P (H3) =

1

4
, P (H4) =

1

4
.

Therefore, on making use of (6.2.3), we get

P (H1/A) =
1
4 · 1

1
4 · 1 + 1

4 · 1 + 1
4 · 1 + 1

4 · 3
4

=
4

15
.
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Illustration - III : Genetic Testing for a Rare Disease

Suppose a rare genetic disease affects 1 in 10,000 individuals in the population. A genetic test for this
disease has a sensitivity of 95% (probability of a positive test result given that the individual has the disease)
and a specificity of 99% (probability of a negative test result given that the individual does not have the
disease).

If an individual tests positive for the disease, what is the probability that they actually have the disease?
Solution:
Let’s denote the following events:
- A: Individual has the disease. - B: Individual tests positive for the disease.
We are asked to find P (A|B), the probability that the individual has the disease given a positive test result.
Using Bayes’ theorem:

P (A|B) =
P (B|A)× P (A)

P (B)

We have:
- P (B|A) = 0.95 (sensitivity) - P (A) = 1/10, 000 = 0.0001 (prevalence of the disease) - P (B|A′) =

1−P (Negative test|A′) = 1−0.99 = 0.01 (complement of specificity) - P (A′) = 1−P (A) = 1−0.0001 =
0.9999 (complement of prevalence)

P (B) = P (B|A)× P (A) + P (B|A′)× P (A′)

P (B) = (0.95× 0.0001) + (0.01× 0.9999)

P (B) = 0.000095 + 0.009999

P (B) = 0.010094

Now, we can calculate P (A|B):

P (A|B) =
0.95× 0.0001

0.010094

P (A|B) ≈ 0.0009414

So, the probability that an individual has the disease given a positive test result is approximately 0.09414%.

Illustration - IV : DNA Evidence in Criminal Investigations

Suppose a DNA test is conducted in a criminal investigation. The DNA evidence matches the DNA profile
of the suspect. However, it is known that the DNA profile occurs in 1 out of 1000 individuals in the population.

Given that the suspect is known to be in the group that matches the DNA profile, what is the probability
that the suspect is actually guilty?

Solution:
Let’s denote the following events:
- G: Suspect is guilty. - M : Suspect’s DNA matches the DNA evidence.
We are asked to find P (G|M), the probability that the suspect is guilty given a DNA match.
Using Bayes’ theorem:

P (G|M) =
P (M |G)× P (G)

P (M)
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We have:
- P (M |G) = 1 (if the suspect is guilty, then the DNA must match) - P (G) = 1 (since we are considering

only the group of individuals where the DNA profile matches) - P (M |G′) = 1/1000 = 0.001 (probability of
a DNA match in an innocent person) - P (G′) = 1− P (G) = 0 (probability of innocence for an individual in
the group)

P (M) = P (M |G)× P (G) + P (M |G′)× P (G′)

P (M) = 1× 1 + 0.001× 0

P (M) = 1

Now, we can calculate P (G|M):

P (G|M) =
1× 1

1
= 1

So, the probability that the suspect is guilty given a DNA match is 100%.

Illustration - V

Suppose a screening test is used to detect a genetic disorder that affects 1 in 500 individuals in the popu-
lation. The test has a sensitivity of 90% (probability of a positive test result given that the individual has the
disorder) and a specificity of 95% (probability of a negative test result given that the individual does not have
the disorder).

If an individual tests negative for the disorder, what is the probability that they actually do not have the
disorder?

Solution:
Let’s denote the following events:
- A: Individual has the disorder. - B: Individual tests negative for the disorder.
We are asked to find P (A′|B), the probability that the individual does not have the disorder given a negative

test result.
Using Bayes’ theorem:

P (A′|B) =
P (B|A′)× P (A′)

P (B)

We have:
- P (B|A′) = 0.95 (specificity) - P (A′) = 1 − P (A) = 1 − (1/500) = 499/500 - P (B|A) = 1 −

P (Positive test|A) = 1− 0.90 = 0.10 - P (B) = P (B|A)× P (A) + P (B|A′)× P (A′) - P (B) = (0.10)×
(1/500) + (0.95)× (499/500)

Now, we can calculate P (A′|B):

P (A′|B) =
(0.95)× (499/500)

(0.10)× (1/500) + (0.95)× (499/500)

P (A′|B) ≈ 0.999

So, the probability that an individual does not have the disorder given a negative test result is approximately
99.9%.
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Illustration - VI

Suppose a paternity test is conducted to determine the father of a child. The test examines specific genetic
markers. The alleged father shares the same genetic markers with the child at 15 out of 20 markers tested.

Given that the alleged father is not the biological father, what is the probability of observing this level of
genetic similarity by chance?

Solution:
Let’s denote the following events:
- F : Alleged father is the biological father. - M : Genetic markers match between the alleged father and the

child.
We are asked to find P (M |F ′), the probability of observing genetic similarity between the alleged father

and the child given that the alleged father is not the biological father.
Using Bayes’ theorem:

P (M |F ′) =
P (F ′|M)× P (M)

P (F ′)

We have:
- P (F ′|M) = 0 (since the alleged father is not the biological father) - P (M) is the probability of observ-

ing genetic similarity by chance, which may vary depending on the specific genetic markers and population
frequencies. - P (F ′) = 1− P (F ) (probability that the alleged father is not the biological father)

Now, we can calculate P (M |F ′) based on the specific context and population data.

Exercise 6.2.1. 1. A flock of certain species of fowls consists of 117, 191 and 16 with blue, black, and
white plumages. Assuming that black and white plumages are the phenotypes corresponding to the ho-
mozygous genotypes (b, b) and (w,w) and the blue plumage corresponds to the heterozygous genotype
(w, b), find the genotype and gene frequencies.

2. In a certain human population, dominants, hybrids and recessives are 16 per cent, 48 per cent and 36
per cent, respectively. Given that a man is recessive and has a brother, show that the probability of the
brother being recessive is 0.66. What are the probabilities of the brother being a dominant or a hybrid?

3. Assuming Mendel’s law of independent assortment which postulates that, when there are tow or more
gene pair segregating at the same time, they do independently, prove that the double inter-crossAaBb×
AaBb results in four phenotypes, namely, AB, Ab, aB, and ab, in the ratios 9 : 3 : 3 : 1.

4. From the mating of two hybrids Gg and Gg, a dominant-looking offspring Gx is obtained. This in-
dividual is mated with another hybrid, and as a result, n individuals are obtained, all of whom look
dominant. What is the a posteriori probability that x = G?

5. From the mating of two dominant-looking individuals, n offspring are produced, of which r are reces-
sives. What is the probability that both the parents are hybrid?
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Unit 7

Course Structure

• Extension of basic model for inheritance of genetic characteristics

• Models for genetic improvement: Selection and Mutation

7.1 Further Discussion of Basic Model for Inheritance of Genetic Character-
istics

7.1.1 Phenotype Ratios

For one gene, there are 4 possible genetic constitutions, namely, {(G,G), (G, g), (g,G), (g, g)}; there are
3 genotypes, viz, dominant D : (G,G), hybrid H : (G, g), (g,G), and recessive R : (g, g); and there 2
phenotypes, viz, dominant-looking: {(G,G), (G, g), (g,G)} and recessive-looking {(g, g)}. The ratio of the
two phenotypes is 3 : 1.

For two genes, there are 16 possibilities:

G1 G1 G2 G2 G1 G1 G2 g2 G1 G1 g2 G2 G1 G1 g2 g2

G1 g1 G2 G2 G1 g1 G2 g2 g1 G1 g2 G2 G1 g1 g2 g2

G1 g1 G2 G2 G1 g1 G2 g2 g1 G1 g2 G2 G1 g1 g2 g2

G1 g1 G2 G2 G1 g1 G2 g2 g1 G1 g2 G2 G1 g1 g2 g2

There are 9 genotypes:

D1 D2, D1 H2, D1R2, H1 D2, H1 H2, H1R2, R1 D2, R1 H2, R1R2

with frequencies 1, 2, 1, 2, 4, 2, 1, 2, 1, respectively. There are 4 phenotypes:

D1 D2, D1 R2, R1 D2, R1 R2

with frequencies 9 : 3 : 3 :1.

63



64 UNIT 7.

Let us now generalize the case of n genes. For each gene, there are 4 possibilities and so the total number
of possibilities for n gene is 4n. For each gene, there are 3 genotypes and so the total number of genotypes
is 3n. For each gene, there are 2 phenotypes and so the total number of phenotypes for n genes is 2n. With
respect to each gene, there are 3 dominant phenotypes for each recessive phenotype.

Let us find how many phenotypes are dominant with respect to r genes. We can choose r genes in
(n
r

)
ways and, corresponding to each of these, there are 3 dominant phenotypes and 1 recessive phenotype so that
the frequency of genotypes, which are dominant with respect to r genes and recessives with respect to n − r

genes, is
(
n

r

)
3r1n−r, and the total of all these frequencies is

n∑
r=0

(
n

r

)
3r = (3 + 1)n = 4n. (7.1.1)

Thus of the 4n possibilities with n genes, we have
(n
r

)
groups of 3n−r, each dominant with respect to n − r

genes for r = 0, 1, 2, . . . , n.

Thus we have one group of 3n,
(n
1

)
groups of 3n−1 each, . . .

(n
r

)
groups of 3n−r each, . . . and one group

of 1 so that the phenotype ratios are:

3n︸︷︷︸
(n0)

, 3n−1, 3n−1, . . . , 3n−1︸ ︷︷ ︸
(n1)

, . . . 3, 3, . . . , 3︸ ︷︷ ︸
( n
n−1)

, 30︸︷︷︸
(nn)

The frequencies of phenotypes are given by coefficients in the expansion of (3x+y)n. Similarly, the frequen-
cies of genotypes are given by coefficients of (x+ 2y + z)n, and the frequency of a genotype dominant with
respect to r genes, hybrid with respect to s genes, and recessive with respect to n− r − s genes is

n!

r! s! (n− r − s)!
2n.

7.2 Multiple Alleles and Application to Blood Groups

In genetics, multiple alleles refer to the existence of more than two alleles (variants of a gene) for a particular
trait in a population. The classic example of multiple alleles is the ABO blood group system in humans.

ABO Blood Group System

The ABO blood group system is controlled by three main alleles located on chromosome 9: A, B, and O.
Each individual inherits two alleles, one from each parent, resulting in six possible genotypes: AA, AO, BB,
BO, AB, and OO.

• Allele A codes for the A antigen on the surface of red blood cells.

• Allele B codes for the B antigen on the surface of red blood cells.

• Allele O codes for neither A nor B antigens, often referred to as the absence of antigen.

The A and B alleles are co-dominant, meaning that when both alleles are present (genotype AB), both
antigens are expressed equally on the surface of red blood cells. The O allele is recessive to both A and B
alleles, so individuals with genotype OO have neither A nor B antigens.
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Genotype-Phenotype Relationships

The genotype of an individual determines their blood type, which is characterized by the presence or absence
of A and B antigens on the surface of red blood cells. The following genotype-phenotype relationships exist
in the ABO blood group system:

• Blood type A: Genotypes AA and AO

• Blood type B: Genotypes BB and BO

• Blood type AB: Genotype AB

• Blood type O: Genotype OO

Application to Blood Transfusions and Organ Transplantation

Understanding the genetics of the ABO blood group system is crucial in medicine, particularly in blood
transfusions and organ transplantation. Compatibility in blood transfusions is determined by the presence or
absence of A and B antigens and antibodies in the recipient’s blood.

• Individuals with blood type A can receive blood from donors with blood types A and O.

• Individuals with blood type B can receive blood from donors with blood types B and O.

• Individuals with blood type AB can receive blood from any blood type (universal recipient).

• Individuals with blood type O can only receive blood from donors with blood type O (universal donor).

Similarly, compatibility in organ transplantation is assessed based on ABO blood group compatibility be-
tween the donor and recipient.

The ABO blood group system serves as a practical application of multiple alleles in determining blood
compatibility, thereby ensuring the safety and efficacy of blood transfusions and organ donations.

So far we have considered the case of two alleles G and g only, but there may be a number of alleles
corresponding to a given locus. The most important and elementary example is the gene determining blood
groups, which has three alleles A, B, O giving rise to 9 possibilities (A,A), (A,B), (A,O), (B,A), (B,B), (B,O),
(O,A), (O,B) and (O,O). There are, however, only 6 genotypes since (A,B), (B,A); (A,O), (O,A); and (B,O),
(O,B) give the same genotypes. Since A and B dominate over O, there are only four phenotype groups,
namely, {(A,A), (A,O), (O,A)}, {(B,B), (B,O), (O,B)}, {(A,B), (B,A)}, and {O,O}. These are
denoted by A, B, AB and O, respectively.

Table 2 : Possible Blood Groups of Father in terms of 
          Blood Groups of Mother and Child
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We now get the results given in Table 1 for genotypes and blood groups of offspring. From Table 1, we
can deduce the table for the possible blood groups for the father when we know the blood group of mother
and child (Table 2). Table 2 is used in certain disputed legal cases to decide whether a certain child born of a
certain mother can be the child of a given male.

Again, if the proportions of alleles A, B, O in the population are p, q, r, then the proportions of persons
with blood groups A, B, AB, and O in the population are

p2 + 2pr, q2 + 2qr, 2qr, r2 [p2 + 2pq + q2 + 2qr + 2pq + r2 = (p+ q + r)2 = 1]

If we know the division of the population according to blood groups, we can calculate p, q, r.
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7.3 Models for Genetic Improvement: Selection and Mutation

Description of models for genetic improvement involving selection and mutation is crucial in understanding
evolutionary dynamics and population genetics. Here’s an overview of these two fundamental processes:

Selection:

Selection is a key mechanism in evolutionary biology where certain heritable traits become more or less
common in a population over generations. It occurs when individuals with advantageous traits have a higher
chance of survival and reproduction, leading to the increase in frequency of those traits in the population.

Models for Selection:

1. Hard Selection Model: Also known as deterministic or directional selection, this model assumes that
individuals with the highest fitness have the highest chance of survival and reproduction. It predicts a
continuous increase or decrease in the frequency of advantageous or disadvantageous traits, respectively,
until fixation or loss occurs.

2. Soft Selection Model: Soft selection considers variations in fitness within a population due to environ-
mental heterogeneity. It accounts for differences in survival and reproduction rates among individuals
with the same trait, leading to a more nuanced understanding of selection dynamics.

3. Frequency-Dependent Selection: In this model, the fitness of a trait depends on its frequency within
the population. Traits that are rare may have a fitness advantage due to reduced competition or predator
avoidance, leading to oscillations in trait frequencies over time.

Mutation:

Mutation is the ultimate source of genetic variation, providing raw material for evolutionary change. It in-
volves changes in the DNA sequence of an organism, leading to new alleles and phenotypic diversity within
populations.

Models for Mutation:

1. Point Mutation Model: Point mutations involve changes in single nucleotides within the DNA se-
quence. This model describes the substitution of one nucleotide for another (e.g., A to T), leading to
the creation of new alleles and potentially altering the phenotype of individuals.

2. Insertion-Deletion (Indel) Mutation Model: Indel mutations involve the insertion or deletion of nu-
cleotides within the DNA sequence. They can lead to frameshift mutations, causing significant changes
in the amino acid sequence and protein function.

3. Duplication Mutation Model: Duplication mutations result in the duplication of genomic regions,
leading to the creation of gene copies. These duplicated genes may undergo further divergence and
specialization, contributing to genetic novelty and adaptation.

Interaction between Selection and Mutation:

Selection and mutation are intertwined processes that shape the genetic composition of populations over time.
Selection acts on existing genetic variation, favoring alleles that confer higher fitness, while mutation in-
troduces new variation into the population. The balance between these processes determines the rate and
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direction of evolutionary change.

Models for genetic improvement involving selection and mutation provide valuable insights into the mech-
anisms driving evolutionary dynamics and population genetics. By understanding the interplay between selec-
tion and mutation, researchers can better predict how populations evolve and adapt to changing environments,
leading to advancements in fields such as agriculture, medicine, and conservation biology.

7.3.1 Genetic Improvement through Cross Breeding

We have already discussed the results of crossing a breed successively with a dominant breed, a recessive
breed, or a hybrid breed. We now consider the case when genes carrying undesirable characteristics are to be
eliminated from a race and are to be replaced by genes with desirable characteristics. Thus let

g1g1, g2g2, g3g3, · · · gngn (7.3.1)

denote n pairs of genes which we want to replace by the n pairs of genes

G1G1, G2G2, G3G3, · · · GnGn. (7.3.2)

We shall call the individual having gene pairs (7.3.2) as belonging to the G-race. We are not implying here
that G’s are dominant and g’s are recessive. On crossing the given generation F0 with the G-race, we get the
first generation F1, namely,

G1g1, G2g2, G3g3, · · · Gngn, (7.3.3)

so that one g in each pair is replaced by the corresponding G. Our object is to replace the other g also by
successive crossing with the G-race. Successive crosses give us the generations

F2, F3, · · · Fm+1, . . . . (7.3.4)

In every generation, there is a probability 1/2 that gi has been replacedGi, and there is a probability 1/2 that gi
has not been replaced by Gi, and so the probability that (m+1)-th generation still has gi is (1/2)m. Also, the
probability that r of the n replacements of genes have not taken place is given by the binomial distribution, as

(
n

r

)(
1

2m

)r (
1− 1

2m

)n−r

. (7.3.5)

If r = 0, all the genes gi have replaced by Gi, and the probability of this is

(
n

0

)(
1

2m

)0(
1− 1

2m

)n−0

=

(
1− 1

2m

)n

. (7.3.6)

As m approaches infinity, the probability approaches unity, regardless of the value of n. Thus, ultimately all
genes gi will be replaced by genes Gi for i = 1, 2, . . . , n.
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Solved Examples on Genetic Improvement through Cross Breeding

Example 1

A plant breeder is performing crossbreeding experiments to introduce a specific trait into a crop species. In
each breeding experiment, there is a 30% chance that the desired gene replacement occurs. If the breeder
conducts 10 independent crossbreeding experiments, what is the probability that exactly 2 of the gene re-
placements have not taken place?

Solution:
Let X be the number of gene replacements that have not taken place in 10 experiments. Since each exper-

iment is independent and has a fixed probability of success (gene replacement), we can model this scenario
using the binomial distribution.

Given:

n = 10

p = 0.30

r = 2

Using the probability mass function (PMF) of the binomial distribution:

P (X = r) =

(
n

r

)
× pr × (1− p)n−r

Substituting the given values:

P (X = 2) =

(
10

2

)
× (0.30)2 × (1− 0.30)10−2

Using the binomial coefficient
(
n
r

)
= n!

r!(n−r)! :

P (X = 2) =
10!

2!(10− 2)!
× (0.30)2 × (0.70)8

P (X = 2) =
10× 9

2× 1
× (0.30)2 × (0.70)8

P (X = 2) = 45× 0.09× 0.05764801

P (X = 2) ≈ 0.3089

So, the probability that exactly 2 of the gene replacements have not taken place is approximately 0.3089.

Example 2

A livestock breeder is conducting crossbreeding experiments to introduce a specific trait into a population
of animals. In each experiment, there is a 20% chance that the desired gene replacement occurs. If the
breeder conducts 15 independent crossbreeding experiments, what is the probability that at least 10 of the
gene replacements have taken place?

Solution:
Similar to Example 1, we can model this scenario using the binomial distribution.
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Given:

n = 15

p = 0.20

r ≥ 10

We are interested in finding P (X ≥ 10).
Using the cumulative distribution function (CDF) of the binomial distribution:

P (X ≥ 10) = 1−
9∑

k=0

P (X = k)

P (X ≥ 10) = 1− (P (X = 0) + P (X = 1) + P (X = 2) + . . .+ P (X = 9))

We can calculate each term using the binomial distribution formula and subtract their sum from 1 to find
P (X ≥ 10).

This method allows us to find the probability that at least 10 of the gene replacements have taken place in
15 experiments.

Some Solved Examples on the ABO Blood Group System and its Genetics

Important Formulas

Genotype Frequencies under Hardy-Weinberg Equilibrium:

Genotype AA: p(A)2

Genotype AB: 2× p(A)× p(B)

Genotype AO: 2× p(A)× p(O)

Genotype BB: p(B)2

Genotype BO: 2× p(B)× p(O)

Genotype OO: p(O)2

Where:

• p(A), p(B), and p(O) are the frequencies of the A, B, and O alleles, respectively.

Example 1:
Sarah’s parents both have blood type O. What is the probability that Sarah has blood type O?
Solution:
Given that both parents have blood type O, they can only pass on the O allele to their offspring. Therefore,

Sarah must inherit an O allele from each parent.
Since blood type O is determined by the genotype OO, Sarah’s genotype must be OO. Thus, the probability

that Sarah has blood type O is 100%.

Example 2:
John has blood type AB. What are the possible blood types of his parents?
Solution:
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Blood type AB is only possible when an individual inherits one A allele from one parent and one B allele
from the other parent. Therefore, one of John’s parents must have blood type A (genotype AO) and the other
parent must have blood type B (genotype BO).

Example 3:
A couple has two children, one with blood type A and the other with blood type O. What are the possible

blood types of the parents?
Solution:
Since the children have blood types A and O, we can deduce the genotypes of the parents based on the

inheritance patterns:
1. Child with blood type A: - Genotype: AA or AO 2. Child with blood type O: - Genotype: OO
From the genotype possibilities of the children, we can conclude that both parents must carry at least one

O allele. Therefore, both parents must have blood type O (genotype OO).

Example 4:
In a population, the frequencies of the A, B, and O alleles are 0.4, 0.3, and 0.3, respectively. What are the

expected genotype frequencies in the population?
Solution:
Given: - Frequency of allele A (p(A)) = 0.4 - Frequency of allele B (p(B)) = 0.3 - Frequency of allele O

(p(O)) = 0.3
Using Hardy-Weinberg equilibrium, we can calculate the expected genotype frequencies:

i. Genotype AA: p(A)2 = 0.42 = 0.16,
ii. Genotype AB: 2× p(A)× p(B) = 2× 0.4× 0.3 = 0.24,
iii. Genotype AO: 2× p(A)× p(O) = 2× 0.4× 0.3 = 0.24,
iv. Genotype BB: p(B)2 = 0.32 = 0.09,
v. Genotype BO: 2× p(B)× p(O) = 2× 0.3× 0.3 = 0.18,
vi. Genotype OO: p(O)2 = 0.32 = 0.09.

These genotype frequencies represent the expected distribution of ABO blood types in the population under
Hardy-Weinberg equilibrium.

Example 5

In a population, the frequencies of the A, B, and O alleles are 0.4, 0.3, and 0.3, respectively. Calculate the
expected genotype frequencies under Hardy-Weinberg equilibrium.

Solution:
Using the formulas for genotype frequencies under Hardy-Weinberg equilibrium:

p(A) = 0.4, p(B) = 0.3, p(O) = 0.3

Substitute these values into the formulas to find the expected genotype frequencies.

Example 6

A couple with blood types AB and O have a child with blood type B. What are the possible blood types of
their other children?

Solution:
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Since the parents have blood types AB and O, we can determine the possible genotypes and blood types of
their children based on Mendelian inheritance patterns.

Example 7

In a population, 16% of individuals have blood type AB. What are the frequencies of the A and B alleles in
the population?

Solution:
Given that the frequency of blood type AB is 16%, we can use this information to determine the frequencies

of the A and B alleles in the population.

Example 8

A population has the following genotype frequencies: AA (25%), AO (50%), and OO (25%). Calculate the
frequencies of the A and O alleles.

Solution:
Given the genotype frequencies, we can use them to calculate the frequencies of the A and O alleles using

the Hardy-Weinberg equilibrium.

Solved Examples on Phenotype ratios

Example 1

Consider a cross between two heterozygous parents (Aa) for a trait where A is dominant over a. What are the
expected genotype and phenotype ratios in their offspring?

Solution:
Given:

• Genotype of parent 1: Aa

• Genotype of parent 2: Aa

Using the Punnett square, we can determine the genotype ratios:

A a

A AA Aa
a Aa aa

From the Punnett square, we see that the genotype ratio is 25% AA, 50% Aa, and 25% aa.
For the phenotype ratio, 75% display the dominant trait (A), and 25% display the recessive trait (a).

Example 2

In a population, 40% of individuals have the homozygous dominant genotype (AA), and 30% have the het-
erozygous genotype (Aa) for a certain trait. What are the expected phenotype ratios in the population?

Solution:
Given:

• Frequency of genotype AA: P (AA) = 0.40

• Frequency of genotype Aa: P (Aa) = 0.30
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Using the information provided, we can calculate the phenotype ratios:

• Dominant phenotype ratio = P (AA) + P (Aa)

• Recessive phenotype ratio = Frequency of genotype aa

Substitute the given values to find the phenotype ratios.

Example 3

In a genetic experiment, a cross between two parents (AA and aa) results in all offspring having the Aa
genotype. What are the expected genotype and phenotype ratios in the offspring?

Solution:
Given:

• Genotype of parent 1: AA

• Genotype of parent 2: aa

Since all offspring have the Aa genotype, the genotype ratio is 100% Aa.
For the phenotype ratio, 100% display the dominant trait (A).



Unit 8

Course Structure

• Genetic Improvement through Elimination Recessives

• Selection and Mutation

• An Alternative Discussion of Selection

8.1 Genetic Improvement through Elimination Recessives

Genetic improvement strategies aim to enhance desirable traits in populations over successive generations.
One approach involves eliminating undesirable recessive alleles from the gene pool through selective breeding.
This strategy can lead to the improvement of specific traits and overall genetic fitness within a population.

Understanding Recessive Alleles

In genetics, recessive alleles are variants of genes that are masked by dominant alleles in heterozygous indi-
viduals. Recessive alleles only manifest their effects when present in a homozygous state. Undesirable traits
associated with recessive alleles may include susceptibility to diseases, malformations, or other undesirable
characteristics.

Selective Breeding for Recessive Elimination

Selective breeding aims to increase the frequency of desirable alleles while decreasing the frequency of unde-
sirable alleles in a population. The elimination of recessive alleles involves identifying carriers of the recessive
allele through genetic testing or phenotypic screening and avoiding mating between carriers. By preventing
the transmission of recessive alleles to offspring, their frequency in the population decreases over time.

Examples of Recessive Elimination

1. Cystic Fibrosis: Cystic fibrosis is a genetic disorder caused by mutations in the CFTR gene. The condition
is inherited in an autosomal recessive manner. Selective breeding strategies aim to reduce the frequency of the
mutated CFTR allele in populations to decrease the incidence of cystic fibrosis.

75
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2. Hemophilia: Hemophilia is a genetic disorder characterized by impaired blood clotting due to deficiencies
in clotting factors. The disorder is caused by mutations in genes encoding clotting factors VIII or IX and is
inherited in an X-linked recessive manner. Selective breeding can help reduce the frequency of the mutated
alleles in populations to decrease the incidence of hemophilia.

Challenges and Considerations

While genetic improvement through the elimination of recessives can be effective, several challenges and
considerations should be taken into account:

• Genetic Diversity: Selective breeding may reduce genetic diversity within a population, increasing the
risk of inbreeding depression and susceptibility to new diseases or environmental changes.

• Complex Traits: Some traits influenced by multiple genes or environmental factors may be challenging
to improve through recessive elimination alone.

• Ethical Considerations: Ethical concerns may arise regarding the selection of individuals for breeding
and the potential impact on biodiversity and ecosystem dynamics.

Genetic improvement through the elimination of recessive alleles is a valuable strategy for enhancing de-
sirable traits and genetic fitness within populations. However, careful consideration of genetic diversity, trait
complexity, and ethical implications is essential to ensure the sustainability and welfare of populations under-
going selective breeding.

Another method of improving genetic composition in plants and animals is repeated elimination of reces-
sives in each generation (e.g., by destroying recessive plants or by not allowing recessive animals to breed)
and allowing random mating within the remaining members of the population.

In the n-th generation, if the proportions of dominants, hybrids, and recessives are pn, qn and rn, then, in
the (n+ 1)-th generation, these proportions are

pn+1 =

(
pn +

1

2
qn

)2

, qn+1 = 2

(
pn +

1

2
qn

)(
rn +

1

2
qn

)
, rn+1 =

(
rn +

1

2
qn

)2

. (8.1.1)

In the n-th generation, if recessives are eliminated, then the new proportions in the (n+ 1)-th generation are
given by

pn+1 =

(
p′n +

1

2
q′n

)2

, qn+1 = 2

(
p′n +

1

2
q′n

)(
1

2
q′n

)
, rn+1 =

(
1

2
q′n

)2

. (8.1.2)

where p′n, q
′
n are the new proportions in the n-th generation after elimination of the recessives so that

p′n
q′n

=
pn
qn
, p′n + q′n = 1. (8.1.3)

From (8.1.2) and (8.1.3),

pn+1 =

(
1− 1

2
q′n

)2

, qn+1 = q′n

(
1− 1

2
q′n

)
, rn+1 =

(
1

2
q′n

)2

. (8.1.4)

After eliminating the recessives from the population, we get

p′n+1

1− 1
2q

′
n

=
q′n+1

q′n
=

1

1 + 1
2q

′
n

⇒ q′n+1 =
q′n

1 + 1
2q

′
n

(8.1.5)
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This is a difference equation for solving for q′n. Substituting

un =
1

qn
(8.1.6)

in (8.1.5), we get

un+1 = un +
1

2
(8.1.7)

whose solution is
un = A+

1

2
n (8.1.8)

so that
q′n =

1

A+ 1
2n
. (8.1.9)

To determine A, we make use of p = (1−
√
r)2, q = 2

√
r(1−

√
r), r = r, to get

q′1 =
1

p+ q
=

2
√
r

1 +
√
r

(8.1.10)

so that
A =

1

2
√
r
. (8.1.11)

Also,

q′n =
2
√
r

1 + n
√
r
, (8.1.12)

r′n+1 =

(
1

2
q′n

)2

=
r

(1 + n
√
r)2

. (8.1.13)

This gives the proportion of recessives in the (n+ 1)-th generation. Given the proportion of recessives in the
original stable population, we can find, by using (8.1.13), the number of generation in which we can reduce
the proportion of recessives below any given limit by elimination of recessives at all stages. We can also find
that pn → 1, qn → 0, rn → 0 as n→ ∞.

Instead of eliminating all the recessives, we may keep a fraction k of the recessives. The basic equations in
this case are

p′n =
1− krn
1− rn

pn, q′n =
1− krn
1− rn

qn, r′n = krn, (8.1.14)

p′n + q′n + r′n = 1, (8.1.15)
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r′n+1 = krn+1 = k

(
r′n +

1

2
q′n

)
. (8.1.21)
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From (8.1.16)-(8.1.18), we get two simultaneous nonlinear difference equations of the first order for deter-
mining pn and qn and from (8.1.19)-(8.1.21), we obtain two nonlinear simultaneous difference equations to
determine p′n and q′n. However, the equations are complicated, and closed-form solutions cannot be easily
determined.

8.2 Selection and Mutation

Let the proportions of genes G and g in the n-th generation be Pn and Qn so that in the (n+1)-th generation,
the proportions ofGG, Gg, and gg are P 2

n , 2PnQn, andQ2
n. Suppose the probabilities of survival of these are

S(1−K), S and S(1− k), respectively, where |k| and |K| are less than unity. Then the relative proportions
in the (n+ 1)-th generation are

S(1−K)P 2
n , 2SPnQn, S(1− k)Q2

n (8.2.1)

so that the relative proportions of G and g in this generation are

2S(1−K)P 2
n + 2SPnQn, 2SPnQn + 2S(1− k)Q2

n (8.2.2)

and hence

Pn+1

Qn+1
=

(1−K)(P 2
n/Q

2
n) + (Pn/Qn)

(Pn/Qn) + (1− k)
(8.2.3)

⇒ un+1 =
(1−K)u2n + un
un + (1− k)

, where un =
Pn

Qn
. (8.2.4)

This is a nonlinear difference equation of the first order. Knowing u1, we can find, step by step, un. The
equilibrium solution is obtained by putting un = un+1 = u which gives

u =
(1−K)u2 + u

u+ 1− k
⇒ u(uK − k) = 0 (8.2.5)

so that u = 0, or u = k/K, 1/u = 0 i.e. either dominants or recessives survive. However, a non-trivial
equilibrium solution is

u = k/K. (8.2.6)

Since this equilibrium solution has to be positive, both k and K have to be either positive or negative, i.e.,
either the hetrozygotes have to be the fittest or they have to be the least fit. If K = k, the equilibrium of G
and g are the same.

To discuss the stability of the equilibrium solution of (8.2.5), we note that (8.2.4) give

un+1 − un =
Kun

un + 1− k

(
k

K
− un

)
(8.2.7)

or
un+1 − un
k/K − un

=
Kun

un + 1− k
(8.2.8)

and
un+1 − k/K

un − k/K
=
un(1−K) + (1− k)

un + 1− k
(8.2.9)

From (8.2.9), we deduce the following results:
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(i) If 0 < k < K < 1 when un > k/K, we find that un+1 < un and un+1 > k/K, i.e., un+1

is nearer to k/K than un, and the sequence {un} monotonically decreases to k/K. On the other
hand, if un < k/K, then un+1 > un and un+1 < k/K so that the sequence {un} monotonically
increases to k/K. In the first case, we get a monotonically decreasing sequence bounded below; in the
second case, we get a monotonically increasing sequence bounded above. In either case, we find that,
if 0 < k < K < 1, then the equilibrium solution is stable.

(ii) If k and K are both negative and k/K < 1, then (8.2.8) and (8.2.9) show that un+1 − un, un − k/K,
and un+1 − k/K have the same sign so that, if un > k/K, then un+1 > k/K and un+1 > k/K and
un+1 > un, and hence un+1 is farther from k/K than un. Similarly, if un < k/K, then un+1 < k/K
and un+1 < un so that here too un+1 is farther from k/K than un. Thus, when k and K are both
negative, the equilibrium solution is unstable.

Thus, when the hybrids are the fittest, we get a stable equilibrium; when these are the least fit, we obtain an
unstable equilibrium. Now (8.2.8) can be written as

un+1 − un
(n+ 1)− 1

=
Kun

un + 1− k

(
k

K
− un

)
. (8.2.10)

When the change in one generation is not substantially different from the changes in the preceding or suc-
ceeding generations (e.g., when K is very small or when there are small oscillations about the equilibrium
position), we can replace (8.2.10) by the differential equation

du

dn
=

Ku

u+ 1− k

(
k

K
− u

)
(8.2.11)

which gives, on integration,(
1

k
− 1

)
lnu+

(
1

K
+

1

k
− 1

)
ln

∣∣∣∣ kK − u

∣∣∣∣ = n+ constant. (8.2.12)

From this we can discuss the variation of u from generation to generation.

Similarly, we can discuss the balance between selection and mutation. Let the probabilities of survival of
D, H , R be S(1−K), S(1−K), and S, respectively, and let µ be the probability of a mutation from g to G
in one generation. Then we get

Pn+1

Qn+1
=

2S(1−K)Pn + 2S(1−K)PnQn + µ[2S(1−K)PnQn + 2SQ2
n]

[2S(1−K)PnQn + 2SQ2
n](1− µ]
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(
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+ 1
)
(1−K) Pn

Qn
+ µ

(
Pn
Qn

+ 1−K Pn
Qn

)
(

Pn
Qn

− 1−K Pn
Qn

)
(1− µ)

(8.2.13)

so that

un+1 =
(un + 1)(1−K)un + µ(un + 1−Kun

(un + 1−Kun)(1− µ)
. (8.2.14)

If we assume that un is very small (which is justified since mutation rates are small, i.e., of the order of 10−5 or
less), then genes with lower fitness level can be maintained only at very low frequency by mutation. Equation
(8.2.14) can now be written as

un+1 = un(1−K) + µ, (8.2.15)

In equilibrium, this gives
u = µ/K. (8.2.16)
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8.3 An Alternative Discussion of Selection

In §8.2, we have discussed the problem of selection in terms of the ratio
Pn

Qn
. We can also discuss the same

problem in terms of Pn alone. If σ1, σ2, σ3 denote the proportions of D, H, R which survive from birth to
reproduction, we get

Pn+1 =
σ1P

2
n + σ2PnQn

σ1P 2
n + 2σ2PnQn + σ3Q2

n

= f(Pn). (8.3.1)

If n→ ∞, then Pn → P, Pn+1 → P, and Qn → 1− P , so that

σ1P
3 + 2σ2P

2(1− P ) + σ3(1− P )2P − σ1P
2 − σ2P (1− P ) = 0 (8.3.2)

which gives the three equilibrium solutions

P = 0, P = 1, Pe =
σ2 − σ3

2σ2 − σ1 − σ3
. (8.3.3)

The third solution exists if 0 < Pe < 1, and is of special significance, because, in this case, al the three forms,
namely, D, H, R survive. We can now write Eq.(8.3.1) as(

Pn+1 −
σ2 − σ3

2σ3 − σ1 − σ3

)
=

σ1Pn + σ3Qn

σ1P 2
n + 2σ2PnQn + σ3Q2

n

[
Pn − σ2 − σ3

2σ2 − σ1 − σ3

]
. (8.3.4)

This also shows that, if Pn → Pe, then Pn+1 also approaches Pe. Now

σ1Pn + σ3Qn

σ1P 2
n + 2σ2PnQn + σ3Q2

n

=
σ1Pn + σ3Qn

(σ1Pn + σ3Qn)(Pn +Qn) + (2σ2 − σ1 − σ3)PnQn

=
1

1 + 2σ2−σ1−σ3
σ1Pn+σ3Qn

PnQn

(8.3.5)

From (8.3.4) and (8.3.5), we deduce the following results:

(i) If σ2 > σ1, σ3, then the first factor on the right-hand side of (8.3.4) is less than unity and

|Pn+1 − Pe| < |Pn − Pe| (8.3.6)

so that Pn → Pe as n→ ∞, regardless of the initial value P0. Therefore, the equilibrium point is stable
(see Fig. 1).

1PPPP P P0 e n+1 n 2 1 0 0 P P P P P P 1
0 1 2 n n+1 e

P P P P
0 ee0 > <

Fig. 1: σ2 > σ1, σ3 : Stable equilibrium

(ii) If σ2 < σ1, σ3, then the first factor on the right-hand side of (8.3.4) is greater than unity and

|Pn+1 − Pe| > |Pn − Pe|. (8.3.7)

Hence the equilibrium is unstable. If P0 < Pe, then Pn → 0, and if P0 > Pe, then Pn → 1 (see Fig. 2).

1PPPP P P0 e n+1n210 0 P P P P P P 1
012nn+1 e

P P P P
0 ee0 > <

Fig. 2: σ2 < σ1, σ3 : Unstable equilibrium
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These results are the same as those of §8.2 and show that the equilibrium is stable if the heterozygotes have
the greatest chance of survival and is unstable if the heterozygotes have the least chance of survival.

For the stability of the equilibrium, it is necessary that

2σ2 − σ1 − σ3 > 0,
σ2 − σ3

2σ2 − σ1 − σ3
> 0, σ2 − σ3 > 0,

σ2 − σ3
2σ2 − σ1 − σ3

< 1, σ2 − σ3 < 2σ2 − σ1 − σ3, σ2 − σ1 > 0.
(8.3.8)

Thus, for Pe to represent and equilibrium solution, it is both necessary and sufficient that σ2 > σ1, σ3.

The convergence of a sequence {Pn} to a limit Pe is said to be geometric at the rate c for 0 < |c| < 1, 0 <
a < |c| if

lim
n→∞

|Pn − Pe|
cn

<∞, lim
n→∞

|Pn − Pe|
an

= ∞. (8.3.9)

The convergence is said to be algebraic if

lim
n→∞

nk|Pn − Pe| = a positive constant. (8.3.10)

Using (8.3.9) and (8.3.10), we find that, when σ2 > σ1, σ3, the convergence is geometric at the rate

1/

[
1 +

2σ2 − σ1 − σ3
σ1Pe + σ3Qe

PeQe

]
=
σ2(σ1 + σ3)− 2σ1σ3

σ22 − σ1σ3
. (8.3.11)
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Unit 9

Course Structure

• Navier-Stokes Equations

• Hegen-Poiseuille Flow

• Inlet Length Flow

• Reynolds Number Flow

• Non-Newtonian Fluids

9.1 Introduction

In large and medium sized arteries, those more typically affected by vascular diseases, blood can be mod-
elled by means of the Navier-Stokes (NS) equation for incompressible homogeneous Newtonian fluids. Non-
Newtonian rheological models are necessary for describing some specific flow processes, such as clotting or
sickle cell diseases, or more generally flow in capillaries. Let us recall some preliminary concepts of fluid
dynamics.

9.2 Navier-Stokes Equations for the Flow of a Viscous Incompressible Fluid

Let u(x, y, z, t), v(x, y, z, t), w(x, y, z, t), and p(x, y, z, t) denote respectively the three velocity components
are pressure at the point (x, y, z) at time t in a fluid with constant density ρ and viscosity coefficient µ. Then
the equation of continuity, which expresses the fact that the amount of fluid entering a unit volume per unit
time is the same as the amount of the fluid leaving it per unit time, is given by

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (9.2.1)

The equations of motion are obtained from Newton’s second law of motion which states that the product of
mass and acceleration of any fluid element is equal to the resultant of all the external body forces acting on
the element and to the surface forces acting on the fluid volume due to the action of the remaining fluid on
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the element. The equations of motion, knows as Navier-Stokes equations, for the of a Newtonian viscous
incompressible fluid are

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= X − ∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
(9.2.2)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= Y − ∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
(9.2.3)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= Z − ∂p

∂z
+ µ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
(9.2.4)

If the external body forces X, Y, Z form a conservative system, there exists a potential function Ω such that

X = −∂Ω
∂x

, Y = −∂Ω
∂y

, Z = −∂Ω
∂z

X − ∂p

∂x
= − ∂

∂x
(Ω + p), Y − ∂p

∂y
= − ∂

∂y
(Ω + p), Z − ∂p

∂z
= − ∂

∂z
(Ω + p)

(9.2.5)

so that p is effectively replaced by p+Ω.

If X, Y, Z are known or are absent, (9.2.1)-(9.2.4) give a system of four coupled nonlinear partial differ-
ential equations for the four unknown functions u, v, w, and p. These equations have to be solved subject
to certain initial conditions giving the motion of the fluid at time t = 0 and certain prescribed boundary
conditions on the surfaces with which the fluid may be in contact or conditions which may hold at very large
distances from the surfaces. Usually, the boundary conditions are provided by the no-slip condition according
to which both tangential and normal components of the fluid velocity vanish at all points of the surfaces of the
stationary bodies with which the the fluid may be in contact. However, if a body is moving, then the tangential
and normal components of the fluid velocity at any point of contact are the same as those of the moving body
at that point.

We can simplify the basic equations (9.2.2)-(9.2.4) when

(i) there are no external body forces, i.e., when X = 0, Y = 0, Z = 0, or when the external forces form
a conservative system

(ii) the motion is steady, i.e., when there is no variation with respect to time so that u, v, w, and p are

functions of x, y, z only and
∂u

∂t
,
∂v

∂t
,
∂w

∂t
and ∂p

∂t are all zero.

(iii) the motion is two dimensional, i.e., when it is the same in all places parallel to z = 0 plane and, in
particular, when w = 0 and when there is no variation with respect to z. In this case, the three equations
we get for the three unknowns, namely, u(x, y, t), v(x, y, t) and p(x, y, t), are

∂u

∂x
+
∂v

∂y
= 0, (9.2.6)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
, (9.2.7)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
. (9.2.8)

Equation (9.2.6) can be satisfied by introducing the stream function ψ(x, y) which is such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (9.2.9)
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Substituting in (9.2.7) and (9.2.8) and eliminating p between them, we get

∂

∂t
∇2ψ +

∂ψ

∂y

∂

∂x
∇2ψ − ∂ψ

∂x
∇2ψ + ν∇4ψ, (9.2.10)

where ν = µ/ρ is the kinematic viscosity and ∇2 is the Laplacian operator defined by

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
, ∇4 ≡ ∇2(∇2). (9.2.11)

The vorticity of this two dimensional flow is defined by

ω =
1

2

(
∂v

∂x
− ∂u

∂y

)
= −1

2
∇2ψ. (9.2.12)

From (9.2.10) and (9.2.12), we get

∂ω

∂t
+
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
=
∂ω

∂t
+
∂(ω, ψ)

∂(x, y)
= ν∇4ψ. (9.2.13)

(iv) The basic equations (9.2.2)-(9.2.4) can also be simplified when the motion is axially symmetric, i.e.,
when it is symmetrical about an axis. Here we use the cylindrical polar coordinate (r, θ, z), where the
axis of symmetry is taken as the axis of z. There are, in general, three components of velocity, namely,
vr along the radius vector perpendicular to the axis, vθ perpendicular to the axis and the radius vector,
and vz parallel to the axis of z. For the axi-symmetric case, we take vθ = 0, and we also take vr, vz and
p to be independent of θ. In this case, the equation of continuity and the equations of motion are given
by

1

r

∂

∂r
(rvr) +

∂

∂z
vz = 0, (9.2.14)

ρ

(
∂vr
∂t

+ vr
∂vr
∂r

+ vz
∂vr
∂z

)
= −∂p

∂r
+ µ

(
∂2vr
∂r2

+
∂2vr
∂z2

+
1

r

∂vr
∂r

− vr
r2

)
, (9.2.15)

ρ

(
∂vz
∂t

+ vr
∂vz
∂r

+ vz
∂vz
∂z

)
= −∂p

∂z
+ µ

(
∂2vz
∂r2

+
∂2vr
∂z2

+
1

r

∂vr
∂r

)
. (9.2.16)

We can satisfy (9.2.14) by introducing the stream function ψ defined by

1

r

∂ψ

∂r
= vz,

1

r

∂ψ

∂z
= −vr (9.2.17)

Substituting (9.2.17) in (9.2.15) and (9.2.16) and eliminating p, we get the fourth-order partial differen-
tial equation for ψ, as

∂

∂t
(D2ψ)− 1

r

∂(ψ,D2ψ)

∂(r, z)
− 2

r2
∂ψ

∂z
D2ψ = νD4ψ, (9.2.18)

where

D2 ≡ ∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2
, D2ψ = D2(D2ψ). (9.2.19)

After solving for ψ, we can obtain pressure p and vorticity ω by using the equation

∂2p

∂r2
+
∂2p

∂z2
+

1

r

∂p

∂r
=

2

r

[
∂2ψ

∂z2

(
∂2ψ

∂r2
− 1

r

∂ψ

∂r

)
−
(
∂ψ

∂z

)2

+
∂2ψ

∂z∂r

(
1

r

∂ψ

∂r
− ∂2ψ

∂z2

)]
(9.2.20)

ω = −D2ψ = − 1

r2

(
∂2ψ

∂z2
− 1

r

∂ψ

∂r
+
∂2ψ

∂z2

)
. (9.2.21)
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Solved Problems on Flow of a Viscous Incompressible Fluid

Problem 1 Consider the steady, laminar flow of an incompressible fluid between two parallel plates separated
by a distance h. The top plate is stationary, while the bottom plate moves with a constant velocity U . Neglect-
ing gravitational effects, derive the simplified Navier-Stokes equations governing the flow and determine the
velocity profile and shear stress distribution.

Solution

We consider two-dimensional flow in the x-direction only. The simplified Navier-Stokes equations governing
the flow are:

∂u

∂x
+
∂v

∂y
= 0 (Continuity equation)

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
(Momentum equation)

where:

• u(x, y) is the velocity component in the x-direction.

• v(x, y) is the velocity component in the y-direction (zero in this case).

• p(x, y) is the pressure.

• ρ is the fluid density.

• µ is the dynamic viscosity of the fluid.

The boundary conditions are u(0, y) = 0 (no-slip condition at the bottom plate) and u(h, y) = U (no-slip
condition at the top plate).

To solve the equations, we first integrate the continuity equation with respect to y and apply the boundary
conditions to find u(x, y). Then, we substitute the velocity profile into the momentum equation and solve for
the pressure distribution p(x, y).

Solution for Velocity Profile

Integrating the continuity equation with respect to y, we have:

∂u

∂x
= −∂v

∂y

Integrating again with respect to y and applying the boundary conditions, we find:

u(x, y) =
U

h
y
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Solution for Pressure Distribution

Substituting the velocity profile into the x-momentum equation, we obtain:

∂p

∂x
= −µU

h

Integrating with respect to x, we find:

p(x, y) = −µU
h
x+ C(y)

where C(y) is the integration constant.
Applying the boundary condition u(h, y) = U , we find C(y) = 0, so:

p(x, y) = −µU
h
x

Shear Stress Distribution

The shear stress at the top plate (y = h) is given by:

τ(x, y) = µ
∂u

∂y

∣∣∣∣
y=h

= µ
U

h

We have derived the velocity profile, pressure distribution, and shear stress distribution for the steady, lam-
inar flow of an incompressible fluid between two parallel plates. These results provide insights into the fluid
behavior and are valuable for understanding the flow characteristics and designing engineering systems.

9.3 Hagen-Poiseuille Flow

The equation of fluid flow we have obtained are rather complicated and, in general, have to be integrated
either by using approximations or numerically with the help of computers. There are, however, a few exact
solutions. One of these was investigated by physician Poiseuille because of his interest in the flow of blood in
arteries (see Fig. 9.1).

Figure 9.1: Velocity profile for Poiseuille flow

We consider steady flow when there is only one velocity component parallel to the axis so that vr = 0, vθ =
0, and vz = v. Then the equation of continuity gives

vz = v(r). (9.3.1)
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The equations of motion, (9.2.15) and (9.2.16), now give

∂p

∂r
= 0,

d2v

dr2
+

1

r

dv

dr
=

1

µ

∂p

∂z
. (9.3.2)

From (9.3.2), −∂p
∂z

must be a constant. Let us denote this constant pressure gradient by P . Then (9.3.2) gives

1

r

d

dr

(
r
dv

dr

)
= −P

µ
. (9.3.3)

Integrating (9.3.3) twice, we get

r
dv

dr
= − 1

2µ
Pr2 +A, v(r) = −Pr

2

4µ
+A ln r +B, (9.3.4)

but velocity on the axis (i.e., at r = 0) must be finite, giving A = 0, and it should vanish on r = a because of
the no-slip condition so that

B =
Pa2

4µ
, v =

P

4µ
(a2 − r2). (9.3.5)

The velocity is zero on the surface and is maximum on the axis. In fact, the velocity profile is parabolic and
in the three-dimensional space, it may be regarded as a paraboloid of revolution.

The total flux across any section, i.e., the total volume of the fluid crossing any section per unit time, is
given by

Q =

a∫
0

2πr v dr =
πa4

8µ
P. (9.3.6)

The result that the flux is proportional to the pressure gradient and to the fourth power of the radius of the
tube was discovered experimentally by Hagen and rediscovered independently by Poiseuille. The importance
of this result is that it can be confirmed experimentally and can be used to determine µ.

Solved Problem on Hagen-Poiseuille Flow

Hagen-Poiseuille flow describes the steady, laminar flow of an incompressible and Newtonian fluid through a
cylindrical pipe of radius R. The flow is driven by a constant pressure gradient along the pipe.

Derivation

The simplified Navier-Stokes equations governing the flow in cylindrical coordinates are:

1

r

∂

∂r
(r · u) = 0 (Radial continuity)

−∂p
∂z

+ µ

(
1

r

∂

∂r
(r · u) + ∂2u

∂z2

)
= 0 (Axial momentum)

where:

• u(r, z) is the velocity of the fluid.
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• p(r, z) is the pressure.

• µ is the dynamic viscosity of the fluid.

Given that the flow is axisymmetric and there is no dependence on the azimuthal coordinate, the velocity u
is only a function of the radial coordinate r and the axial coordinate z, i.e., u = u(r, z).

Radial Continuity Equation

Integrating the radial continuity equation with respect to r, we have:

r · u = constant

which implies that the velocity profile is parabolic.

Axial Momentum Equation

Substituting the velocity profile u = 1
4µ(R

2 − r2)∂p∂z into the axial momentum equation, we obtain:

−∂p
∂z

+
µ

r

∂

∂r

(
r · 1

4µ
(R2 − r2)

∂p

∂z

)
= 0

Simplifying, we get:
∂2p

∂z2
= 0

which implies that the pressure p varies linearly along the axial direction.

Velocity Profile

The velocity profile for Hagen-Poiseuille flow is given by:

u(r) =
1

4µ
(R2 − r2)

Flow Rate

The flow rate Q through the pipe can be calculated by integrating the velocity profile over the cross-sectional
area A of the pipe:

Q =

∫ R

0
u(r) · 2πr dr = πR4

8µ

Conclusion

Hagen-Poiseuille flow describes the laminar flow of an incompressible fluid through a cylindrical pipe. The
flow velocity varies parabolically across the pipe cross-section, and the pressure varies linearly along the pipe
axis. The flow rate through the pipe is proportional to the fourth power of the pipe radius and inversely
proportional to the fluid viscosity.
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9.4 Inlet Length Flow

When a fluid enters a tube from a large reservoir where the velocity is uniform and parallel to the axis of the
tube, the velocity profile is a flat surface at the entry (see Fig. 9.2). Immediately after entry, the velocity near
the surface is affected by the friction of the surface, but the velocity profile near the axis still remains flat.
As the fluid moves further in the tube, the flat portion decreases, and at the section corresponding to A, the
paraboloidal velocity profile for the fully develped flow is reached. The flow in the region OA is called the
entry region (or inlet) flow and the flow beyond A (in region III) is called the fully developed flow. The length
OA is called the entry length. the flow in the entry length portion itself consists two parts. The flow in region
I near the surface is called the boundary layer flow; the flow in region II is called the core flowor the plug flow.
In fact, the flow approaches the parabolic velocity profile asymptotically, and we may define the entry length
as the length in which 99 per cent of the final velocity profile is attained.

Figure 9.2: Inlet length velocity profiles

9.5 Reynolds Number of Flows

In (9.2.12)-(9.2.14), the terms on the left-hand sides represent the inertial forces (mass × acceleration) while
the tree terms on the right-hand side of each equation represent respectively the body forces, pressure forces

and viscous forces. If U is a typical velocity and L is a typical length, the inertial forces are of the order
ρU

L

and the viscous forces are of the order
µU

L
. The ratio of these forces is of the order

Re =
ρU2L2

µLU
=
ρUL

µ
=
UL

µ
(9.5.1)

where µ = µ/ρ is called the kinematic viscosity of the fluid. Now the dimensions of µ and ρUL are given by

µ =
stress

strain rate
=

force per unit area
velocity/length

=
MLT−2L−2

T−1
=ML−1T−1, (9.5.2)

ρUL =ML−3LT−1L =ML−1T−1. (9.5.3)

Thus,Re is a dimensionless number. It is called Reynold’s number, after Osborn Reynold who in 1890 showed
that the fully developed Poiseuille flow in a circular tube changes from stream line or laminar flow to turbulent
flow when this number, based on the diameter of the tube, exceed a critical value of about 2000.
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When Reynold number is small, viscous forces dominate over inertial forces. If we neglect the inertial
forces, which we can justifiably do when Re << 1, (9.2.13) and (9.2.18) give

∇4ψ = 0. (9.5.4)

Low Reynold number flows are also characteristic of

(i) lubrication theory, which we shall find useful in our study of lubrication of human joints;

(ii) microcirculation or flows of blood in blood vessel of diameter less than 100 µm;

(iii) air flows in alveolar passages of diameter less than a few hundred micron; and

(iv) swimming of microoranisms with Re of the order 10−3

Solved Example 1

Consider the flow of water (ρ = 1000 kg/m3) through a pipe with a diameter of 0.1m at a velocity of 2m/s.
The dynamic viscosity of water is 0.001Pa · s. Calculate the Reynolds number of this flow.

Solution

Substituting the given values into the Reynolds number formula, we get:

Re =
(1000 kg/m3)× (2m/s)× (0.1m)

0.001Pa · s
= 2000

Since 2000 < Re < 4000, the flow is in the transitional regime.
The Reynolds number is a crucial parameter in fluid mechanics that helps determine the flow regime of a

fluid flow. It is used extensively in engineering and physics to understand and analyze fluid behavior.

Solved Example 2

Consider the flow of air (ρ = 1.225 kg/m3) through a pipe with a diameter of 0.05m at a velocity of 20m/s.
The dynamic viscosity of air is 1.85× 10−5 Pa · s. Calculate the Reynolds number of this flow and determine
the flow regime.

Solution

The Reynolds number (Re) is given by:

Re =
ρuD

µ

where:

• ρ is the density of the fluid,

• u is the characteristic velocity of the flow,

• D is a characteristic length (diameter of the pipe), and

• µ is the dynamic viscosity of the fluid.
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Substituting the given values into the Reynolds number formula, we get:

Re =
(1.225 kg/m3)× (20m/s)× (0.05m)

1.85× 10−5 Pa · s
≈ 131351.35

Since Re > 4000, the flow is generally turbulent.
The Reynolds number of the flow is approximately 131351.35, indicating turbulent flow. The Reynolds

number is an important parameter in fluid mechanics used to predict flow regimes and analyze fluid behavior.

9.6 Non-Newtonian Fluids

For the simple motions we shall consider, there is only one non-zero component τ of the stress tensor and only
one non-zero component e of the rate of strain. In general, each of these tensor has six distinct components.
The functional relations between the components of the two tensors depend on the fluid under consideration
and determine the constitutive equations for the fluid. For Newtonian viscous fluids,

τ = µe, (9.6.1)

where µ is the constant coefficient of viscosity. We have fluids for which µ itself may be a function of strain
rate, i.e., for which stress becomes a non-linear or non-homogeneous function of strain rate (see Fig. 9.3).
Such fluids are called non-Newtonian fluids. One important call of non-Newtonian fluids is that of power-law
fluids with constitutive equations

τ = µen = µen−1e. (9.6.2)

Figure 9.3: Inlet length velocity profiles

• If n < 1, we get a pseudo-plastic power-law fluid in which the effective viscosity coefficient µen−1

decreases with intreaing strain rate.

• If n > 1, we a dilatant power-law fluid in which the effective viscosity coefficient increases with
increasing strain rate.
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• If n = 1, Eq.(9.6.2) gives the Newtonian viscous fluid as a special case.

Another important non-Newtonian fluid, namely, the Bingham plastic, has the constitutive equation

τ = µe+ τ0 (τ ≥ τ0),

e = 0 (τ ≤ τ0).
(9.6.3)

It shows an yield stress τ0 and, if τ < τ0, no flow takes place. Some other laws which have been proposed for
special non-Newtonian fluids are:

• Herschel-Bulkley fluid

τ = µen + τ0 (τ ≥ τ0),

e = 0 (τ ≤ τ0).
(9.6.4)

• Casson fluid

τ
1
2 = µ

1
2 e

1
2 + τ

1
2
0 (τ ≥ τ0),

e = 0 (τ ≤ τ0).
(9.6.5)

• Prandtl fluid
τ = A sin−1

(e
c

)
(9.6.6)

• Prandtl-Eyring fluid
τ = Ae+B sin−1

(e
c

)
(9.6.7)

Exercise 9.6.1. 1. Verify (9.2.10), (9.2.12), (9.2.18), (9.2.20) and (9.2.21).

2. Discuss the steady motion of a Newtonian viscous incompressible fluid between two parallel plates
when

(i) the plates are at rest and there is an external pressure gradient;

(ii) one plate is moving in relation to the other and there is no external constant pressure gradient;

(iii) one plate is moving in relation to the other and there is also an external constant pressure gradient.

3. For steady motion between coaxial circular cylinders, show that

v = V
ln(r/b)

ln(a/b)
− ρ

4π

[
r2 − b2 ln(r/a)− a2 ln(r/b)

ln(b/a)

]
,

where the inner cylinder moves with velocity V and the outer cylinder is at rest. Show also that

Q = πV

[
1
2(b

2 − a2)

ln(b/a)
− a2

]
+
πρ

8µ

[
b4 − a4 − (b2 − a2)

ln(b/a)

]
. (9.6.8)
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Unit 10

Course Structure

• Basic Concepts about Blood

• Cardiovascular System and Blood Flow

• Special Characteristics of Blood Flow

• Structure, Function and Mechanical properties of Blood Vessels

10.1 Basic Concepts about Blood, Cardiovascular System and Blood Flow

10.1.1 Constitution of Blood

Blood consists of a suspension of cells in an aqueous solution called plasma which is composed of about 90
per cent water and 7 per cent protein. There are about 5 × 109 cells in a millilitre (1 cc) of healthy human
blood, of which about 95 per cent are red cells or erythrocytes whose main function is to transport oxygen
from the lungs to all the cells of the body and the removal of carbon-dioxide formed by metabolic processes in
the body to the lungs. About 45 per cent of the blood volume in an average man is occupied by red c ells. This
fraction is known as the hematocrit. Of the remaining, white cells or leucocytes constitute about one-sixth or
1 per cent of the total, and these play a role in the resistance of the body to infection; platelets form 5 per cent
of the total, and they perform a function related to blood clotting.

Figure 10.1: Two layer flow

95
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Composition of Blood

Blood is a specialized bodily fluid that circulates through the cardiovascular system, delivering essential nu-
trients and oxygen to tissues and removing metabolic waste products. It is composed of various cellular and
non-cellular components that work together to maintain homeostasis and support physiological functions.

Cellular Components

Red Blood Cells (Erythrocytes)

• Red blood cells are the most abundant cellular component of blood, comprising approximately 40-45

• Their primary function is to transport oxygen from the lungs to tissues and carbon dioxide from tissues
to the lungs for elimination.

• Red blood cells contain hemoglobin, a protein that binds oxygen and gives blood its red color.

White Blood Cells (Leukocytes)

• White blood cells are a diverse group of cells involved in the immune response and defense against
pathogens and foreign substances.

• There are several types of white blood cells, including neutrophils, lymphocytes, monocytes, eosinophils,
and basophils, each with specific functions in immunity.

• White blood cells can migrate out of blood vessels into tissues to combat infection and inflammation.

Platelets (Thrombocytes)

• Platelets are small, disc-shaped cell fragments derived from megakaryocytes in the bone marrow.

• They play a crucial role in hemostasis, the process of blood clotting, by forming a plug at the site of
blood vessel injury and initiating the coagulation cascade.

• Platelets release various factors and enzymes that promote clot formation and repair damaged blood
vessels.

Non-cellular Components

Plasma

• Plasma is the liquid portion of blood, making up approximately 55-60

• It is a complex mixture of water, proteins, electrolytes, hormones, nutrients, waste products, and gases.

• Plasma proteins, such as albumin, globulins, and fibrinogen, play roles in maintaining osmotic balance,
transporting substances, and participating in immune responses and clotting mechanisms.
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Clinical Significance

• Blood composition is closely monitored in clinical settings to assess overall health and diagnose various
medical conditions.

• Abnormalities in blood cell counts, such as anemia (low red blood cell count) or leukocytosis (high
white blood cell count), may indicate underlying diseases or disorders.

• Blood tests, including complete blood count (CBC), blood chemistry analysis, and blood typing, pro-
vide valuable information for evaluating organ function, detecting infections, and guiding treatment
decisions.

The composition of blood is remarkably complex, consisting of cellular elements, such as red blood cells,
white blood cells, and platelets, as well as non-cellular components, including plasma proteins and other so-
lutes. This intricate balance of components is essential for maintaining physiological functions and responding
to internal and external challenges.

10.1.2 Viscosity of Blood

Blood is neither homogeneous nor Newtonian. Plasma in isolation may be considered Newtonian with a
viscosity of about 1.2 times that of water. For whole blood, we can measure effective viscosity, and this found
to depend on shear rate. The constitutive equations proposed for whole blood are as follows:

(i) τ = µen (power law equation). This is found to hold good for strain rates between 5 and 200 sec−1,
with n having a value between 0.68 and 0.80.

(ii) τ = µen + τ0 (τ ≥ τ0) (Herschel-Bulkley equation).

(iii) τ1/2 = µ1/2e1/2 + τ
1/2
0 (Casson equation). This holds for strain rated between 0 and 100000 sec−1.

The yield stress arises because, at low shear stress, red cells form aggregates in the form of rouleaux which
are stacks of red cells in the shape of a roll of coins (see Fig. 10.2). At some finite stress, which is usually
small (of the order of 0.005 dyne/cm2), the aggregate is disrupted and blood begins to flow.

For hematocrits exceeding 5.8 per cent, it has been found that the yield stress is given by

τ
1/2
0 = A(H −Hm)/100, (10.1.1)

where A = (0.008± 0.002 dyne/cm2)1/3, H is the normal hematocrit, and Hm is the hematocrit below which
there is no yield stress. Taking H as 45 per cent and Hm as 5 per cent, the yield stress of normal human blood
should be between 0.01 and 0.06 dyne/cm2.
Not only τ0, but also τ and effective viscosity, depend significantly on the hematocrit. The effective viscosity

is also apparently found to depend on capillary radius when measurements are made in capillaries of diameters
less than 300 µm. This apparent dependence of viscosity on capillary radius is known as Fahraeus-Lindqvist
effect. We shall explain this effect which is based on the hypothesis of a two layer flow (a plasma layer and a
core layer) with different viscosities.

Solved Problem: Constitutive Equations for Whole Blood

Whole blood exhibits complex rheological behavior due to its heterogeneous composition and non-Newtonian
nature. Constitutive equations are mathematical models used to describe the relationship between stress and
strain in blood flow. Consider the following constitutive equation proposed for whole blood:
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Figure 10.2: Rouleaux formation.

τ = η

(
∂v

∂r

)n

where:

• τ is the shear stress,

• η is the viscosity coefficient,

• v is the velocity gradient,

• r is the radial distance from the center of the vessel, and

• n is the power-law index.

Problem

Given a blood flow experiment in a cylindrical tube with a radius ofR = 0.1 cm, the measured shear stress (τ )
at the vessel wall is 0.5 dyn/cm2. The velocity profile (v) is given by v(r) = V

(
1− r2

R2

)
, where V = 1 cm/s.

Assuming a power-law index (n) of 0.7, determine the viscosity coefficient (η) of the blood.

Solution

First, we need to calculate the velocity gradient (∂v∂r ) using the given velocity profile:

∂v

∂r
=

d

dr

(
V

(
1− r2

R2

))
= −2V r

R2

Now, we can use the constitutive equation to solve for the viscosity coefficient (η):

τ = η

(
∂v

∂r

)n

Substituting the given values and solving for η:

0.5 = η

(
−2V r

R2

)0.7
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η =
0.5(−2V r
R2

)0.7
η =

0.5(−2×1×r
0.12

)0.7 =
0.5

(−2000r)0.7

The viscosity coefficient (η) of the blood is given by this expression.

Conclusion

We have determined the viscosity coefficient (η) of the blood using the constitutive equation proposed for
whole blood. This coefficient represents the resistance of blood to flow and is essential for understanding and
modeling blood rheology in various physiological and pathological conditions.

10.1.3 Cardiovascular System

The cardovascular system consists of the following:

(i) The heart (which acts as a pump, whose elastic muscular walls contract rhythmically, making possible
the pulsatile flow of blood through the vascular system)

(ii) The distributory system (comprising arteries and arterioles for sending blood to the various organs of
the body)

(iii) The diffusing system (made up of fine capillaries which are in contact with the cells of the body)

(iv) The collecting system of veins (which collects blood depleted of oxygen and full of products of metabolic
processes of the system).

The organs which supplement the function of the cardiovascular system are (i) the lungs which provide a
region of inter-phase transfer of O2 to the blood and removal of CO2 from it, and (ii) the kidney, liver, and
spleen, which help in maintaining the chemical quality of blood under normal conditions and under conditions
of extreme stress.

Deoxygenated blood enters the right atrium (RA) from where it goes to the right ventricle (RV), as shown
in Fig. 10.3. When the heart contracts, the tricuspid valve between the RA and RV closes and blood is pushed
out to the lung through the pulmonary artery (PA) which branches to the right and left lungs where CO2 is
removed and blood is oxygenated. The blood returns from the lungs through the pulmonary vein (PV) to left
atrium (LA) and then it goes to the left ventricle (LV) and from there, due to contraction of the heart, it enters
the aorta from which it travels to other arteries and the rest of the vascular system.

10.1.4 Special Characteristics of Blood Flow

Blood flow problems are more complicated than the problems of fluid flows in engineering situations for the
following reasons:

(i) Unusually high Reynolds number of flows. The flows remain laminar at Reynolds numbers as high as
5000 - 10000. This causes the entry length (which is proportional to the Reynolds number) to be so
large that in most cases the fully developed flow is never reached since tube branching start before this
stage is attained.

(ii) Unusual curvature of blood vessels. In some cases, this leads to secondary flows and these become
more marked at high Reynolds numbers in some of the tubes.
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Figure 10.3: The heart.

(iii) Unusually large number of branches. Bifurcation takes place 20 - 30 times, leading to millions of blood
vessels.

(iv) Unusual distensible properties of containing vessels. These properties arise from the fact that the vessel
walls are formed of different substances such as elastin, collagen, and smooth mussels, with entirely
different properties.

(v) Unusual fluid properties of blood. These properties are due to the fact that blood is a suspension of
millions of cells of different shapes in plasma and these cells can deform when passing through vessels
of diameter smaller than their own.

(vi) Unusual pulsatility of flows. This arises from the rhythmic action of the heart.

Figure 10.4: Examples of separation of flows in blood vessels.

There is also an unusual separation of flows, leading to increased resistance to flow and undesirable effects,
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e.g., hardening of arteries. The separation occurs due to various reasons, some of which are as follows (see
Fig. 10.7):

(i) Bifurcation of blood vessel

(ii) Atheroma of blood vessels or fatty degeneration of the inner walls of the blood vessel

(iii) Stenosis of heart valve or narrowing of the heart valve when the valve is fully open

(iii) Stenosis of blood vessels or narrowing of blood vessels

(iv) Secular aneurysm or a sac-like permanent abnormal blood-filled dilatation of blood vessel, resulting
from a disease of the vessel wall

(v) Aortic aneurysm of abnormal blood-filled disatation of the aortic vessel.

10.1.5 Structure and function of Blood Vessels

Blood vessels are well-arranged sophisticated network of branching tubes or pipes conveying blood to the all
parts of the body. There are several types of blood vessels, namely aorta, arteries, arterioles, veins, venues,
capillaries etc. The arteries ar those blood vessels which carring away from the heart. The blood vessels is
composed of three layers.

(i) The innermost layer called Tunika-Intiama, consist of thin layer of endothelial cells,

(ii) The middle layer called Tunika-Median consists of plain muscles and a network of elastic fibres, and

(iii) The outer most layer, called Tunika-Adventesia, is made up of fibrous tissues and elastic tissue.

Veins are the blood vessels which carrying blood to the heart. The venous cross-sectional area at any point is
larger than of arteries and the velocity of blood is considerably lower when the arteries break up into minute
vessels, they are turned to capillaries.

10.1.6 Principal of Blood Vessels

Blood vessels are essential components of the circulatory system, responsible for transporting blood through-
out the body. The principal constitutes of blood vessels are collagen, smooth muscles and elastin.

Collagen: It is the most important structure element of animal. There is a high amount of collagen present
in bone materials. Collagen is relatively inextensible fibrous protein. The fibres can be identified by light or
electron microscope.

Elastin: Unlike collagen elastin is an extensible fibrous protein present in large amount in skin, blood
vessels, lung etc. The elastic behaviour of this structure is solely due to the presence of elastin,. The fact that
elastin never appears without collagen, leads us to think that there must be resembles in structure of both.

Smooth muscles: Muscles consist of many fibres held together by connective tissues. Their structure and
function varying widely in different organ and animal. One of the basic structure they are divided into smooth
and straight muscles.

Arteries: Arteries are blood vessels that carry oxygen-rich blood away from the heart to various parts of
the body. They have thick, elastic walls composed of three layers: the tunica intima, tunica media, and tunica
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Figure 10.5: The basic structure of a hollow blood vessel. Note that only a tiny segment of the vessel is used to
show the microstructure. The tunica intima is the inner supporting tissue layer that contains the endothelium, a
flat single layer of cells, the basement membrane, and the supporting connective tissue. The connective tissue
consists of elastic and collagenous fibers. The tunica media represents the muscle layer. The tunica externa
is the outer supporting tissue layer with its own epithelium (which is a thin tissue forming the outer layer of
the blood vessel surface). The collagen is present in the tunica media and the tunica externa to maintain the
elasticity of the blood vessel.

externa. Arteries have a thick muscular layer (tunica media) that allows them to withstand high blood pressure
and regulate blood flow.

Veins: Veins are blood vessels that carry oxygen-depleted blood back to the heart from various parts of the
body. They have thinner walls compared to arteries and contain valves to prevent the backflow of blood. Veins
rely on the contraction of surrounding muscles and the respiratory pump to propel blood towards the heart.

Capillaries: Capillaries are the smallest and most numerous blood vessels in the body. They connect ar-
terioles to venules and facilitate the exchange of gases, nutrients, and waste products between the blood and
tissues. Capillary walls are thin and composed of a single layer of endothelial cells, allowing for efficient
diffusion.

Blood Flow Regulation: Blood flow through blood vessels is regulated by various factors, including:

• Autoregulation: Local control mechanisms that adjust blood flow based on tissue metabolic demands.

• Neural regulation: Sympathetic and parasympathetic nervous systems regulate blood vessel diameter
and blood pressure.

• Hormonal regulation: Hormones such as adrenaline, angiotensin II, and vasopressin influence blood
vessel constriction and dilation.

Clinical Significance

Understanding the principles of blood vessels is crucial in diagnosing and treating various cardiovascular
diseases, such as hypertension, atherosclerosis, and peripheral artery disease. Medical interventions, includ-
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ing angioplasty, stent placement, and bypass surgery, aim to restore blood flow and prevent complications
associated with vascular disorders.

10.1.7 Mechanical Properties of Blood Vessels

In view of the diverse elastic properties of the components of the arterial wall, a number of theoretical and
experimental investigation in the relevant field have established that vascular wall are non-homogeneous,
anisotropy, incompressible and visco-elastic. The mechanical properties of blood vessels play a crucial role in
maintaining proper cardiovascular function. These properties describe how blood vessels deform and respond
to changes in pressure, volume, and flow.

Inhomogeneity: Usually the wall of blood vessels are inhomogeneous. But experimental investigations
showed that the outermost layer, adventesia has a very lose network and merges externally with the surround-
ing tissues. The inner most layer intima, is very tin and can be easily neglected. The remaining layer, the
media, is considered homogeneous containing a matrix of smooth muscles elastic and collagen.

Compressibility: A material is said to be compressible if it changes its volume when it subjected to stress.
It is said to be incompressible if the change of the volume is ignorable. The experimental studied showed that
there is 20-40% change in volume and hence, for practical purpose the compressibility of vascular tissue can
be considerably very small.

Anisotropy: Healthy arteries are highly deformable comfit structures and show a non-linear stress strain
response with a typical stiffening effect at high pressure. This stiffening effect, common to all biological
tissues is based on the recruitment of embedded wavy collagen fibrils which leads to the characteristics of
anisotropic behaviour of artery.

Visco-elasticity: For a perfectly elastic body, there must be a single valued relationship between the ap-
plied strain and resulting stress. But when artery is subject to a cyclically varying strain the stress response
exhibits a hysteresis loop called it cycle. The rate of decreases is very rapid in the beginning, but a steady
state is observed after a numbers of cycles. Visco-elasticity describes the combination of elastic and viscous
properties in blood vessel walls. While elasticity allows blood vessels to store and release energy, viscosity
determines the rate of deformation and relaxation. The viscoelastic behavior of blood vessels influences their
response to pulsatile blood flow and contributes to damping oscillations in blood pressure.

Elasticity: Elasticity refers to the ability of blood vessels to deform under stress and return to their original
shape when the stress is removed. Arteries exhibit high elasticity due to the presence of elastic fibers in their
walls, primarily in the tunica media. This elasticity allows arteries to expand and recoil in response to changes
in blood pressure, ensuring continuous blood flow and reducing the workload on the heart.

Compliance: Compliance, also known as distensibility, measures the ability of blood vessels to accom-
modate changes in blood volume without significant changes in pressure. Arteries have higher compliance
than veins, meaning they can stretch more easily to accommodate increased blood volume. Compliance is an
important factor in regulating blood pressure and maintaining proper tissue perfusion.

Stiffness: Stiffness is the opposite of compliance and refers to the resistance of blood vessels to defor-
mation. As blood vessels age or undergo pathological changes such as atherosclerosis, they become stiffer,
leading to increased systolic blood pressure and decreased diastolic blood pressure. Stiffness is often quanti-
fied using parameters such as pulse wave velocity and arterial stiffness index.
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Clinical Significance: Understanding the mechanical properties of blood vessels is essential for diagnosing
and managing cardiovascular diseases. Alterations in vessel elasticity, compliance, and stiffness are associ-
ated with conditions such as hypertension, atherosclerosis, and arterial aneurysms. Therapeutic interventions,
including lifestyle modifications, pharmacotherapy, and surgical procedures, aim to preserve or restore the
mechanical integrity of blood vessels and prevent adverse cardiovascular events.

Moreover, two main characteristic of visco-elastic martial as for example creep and stress relaxation wave
also observed in vascular tissue.
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Figure 10.6: Relaxation and Creep.

In the first stage, ϵ increases under the constant stress. This phenomena is called creep. In the second stage,
the stress decrease under constant strain, i.e., the material relaxes. This phenomena is called stress relaxation.

Figure 10.7: Stress and strain curves in function of time for (A) compression, (B) tensile, (C) tensile stress-
relaxation, and (D) creep tests. First row represents the applied strain or stress, and the second row represents
the corresponding strain or stress response measured.
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Solved Problem on Mechanical Properties of Blood Vessels

Consider a cylindrical blood vessel with a radius of R = 0.1 cm and a length of L = 10 cm. The vessel wall
is composed of elastic tissue with a Young’s modulus (E) of 2× 106 dyn/cm2. Calculate the change in vessel
diameter (∆D) when the pressure inside the vessel increases by ∆P = 100 mmHg.

Solution

The change in vessel diameter (∆D) can be calculated using the formula for the change in length (∆L) due
to an increase in pressure:

∆L =
∆P · V
E

where V is the volume of the vessel wall.
The volume (V ) of the vessel wall can be approximated as the product of the cross-sectional area (A) and

the length (L) of the vessel:

V = A · L

The cross-sectional area (A) of the vessel can be calculated using the formula for the area of a circle:

A = πR2

Substituting the values into the equations:

A = π(0.1 cm)2 = 0.0314 cm2

V = 0.0314 cm2 × 10 cm = 0.314 cm3

Now, we can calculate the change in length (∆L):

∆L =
(100mmHg)× (0.314 cm3)

2× 106 dyn/cm2 = 0.00157 cm

Since the change in diameter (∆D) is twice the change in length (∆L) due to the vessel’s cylindrical shape:

∆D = 2×∆L = 2× 0.00157 cm = 0.00314 cm

Conclusion

The change in vessel diameter (∆D) due to an increase in pressure of 100 mmHg is 0.00314 cm. This
calculation demonstrates the elastic properties of blood vessels and their ability to deform in response to
changes in pressure.
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Unit 11

Course Structure

• Steady non-Newtonian fluid flow in circular tubes

• Flow in Power-Law fluid in circular tubes

• Flow in Herschel-Bulkley fluid in circular tubes

• Flow in Casson fluid in circular tubes

11.1 Steady Non-Newtonian Fluid Flow in Circular Tubes

11.1.1 Basic Equations for Fluid Flow

We consider the laminar flow of a non-Newtonian in a circular tube under a constant pressure gradient. Let
the control volume be bounded by two coaxial cylinders of raddi r and r + dr and let it be of unit length, as
shown in Fig. 11.1.

Figure 11.1: Forces on control volume

Due to the pressure gradient, there is a forward force P × 2π[(r + r dr)− r] = P × 2πr dr on it. Let the
stress be τ(r) at a distance r from the axis. Then the force on the inner cylindrical surface is 2πrτ , and the

107
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force on the outer cylindrical surface is

2π(r + dr)τ(r + dr) = 2π(r + dr)

[
τ(r) +

dτ(r)

dr
dr

]
= 2π

[
rτ(r) + τ(r) dr + r

dτ(r)

dr
dr

]
= 2π

[
[rτ(r)] +

d

dr
[rτ(r)] dr

]
(11.1.1)

Balancing the force in the axial direction in the control volume, we get

2π
d

dr
[rτ(r)] = 2πrP

⇒ d

dr
[rτ(r)] = rP. (11.1.2)

Integrating (11.1.2), we obtain

rτ(r) =
1

2
r2P +A

⇒ τ(r) =
1

2
P

[
r +

D

r

]
where D = 2A. (11.1.3)

Since the stress τ(r) is finite on the axis (i.e. at r = 0), we have

A = 0, D = 0, τ =
r

2
P. (11.1.4)

The velocity v is parallel to the axis which is also a function of r only and is expected to decrease from a
maximum on the axis to zero on the surface so that the only non-zero component of strain rate is

e(r) = −dv
dr
. (11.1.5)

For a non-Newtonian fluid,
τ = f(e) (11.1.6)

so that from Eq.(11.1.3), we have
r

2
P = f

(
−dv
dr

)
. (11.1.7)

Integrating (11.1.7) subject to the condition that v = 0 when r = R, we get v as a function of r. Then we can
obtain the flux Q by using

Q =

R∫
0

2πrv dr. (11.1.8)

Integrating the right-hand side of (11.1.8) by parts, we get

Q = 2π

(1

2
r2v

)R

0

−
R∫
0

1

2
r2
dv

dr
dr

 . (11.1.9)

Since v = 0 at r = R, we have

Q = π

R∫
0

r2e(r) dr. (11.1.10)
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Solved Problem: Steady Non-Newtonian Fluid Flow in Circular Tubes

Consider the flow of a non-Newtonian fluid with the following velocity profile through a long circular tube
with radius R:

v(r) =
1

2η0

(
R2 − r2

)2
where:

• v(r) is the velocity of the fluid at radial position r,

• R is the radius of the tube, and

• η0 is the viscosity of the fluid.

Determine the maximum velocity (vmax) and the volumetric flow rate (Q) of the non-Newtonian fluid
through the tube.

Solution

To find the maximum velocity (vmax), we need to determine the maximum value of the velocity profile. The
maximum velocity occurs at r = 0, so:

vmax =
1

2η0

(
R2
)2

=
1

2η0
R4

Now, let’s find the volumetric flow rate (Q). The volumetric flow rate (Q) can be calculated by integrating
the velocity profile over the cross-section of the tube and multiplying by the cross-sectional area:

Q =

∫ R

0
v(r) · 2πr dr

Substituting the given velocity profile:

Q =

∫ R

0

1

2η0

(
R2 − r2

)2 · 2πr dr
Q =

π

η0

∫ R

0

(
R2 − r2

)2
r dr

Performing the integration:

Q =
π

η0

∫ R

0

(
R4 − 2R2r2 + r4

)
r dr

Q =
π

η0

∫ R

0

(
R5 − 2R2r4 + r5

)
dr

Q =
π

η0

[
1

6
R6 − 2

7
R6 +

1

6
R6

]

Q =
π

η0

[
1

6
R6 − 2

7
R6 +

1

6
R6

]
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Q =
π

η0

[
1

6
R6 − 2

7
R6 +

1

6
R6

]

Q =
π

η0

[
1

3
R6 − 2

7
R6

]

Q =
π

η0

[
7

21
R6 − 6

21
R6

]

Q =
π

η0

[
1

21
R6

]

Q =
πR6

21η0

Conclusion

The maximum velocity (vmax) of the non-Newtonian fluid through the tube is 1
2η0
R4, and the volumetric flow

rate (Q) is πR6

21η0
. These calculations provide insights into the flow characteristics of non-Newtonian fluids in

circular tubes.

11.2 Flow of Power-Law Fluid in Circular Tube

Here τ = µen, Eq.(11.1.7) gives
dv

dr
= −

(
1

2

P

µ
r

)1/n

(11.2.1)

Integrating (11.2.1), we obtain

v =

(
P

2µ

)1/n n

n+ 1

[
R

1
n
+1 − r

1
n
+1
]

(11.2.2)

Also,

Q =

R∫
0

2πr v dr =

(
1

2

P

µ

)1/n nπ

3n+ 1
R

1
n
+3. (11.2.3)

Solved Problem: Flow of Power-Law Fluid in a Circular Tube

Consider the flow of a power-law fluid through a long circular tube with radius R. The power-law fluid model
describes non-Newtonian fluids with a shear-thinning behavior characterized by a power-law index (n) and
consistency coefficient (K). The velocity profile for laminar flow in the tube can be expressed as:

v(r) =
K

n+ 1

(
Rn+1 − rn+1

)
where:

• v(r) is the velocity of the fluid at radial position r,

• R is the radius of the tube,



11.2. FLOW OF POWER-LAW FLUID IN CIRCULAR TUBE 111

• n is the power-law index of the fluid, and

• K is the consistency coefficient of the fluid.

Given that R = 0.1 m, n = 0.5, and K = 2 Pa sn, determine the maximum velocity (vmax) and the
volumetric flow rate (Q) of the power-law fluid through the tube.

Solution

First, let’s find the maximum velocity (vmax) by substituting r = 0 into the velocity profile:

vmax =
K

n+ 1

(
Rn+1

)
vmax =

2

0.5 + 1

(
0.10.5+1

)
vmax =

2

1.5

(
0.11.5

)
vmax =

2

1.5
× 0.0316

vmax =
0.0632

1.5

vmax ≈ 0.0421m/s

Now, let’s find the volumetric flow rate (Q). The volumetric flow rate (Q) can be calculated by integrating
the velocity profile over the cross-section of the tube and multiplying by the cross-sectional area:

Q =

∫ R

0
v(r) · 2πr dr

Substituting the given values into the equation and performing the integration:

Q =

∫ 0.1

0

2

0.5 + 1

(
0.10.5+1 − r0.5+1

)
· 2πr dr

Q =

∫ 0.1

0

2

1.5

(
0.11.5 − r1.5

)
· 2πr dr

Q =
2

1.5

(∫ 0.1

0
(0.001− r1.5) · 2πr dr

)

Q =
2

1.5

(∫ 0.1

0
(0.001 · 2πr − r1.5 · 2πr) dr

)

Q =
2

1.5

(
0.001 · 2π

∫ 0.1

0
r dr − 2π

∫ 0.1

0
r2.5 dr

)

Q =
2

1.5

(
0.001 · 2π

[
1

2
r2
]0.1
0

− 2π

[
2

3.5
r3.5
]0.1
0

)
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Q =
2

1.5

(
0.001 · 2π

[
1

2
(0.1)2 − 1

2
(0)2

]
− 2π

[
2

3.5
(0.1)3.5 − 2

3.5
(0)3.5

])

Q =
2

1.5

(
0.001 · 2π

[
1

2
(0.01)− 0

]
− 2π

[
2

3.5
(0.1)3.5 − 0

])

Q =
2

1.5

(
0.001 · 2π [0.005]− 2π

[
2

3.5
(0.1)3.5

])

Q =
2

1.5

(
0.001 · 2π × 0.005− 2π × 2

3.5
(0.1)3.5

)

Q ≈ 2

1.5
(0.00003142− 0.00001073)

Q ≈ 2

1.5
× 0.00002069

Q ≈ 0.00002758m3/s

Conclusion

The maximum velocity (vmax) of the power-law fluid through the tube is approximately 0.0421 m/s, and the
volumetric flow rate (Q) is approximately 0.00002758 m3/s. These calculations provide insights into the flow
characteristics of non-Newtonian fluids with shear-thinning behavior in circular tubes.

11.3 Flow of Herschel-Bulkley Fluid in Circular Tube

In this case, we have e = 0 when τ ≤ τ0, and there is a core region which flows as a plug (see Fig. 11.2). Let
the radius of the plug region be rp. At the surface of the plug, the stress is τ0 so that, considering the forces
on the plug, we get

P × πr2p = τ0 × 2πrp

⇒ rp = 2τ0/P (11.3.1)

In the non-core region, τ ≥ τ0, and
τ = µen + τ0 (11.3.2)

so that (11.1.7) gives ( r
2P − τ0

µ

)1/n

= e = −dv
dr

(11.3.3)

or, on using (11.3.1), we get
dv

dr
= −

(
1

2

P

µ

)1/n

(r − rp)
1/n. (11.3.4)

Integrating (11.3.4), we obtain

v =
n

n+ 1

(
P

2µ

)1/n

[(R− r0)
1
n
+1 − (r − r0)

1
n
+1]. (11.3.5)
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Figure 11.2: Plug flow

If r = rp, then v = vp (the velocity of the plug flow) so that

vp =
n

n+ 1

(
P

2µ

)1/n

(R− rp)
1
n
+1. (11.3.6)

Eq. (11.3.1) determines the radius of the plug, and then using this value of the plug, (11.3.6) determines the
velocity of the plug and (11.3.5) determines the velocity in the non-core region. Also,

Q = πr2pvp +

R∫
rp

2πrv dr

= πr2p
n

n+ 1

(
P

2ν

)1/n

(R− rp)
1
n
+1 +

n

n+ 1

(
P

2µ

)1/n

2π

[
1

2
(R− rp)

1
n
+2(R+ rp)

−(R− rp)
1
n
+3

1
n + 3

− rp
(R− rp)

1
n
+2

1
n + 3

]
(11.3.7)

= π
n

n+ 1

(
P

2µ

)1/n

R
1
n
+3

[
c2p(1− cp)

1
n
+1 + (1 + cp)(1− cp)

1
n
+2

− 2
1
n + 3

(1− cp)
1
n
+3 − 2cp

1
n + 2

(1− cp)
1
n
+2

]
(11.3.8)

= π
n

3n+ 1

(
P

2µ

)1/n

R
1
n
+3f(cp) (say), (11.3.9)

where cp =
rp
R

=
2τ0
PR

, f(0) = 1.

If Q0 denotes the flux when there is no plug flow (i.e., when τ0, cp = 0), we get

Q

Q0
= f(cp) = f

(rp
R

)
= f

(
2τ0
PR

)
. (11.3.10)

This gives the relative change in Q with τ0. Fig. 11.3 illustrates the variation of f(cp) with cp for various
values of n. The figure shows that:
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Figure 11.3: Variation of flux with τ0

(i) As τ0 increases (µ and n remaining the same), the flux decreases rapidly and approaches zero as cp
approaches unity.

(ii) If n < 1, the curve is always concave upwards; when n = 1, the curve is always a straight line in the
beginning and becomes concave upwards; and when n > 1, the curve is convex in the beginning and
becomes concave near cp = 1, and, therefore, it has a pint of inflexion.

(iii) If τ0 and µ are constant, the decline in Q is more when n < 1 and less when n > 1. If we put n = 1 in
(11.3.8) and (11.3.9), we get the results for the special case of a Bingham plastic.

(iv) If we put τ0 = 0, rp = 0 in (11.3.8), we get results for the special case of a power-law fluid. Further, if
we put n = 1, we obtain results for Poiseuille flow.

11.4 Flow of Casson Fluid in Circular Tube

Here
τ

1
2 = µ

1
2 e

1
2 + τ

1
2
0 (τ ≥ τ0) (11.4.1)

so that for the non-core region, (11.3.4) gives

−dv
dr

= e =
1

µ1/2

[(
1

2
rP

)1/2

−
(
1

2
rpP

)1/2
]

(11.4.2)

or
dv

dr
= −1

2

P

µ

[
r1/2 − r1/2p

]2
=

1

2

P

µ

[
2
√
rpr − r − rp

]
. (11.4.3)

Integrating (11.4.3), we obtain

v =
1

2

P

µ

[
4

3

√
rpr

3/2 − 1

2
r2 − rpr −

4

3

√
rpR

3/2 +
1

2
R2 + rpR

]
(11.4.4)
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Figure 11.4: Variation of g(cp) with cp

so that the plug velocity is given by

vp =
1

2

P

µ

[
1

2
R2 + rpR− 4

3

√
rpR

3/2 − 1

6
r2p

]
=

1

4

PR2

µ

[
1 + 2cp −

8

3
c1/2p − 1

6
c2p

]
=

PR2

4µ
g(cp) (say). (11.4.5)

Thus
vp

(vp)0
= g(cp). (11.4.6)

Figure 11.5: Variation of h(cp) with cp

Figure 11.4 shows the variation of g(cp) with cp. This shows that, as τ0 increases (µ remaining the same),
the plug velocity or the maximum velocity of flow decreases rapidly till cp reaches 0.6 when the velocity
is reduced to about 6 per cent of the value and then it rises sightly. For blood, small changes in τ0 lead to
significant changes in maximum velocity.
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The flux Q is given by

Q = πvpr
2
p +

Pπ

µ

[
8

21

√
rp(R

7/2 − r7/2p )− 1

8
(R4 − r4p)−

1

3
rp(R

3 − r3p)

−2

3

√
rpR

3/2(R2 − r2p) +
1

4
R2(R2 − r2p) +

1

2
rpR(R

2 − r2p)

]

=
π

4

PR4

µ
c2pg(cp) +

πPR4

µ

[
8

21

√
cp(1− c7/2p )− 1

8
(1− c4p)−

1

3
cp(1− c3p)

−2

3

√
cp(1− c2p) +

1

4
(1− c2p) +

1

2
cp(1− c2p)

]

=
πPR4

8µ
h(cp), (say) (11.4.7)

so that
Q

Q0
= h(cp). (11.4.8)

Figure 11.5 gives the graph of h(cp) against cp. Its shows that, as τ0 increases (µ remaining the same), the
flux decreases rapidly till cp = 0.6 and till it has fallen to about 5 per cent of Q0 and then it rises again. For
blood, small changes in τ0 can make significant changes in Q. The Casson fluid flows in the tube takes place
only if rp < R, i.e., if

2τ0 < PR. (11.4.9)

Solved Problem: Flow of Casson Fluid in a Circular Tube

Consider the flow of a Casson fluid through a long circular tube with radius R. The Casson fluid model
describes non-Newtonian fluids with a yield stress (τy) and a plastic viscosity (µp). The velocity profile for
laminar flow in the tube can be expressed as:

v(r) =
1

4µp

(
R2 − r2 +

τy
3µp

)
where:

• v(r) is the velocity of the fluid at radial position r,

• R is the radius of the tube,

• µp is the plastic viscosity of the fluid, and

• τy is the yield stress of the fluid.

Determine the average velocity (v̄) and the volumetric flow rate (Q) of the Casson fluid through the tube.

Solution

To find the average velocity (v̄), we need to calculate the mean velocity over the cross-section of the tube.
The average velocity (v̄) can be calculated by integrating the velocity profile (v(r)) over the cross-section and
dividing by the area:
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v̄ =
1

A

∫ R

0
v(r) · 2πr dr

Substituting the given velocity profile:

v̄ =
1

A

∫ R

0

1

4µp

(
R2 − r2 +

τy
3µp

)
· 2πr dr

v̄ =
π

2µp

(∫ R

0
R2r − r3 dr +

τy
3µp

∫ R

0
r dr

)

v̄ =
π

2µp

([
1

3
R3 − 1

4
R4

]
+

τy
3µp

[
1

2
R2

])

v̄ =
π

2µp

(
1

3
R3 − 1

4
R4 +

1

6
τyR

2

)
Now, let’s find the volumetric flow rate (Q). The volumetric flow rate (Q) is given by:

Q = v̄ ·A

Substituting the expression for v̄ and the cross-sectional area (A = πR2):

Q =
π

2µp

(
1

3
R3 − 1

4
R4 +

1

6
τyR

2

)
· πR2

Q =
π2

2µp

(
1

3
R5 − 1

4
R6 +

1

6
τyR

4

)

Q =
π2

6µp
R5 − π2

8µp
R6 +

π2

12µp
τyR

4

Conclusion

We have derived expressions for the average velocity (v̄) and the volumetric flow rate (Q) of a Casson fluid
through a circular tube. These expressions provide insights into the flow characteristics of non-Newtonian
fluids with yield stress. The calculations demonstrate the importance of rheological properties in determining
fluid behavior in various engineering and biomedical applications.
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Unit 12

Course Structure

• Fahraeus-Lindqvist Effect

• Pulsatile Flow in Circular Rigid Tube

• Blood Flow through Artery with Mild Stenosis

12.1 Newtonian Fluid Models

12.1.1 Fahraeus-Lindqvist Effect

Fahraeus-Lindqvist effect is an effect where the viscosity of a fluid, in particular blood, changes with the
diameter of the tube, it travels through. More precisely, there is a decrease of viscosity as tubes diameter
decreases (only if the vessel diameter is between 10 to 300 micrometers).

Figure 12.1: Two layer flow

In arteries, blood flows in two layers, a plasma layer near the walls consisting of only the plasma and almost
no cells and a core layer consisting of red cells in plasma (see Fig. 12.1). If µp and µc are the viscosities of
the two fluids, which are assumed Newtonian, we get

vp =
P

4µp
(R2 − r2), R− δ ≤ r ≤ R, (12.1.1)
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vc =
P

4µc
(R2 − r2) +

P

µc

[
R2 − (R− δ)2

](µc
µp

− 1

)
, 0 ≤ r ≤ R− δ. (12.1.2)

Thus the velocity in the plasma layer is the same as it would be when the whole tube is filled with plasma, but
the velocity in the core layer is more than it would be when the whole tube is filled with the core fluid. This is
what is expected.

Now,

Q =

R−δ∫
0

2πrvc dr +

R∫
R−δ

2πrvp dr

=
πPR4

8µp

[
1−

(
1− δ

R

)4(
1− µp

µc

)]
. (12.1.3)

If the whole tube were filled with a single Newtonian fluid with viscosity coefficient µ, we would have

Q =
πPR4

8µ
. (12.1.4)

The two fluxes would be the same if

µ = µp

[
1−

(
1− δ

R

)4(
1− µp

µc

)]−1

, (12.1.5)

where µ is the effective viscosity of the two fluids taken together. From (12.1.5), it can be seen that the effective

viscosity depends on R. In practice,
δ

R
<< 1, and hence (12.1.5) gives

µ = µp

[
1− 4δ

R

(
µc
µp

− 1

)]
. (12.1.6)

We find that, as R decreases, µ decreases. This explains the Fahraeus-Lindqvist effect. Here it has been
assumed that δ is independent of R.

Pulsatile Flow in Circular Rigid Tube

We consider axially-symmetric flow in a rigid circular tube of radius R for which

vr = 0, vθ = 0, vz = v(r, z, t), p = p(r, z, t) (12.1.7)

so that the equation of continuity and the equation of motion are given by

∂v

∂z
= 0,

∂p

∂r
= 0, (12.1.8)

∂v

∂t
+ v

∂v

∂z
= −1

ρ

∂p

∂z
+ ν

(
∂2v

∂r2
+

1

r

∂v

∂r
+
∂2v

∂z2

)
. (12.1.9)

By using (12.1.8) and (12.1.9) becomes

∂v

∂t
= −1

ρ

∂p

∂z
+
ν

r

∂

∂r

(
r
∂v

∂r

)
. (12.1.10)
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From (12.1.7) and (12.1.8), v is a function of r and t only and p is a function of z and t only. From (12.1.10),
∂p/∂z is a function of t only. Thus for a pulsatile sinusoidal flow, we take

∂p

∂z
= −Peiωt, (i =

√
−1), (12.1.11)

v(r, t) = V (r)eiωt. (12.1.12)

This means that the real part gives the velocity for pressure gradient P cos(ωt) and the imaginary part gives
the velocity for the pressure gradient P sinωt.

From (12.1.10)-(12.1.12),

iωV ρ = P + µ

(
d2V

dr2
+

1

r

dV

dr

)
(12.1.13)

⇒ d2V

dr2
+

1

r

dV

dr
− iω

µ
ρV = −P

µ
. (12.1.14)

Now the general solution of the equation

d2y

dx2
+

1

x

dy

dx
− k2y = 0 (12.1.15)

is
y = AJ0(ikx) +BY0(ikx), (12.1.16)

where both J0(x) and Y0(x) are Bessel functions of zero order and are of the first and second kind, respec-
tively.

Thus the solution of (12.1.14) is

V = AJ0

[(
i
3
2

√
ωρ

µ

)
r

]
+BY0

[(
i
3
2

√
ωρ

µ

)
r

]
+

P

ωρi
. (12.1.17)

Since v and V have to be finite on the axis (i.e., at r = 0) and Y0(0) is not finite, B has to be zero. Also,
because of the no-slip condition v(r) = 0 when r = R, we have

AJ0

[(
i
3
2

√
ωρ

µ

)
R

]
+

P

ωρi
= 0, B = 0. (12.1.18)

Let

α2 =
ωρ

µ
R2 =

ωR2

ν
(12.1.19)

so that

A =
P

ωρ
i

1

J0(i3/2α
, (12.1.20)

V (r) = − P

ωρ
i

[
1− J0(i

3/2αs)

J0(i3/2α

]
, (12.1.21)

where
s =

r

R
. (12.1.22)



122 UNIT 12.

Finally, we get

v(r, t) = −PR
2

µα2
i

[
1− J0(i

3/2αs)

J0(i3/2α)

]
eiωt. (12.1.23)

The volumetric flow rate Q is given by

Q =

R∫
0

v2πr dr

= 2ϕR2

1∫
0

vs ds

= −2πPR4

µα2
ieiωt

 1∫
0

s ds− 1

J0(i3/2α)

1∫
0

J0(i
3/2αs) s ds


= −πPR

4

µα2
ieiωt

1− 2

J0(i3/2α)

i3/2α∫
0

(
xJ0(x)

i3α2

)
dx

 . (12.1.24)

But ∫
xJ0(x) dx = xJ1(x) (12.1.25)

so that

Q = −πPR
4

µα2
ieiωt

[
1− 2i

J0(i3/2α)

i3/2αJ1(i
3/2α)

α2

]

= −πR
4

µα2
iP

[
1− 2J1(i

3/2α)

i3/2αJ0(i3/2α)

]
eiωt

=
πR4P

µα2i
X(α)eiωt (say). (12.1.26)

Now the series expansion for J0(x) and J1(x) are given by

J0(x) = 1− 1

2
x2 + . . . , (12.1.27)

J1(x) =
x

2
− (x/2)3

12 · 2
+

(x/2)5

12 · 22 · 3
− . . . (12.1.28)

For small values of α,

X(α) = 1−
2

[
i3/2α
2 −

(
i3/2α
2/2

)3
+ . . .

]
i3/2

[
1−

(
i3/2α
2

)2
+ . . .

] = 1−
1− i3α2

8 + . . .

1− i3α2

4 + . . .
=
iα2

8
+O(α4) (12.1.29)

From (12.1.24) and (12.1.29), we have

Q =

[
πR4P

8
+O(α2)

]
eiωt. (12.1.30)
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From (12.1.19) as α→ 0, ω → 0 and then from (12.1.30), Q→ Q0, where

Q0 =
πR4P

8µ
eiωt, |Q0| =

πR4P

8µ
, (12.1.31)

and |Q0| is the volumetric flow rate for a constant pressure gradient and is the same as for Poiseuille law for
steady flow. If

X(α) = X1(α) + iX2(α), (12.1.32)

(12.1.24) gives

Q =
πR4

µα2

[{
X2(α) cosωt+X1(α) sinωt

}
− i
{
X1(α) cos(ωt)−X2(α) sinωt

}]
(12.1.33)

The real part gives the flux when the pressure gradient is P cosωt and the imaginary part gives the flux when
it is P sinωt.

12.2 Blood Flow through Artery with Mild Stenosis

12.2.1 Effect of Stenosis

The term stenosis denotes the narrowing of the artery due to the development of arteriosclerotic plaques or
other types of abnormal tissue development. As the growth projects into the lumen (cavity) of the artery, blood
flow is obstructed. The obstruction may damage the internal cells of the wall and may lead to further growth
of the stenosis. Thus there is a coupling between the growth of a stenosis and the flow of blood in the artery
since each affects the other.

Figure 12.2: Three stages of stenosis growth.

The stenosis growth usually passes through three stages, as shown in Fig. 12.2. In stage I, there is no
separation of flow and there is no back flow. In stage II, the flow is laminar, but separation occurs and there is
back flow. In stage III, turbulence develops in a certain region of the down stream. We shall discuss here only
Stage I, called mild stenosis.

The development of stenosis in artery can have serious consequences and can disrupt the normal functioning
of the circulatory system. In particular, it may lead to

(i) increased resistance to flow, with possible severe reduction in blood flow;

(ii) increased danger of complete occlusion (obstruction);

(iii) abnormal cellular growth in the vicinity of the stenosis, which increases the intensity of the stenosis;
and

(iv) tissue damage leading to post-stenosis dilatation.



124 UNIT 12.

12.2.2 Analysis of Mild Stenosis

We shall consider the steady flow of a Newtonian fluid past an axially-symmetric stenosis whose surface is
given by

R

R0
= 1− δ

2R0

(
1 + cos

πz

z0

)
, (12.2.1)

where the notations are clear from Fig. XX. We shall assume further that

δ

R0
<< 1,

R0

z0
≈ 0(T ), Re

δ

z0
<< 1, (12.2.2)

whereRe is the Reynolds number of fluid flow. By carrying out an order of magnitude analysis on these basic

Figure 12.3: Mild stenosis.

equations of motion in cylindrical polar coordinates, it can be shown that the radial velocity can be neglected
in relation to axial velocity v which is determined by

0 = −∂p
∂z

+ µ

(
∂2v

∂r2
+

1

r

∂v

∂r

)
, (12.2.3)

0 = −∂p
∂r
, (12.2.4)

or

−P (z) = µ

r

∂

∂r

(
r
∂v

∂r

)
. (12.2.5)

The no-slip condition on the stenosis surface gives

v = 0 at r = R(z), −z0 ≤ z ≤ z0,

v = 0 at r = R0, |z| ≥ z0.
(12.2.6)

Thus for a mild stenosis, the main difference from the usual Poiseuille flow is that the pressure gradient and
axial velocity are functions of z also. However, for a stenosis in stage II or stage III, the radial velocity can be
significant, and turbulence may have to be considered. Obviously then, the analysis is more complicated.

Integrating (12.2.5), we get

r
∂v

∂r
= −P (z) r

2

2µ
+A(z), (12.2.7)

but A(z) = 0 since
∂v

∂r
= 0 on the axis. Integrating again and using (12.2.6), we get

v = −P (z)
4µ

[
r2 −R2(z)

]
. (12.2.8)
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If Q is the flux through the tube, then

Q =

R(z)∫
0

v2πr dr =
πP (z)

8µ
R4(z). (12.2.9)

Since Q is constant for all section of the tube, the pressure gradient varies inversely as the fourth power of the
surface distance of the stenosis from the axis of the artery so that it (the pressure gradient) is minimum at the
middle of the stenosis and is maximum at the ends.
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Unit 13

Course Structure

• Peristaltic Flows in Tubes and Channel

• Peristaltic Motion in a Channel

• Long-wavelength Approximation

• Further discussion on Long-wavelength Approximation

13.1 Peristaltic Flows in Tubes and Channel

Peristaltic flows occur in biological systems and engineering applications where fluids are transported through
tubes or channels due to rhythmic contractions and relaxations of the tube walls. This phenomenon is
commonly observed in biological processes such as digestion, blood circulation, and urine propulsion in
the ureters. Peristaltic pumping is also utilized in various engineering applications, including microfluidics,
biotechnology, and medical devices.

The mechanism of peristaltic flow involves the periodic compression and expansion of the tube or channel,
which propels the fluid in the desired direction. This rhythmic motion creates traveling waves along the tube,
leading to the transport of fluid particles. The fluid motion induced by peristalsis is characterized by complex
flow patterns, including axial flow, secondary flows, and mixing effects.

Mathematically modeling peristaltic flows often involves solving nonlinear partial differential equations
describing fluid dynamics, coupled with equations governing the deformation of the tube walls. Simplified
analytical solutions can be obtained under certain assumptions, such as the long-wavelength approximation or
low Reynolds number flow.

Peristaltic flows exhibit unique features compared to other types of fluid transport mechanisms. For exam-
ple, peristalsis can generate net flow against pressure gradients, enabling fluid transport in uphill directions.
This property is exploited in biological systems to overcome obstacles and transport fluids efficiently.

In engineering applications, peristaltic pumping offers advantages such as precise control of flow rates,
gentle handling of sensitive fluids, and compatibility with microscale devices. These characteristics make
peristaltic pumps suitable for a wide range of applications, including drug delivery systems, chemical pro-
cessing, and lab-on-a-chip devices.
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Overall, peristaltic flows play a crucial role in both biological processes and engineering applications, pro-
viding an efficient and versatile method for fluid transport in tubes and channels.

13.1.1 Peristaltic Flows in Biomechanics

Peristaltic flow is the motion generated in the fluid contained in a distensible tube when a progressive wave
of area contraction and expansion travels along the wall of the tube. The elasticity of the tube wall does not
directly enter into our calculations, but it affects the flow through the progressive wave travelling along its
length. This wave determines the boundary conditions sice the no-slip condition has to be used now on a
moving undulating wall surface.

Peristaltic motion is involved in

(i) expansion and contractions (or vasomotion) of small blood vessels,

(ii) celia transport through the ducts efferents of the male reproductive organ,

(iii) transport of spermatozoa in cervical canal,

(iv) transport of chyme in small intestines,

(v) functioning of ureter, and

(i) transport of bile.

The wide occurrence of peristaltic motion should not be surprising since it results physiologically from neuro-
muscular properties of any tubular smooth muscle.

We now consider peristaltic motion in channels or tubes. The fluid involved may be non-Newtonian (e.g.,
power-law, viscoelastic, or micropolar fluid) or Newtonian, and the flow may take place in two layers (a core
layer and a peripheral layer). The equations of motion in their complete generality do nt admit of simple
solutions and we have to look for reasonable approximations. For this we first transform these equations in
terms of dimensionless variables.

Peristaltic Motion in a Channel : Characteristic Dimensionless Parameters

We consider the flow of a homogeneous Newtonian fluid through a channel of width 2a. Travelling sinusoidal
waves are supposed on the elastic walls of the channel. Taking the x-axis along the centre line of the channel
and the y-axis normal to it, the equations of the walls are given by

Y = η(X,T ) = ±a
[
1 + ϵ cos

{
2π

λ
(x− ct)

}]
(13.1.1)

where ϵ is the amplitude ratio, λ the wavelength, and c the phase velocity of the waves. Now using Eq. 9.10
of Unit 9, the stream function ψ(X,Y ) for the two-dimensional motion satisfies the equation

ν∇4ψ = ∇2ΨT +ΨY ∇2ΨX −ΨX∇2ΨY , (13.1.2)

where the velocity components are given by

U = ΨY , V = −ΨX . (13.1.3)
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Assuming that the walls have only transverse displacements at all times, we get the boundary conditions as

U = 0, V = ±2πacϵ

λ
sin

{
2π

λ
(X − cT )

}
at Y = ±η(X,T ). (13.1.4)

We now introduce the dimensionless variables and parameters

x =
X

λ
, y =

Y

a
, t =

cT

λ
, ψ =

Ψ

ac
, δ =

a

λ
, Re =

ac

ν
(13.1.5)

so that (13.1.2) becomes

1

δ Re

[
δ2

∂2

∂x2
+

∂2

∂y2

]2
ψ =

[
δ2

∂2

∂x2
+

∂2

∂y2

]
ψt + ψy

[
δ2

∂2

∂x2
+

∂2

∂y2

]
ψx − ψx

[
δ2

∂2

∂x2
+

∂2

∂y2

]
ψy.

(13.1.6)
The boundary conditions becomes

ψy = 0, ψx = 2πϵ sin(x− ϵ). (13.1.7)

Thus the basic partial differential equations and the boundary consdition together involve three dimensionless
parameters:

(i) The Reynolds number, Re determined by the phase velocity, half the mean distance between the plates,
and the kinematic viscosity. (This number is small if the distance between the walls is small or the
phase velocity is small or the kinematic viscosity is large.)

(ii) The wave number δ which is small if the wavelength is large as compared to the distance between the
walls.

(iii) The amplitude ratio ϵ which is small if the amplitude of the wave is small as compared to the distance
between the walls.

In obtaining the equations for the stream funtion, the pressure gradient was eliminated. Hence there may
arise a fourth dimensionless parameter, depending on the pressure gradient. Non-Newtonian fluids give rise
to additional dimensionless parameters, depending on the parameters occurring in the constitutive equations
of the fluids.

It is not possible to solve (13.1.2) for arbitrary values of δ, ϵ, Re and, therefore, this equation is solved
under, among others, the following alternative sets of assumptions:

(i) ϵ << 1, and Stoke’s assumption of slow motion so that inertial terms can be neglected.

(ii) ϵ << 1, δ << 1.

(iii) δ << 1, Re << 1, but ϵ is arbitrary

(iv) ϵ << 1, Re << 1, but δ is arbitrary.

The initial flow may be taken as the Hagen-Poiseuille flow.
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Figure 13.1: Tube geometry.

Long-wavelength Approximation to Peristaltic Flow in a Tube

Let the equation of the tube surface be given by

h(Z, t) = a

[
1 + ϵ sin

{
2π

λ
(Z − ct)

}]
, (13.1.8)

where a is the undisturbed radius of the tube and ϵ the amplitude ratio, a(1+ ϵ) and a(1− ϵ) are the maximum
and minimum disturbed radii, and λ is the wave velocity and c the phase velocity (see Fig. 13.1). Under the
assumptions

a

λ
<< 1 and

ac

ν
<< 1, we conduct an order of magnitude study of the various terms in the

equation of continuity and equations of motion in cylindrical polar coordinates to find

∂p

∂R
<<

∂p

∂Z
(13.1.9)

so that p is only weakly dependent on R and we can take

p = p(Z, t). (13.1.10)

Now it is convenient to use the moving coordinate system (r, z) travelling with the wave so that

r = R, z = Z − ct. (13.1.11)

In this system, p is a function of z only. The equations of continuity and motion reduce respectively to

∂

∂r
(ru) +

∂

∂z
(rw) = 0, (13.1.12)

dp

dz
= µ

(
∂2w

∂r2
+

1

r

∂w

∂r

)
=
µ

r

∂

∂r

(
r
∂w

∂r

)
, (13.1.13)

where u and w are the velocity components for the motion of the fluid in relation to the moving coordinate
system.

The boundary conditions for solving (13.1.12) and (13.1.13) are

u =
∂h

∂t
, w = −c at r = h. (13.1.14)

Integrating (13.1.13) at the constant z, we obatin

w = −c− 1

4µ

dp

dz
(h2 − r2). (13.1.15)
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To an observer moving with velocity c in the axial direction, the pressure and flow appear stationary. Hence
the flow rate q measured in the moving coordinate system is a constant, independent of position and time.
Now

q = 2π

h∫
0

rw dr. (13.1.16)

Using (13.1.15) we have

q = πh2c− πh4

8µ

dp

dz
(13.1.17)

or
dp

dz
= −8µq

πh4
− 8µc

h2
. (13.1.18)

Substituting in (13.1.15), we get

w = −c+ 2(h2 − r2)
[ q

πh4
+

c

h2

]
. (13.1.19)

To find the transverse velocity component u, we integrate the continuity equation (13.1.12) at the constant z.
Remembering that u = 0 at r = 0, we obtain

ru = −
r∫

0

r
∂w

∂z
dr. (13.1.20)

Using (13.1.19) and remembering that u(0, z) = 0, we get

u = −dh
dz

(
cr3

h3
− 2qr

πh3
+

2qr3

πh5

)
. (13.1.21)

We now revert to the stationary coordinate system with the coordinates R, Z, the velocity components U, W ,
and the flow rate Q so that

W = w + c, U = u, (13.1.22)

Q = 2π

∫ h

0
WR dR or Q = q + πch2. (13.1.23)

Let Q denote the time average of Q over a complete time period T for h so that

T =
λ

c
(13.1.24)

Q =
1

T

T∫
0

Q dt = q + πca2
(
1 +

1

2
ϵ2
)
. (13.1.25)

Further Discussion on Long-wavelength Approximation

From (13.1.8) and (13.1.11),

h(z) = a

[
1 + ϵ sin

{
2π

λ
(Z − ct)

}]
= a

[
1 + ϵ sin

(
2π

λ
z

)]
(13.1.26)

dh

dz
=

2πaϵ

λ
cos

(
2π

λ
z

)
=

2πaϵ

λ
cos

{
2π

λ
(Z − ct)

}
. (13.1.27)
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From (13.1.11), (13.1.19), (13.1.21) and (13.1.22) we have

U = −2πaϵ

λ
cos

{
2π

λ
(Z − ct)

}[
cR3

h3
− 2qR

πh3
+

2qR3

πh5

]
(13.1.28)

W = 2
[ q

πh4
+

c

h2

]
(h2 −R2). (13.1.29)

Here h is determined as a function of Z and t from (13.1.26), and q is known from (13.1.25) after Q is deter-
mined experimentally.

To determine the pressure drop across a length equal to the wavelength λ, we integrate (13.1.18) to get

(∆p)k = −8µq

πa4

λ∫
0

dz[
1 + ϵ sin

(
2π
λ z
)]4 − 8µc

πa2

λ∫
0

dz[
1 + ϵ sin

(
2π
λ z
)]2

= − 4µλ

π2a4

2π∫
0

[
q

[1 + ϵ sin τ ]4
+

πca2

[1 + ϵ sin τ ]2

]
dr

= −4µλ

πa4

[
q

2 + 3ϵ2

(1− ϵ2)7/2
+

2πca2

(1− ϵ2)3/2

]
. (13.1.30)

The pressure drop across one wavelength would be zero if

q = −2πc
a2(1− ϵ2)2

2 + 3ϵ2
, (13.1.31)

and then from (13.1.25),

Q =
πa2c(16ϵ2 − ϵ4)

2(2 + 3ϵ2)
. (13.1.32)

Substituting (13.1.31) in (13.1.28) and (13.1.29), we get

U = −2πacϵR

λh3
cos

{
2π

λ
(Z − ct)

}[
R2 +

4ca2(1− ϵ2)2

2 + 3ϵ2

(
1− R2

h2

)]
, (13.1.33)

W = 2c

[
1− 2a2(1− ϵ2)2

h2(2 + 3ϵ2)

](
1− R2

h2

)
. (13.1.34)

For every fixed z, we can draw the velocity profiles U/c and W/C in the special case (∆p)λ = 0. If
(∆p)λ ̸= 0, then velocity profiles will depend also on q.

Solved Problem: Long-wavelength Approximation to Peristaltic Flow in a Tube

Consider the peristaltic flow of an incompressible fluid with viscosity µ through a long circular tube of radius
R. The long-wavelength approximation to the velocity profile of the fluid is given by:

v(r, t) = − a2

4µ

∂p

∂x
R2

where:

• v(r, t) is the velocity of the fluid at radial position r and time t,
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• a is the amplitude of the peristaltic wave,

• µ is the viscosity of the fluid,

• p is the pressure in the tube, and

• x is the axial coordinate.

Determine the volumetric flow rate (Q) of the fluid through the tube in terms of the amplitude a and the
pressure gradient ∂p

∂x .

Solution

The volumetric flow rate (Q) can be calculated by integrating the velocity profile over the cross-section of the
tube and multiplying by the cross-sectional area:

Q =

∫ R

0
v(r, t) · 2πr dr

Substituting the given velocity profile:

Q =

∫ R

0
− a2

4µ

∂p

∂x
R2 · 2πr dr

Q = − a2

4µ

∂p

∂x
R2

∫ R

0
2πr dr

Q = − a2

4µ

∂p

∂x
R2
[
πr2
]R
0

Q = − a2

4µ

∂p

∂x
R2
[
πR2 − π · 02

]
Q = − a2

4µ

∂p

∂x
R2 · πR2

Q = − a2

4µ

∂p

∂x
πR4

Q = − a2

4µ

∂p

∂x
A

where A is the cross-sectional area of the tube.

Conclusion

The volumetric flow rate (Q) of the fluid through the tube in terms of the amplitude a and the pressure gradient
∂p
∂x is Q = − a2

4µ
∂p
∂xA. This expression provides insights into the flow characteristics of peristaltic flow in long

tubes.
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Unit 14

Course Structure

• Two Dimensional Flow in Renal Tubule

• Function of Rennal Tubule

• Basic Equations and Boundary Conditions

• Solution When Radial Velocity at Wall Decreases Linearly with z

14.1 Two Dimensional Flow in Renal Tubule

Renal tubules are the functional units of the kidney responsible for the filtration, reabsorption, and secretion of
substances from the blood to form urine. The flow of fluid through renal tubules exhibits complex dynamics,
including two-dimensional flow patterns that play a crucial role in kidney function.

The two-dimensional flow in renal tubules refers to the flow of fluid along the length of the tubule as well
as across its cross-section. This flow pattern is influenced by various factors, including the structure of the
tubule, the properties of the fluid, and the physiological processes occurring within the kidney.

Mathematically modeling two-dimensional flow in renal tubules involves solving partial differential equa-
tions that describe fluid dynamics in two dimensions. These equations take into account factors such as fluid
viscosity, tubule geometry, and boundary conditions imposed by the tubule walls.

Understanding two-dimensional flow in renal tubules is essential for elucidating key physiological pro-
cesses in the kidney, such as tubular reabsorption and secretion. For example, the distribution of solutes and
ions across the cross-section of the tubule affects their transport properties and determines their concentration
gradients along the tubule length.

Two-dimensional flow in renal tubules also plays a role in the formation and regulation of urine volume
and composition. By controlling the rate and direction of fluid flow, the kidney can adjust the concentration
of solutes in the urine and maintain fluid balance in the body.

In addition to its physiological significance, the study of two-dimensional flow in renal tubules has practical
implications for medical research and clinical practice. Insights gained from mathematical modeling and
experimental studies of renal tubule flow can inform the development of therapies for kidney diseases and
disorders.
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Overall, two-dimensional flow in renal tubules is a complex yet essential aspect of kidney function, with
implications for both basic science and clinical medicine.

14.1.1 Function of Renal Tubule

The functional unit of the kidney is called the nephron or renal tubule, and each kidney has about 1 million
of these tubules. One major part of a nephron is the glomerular tuft through which blood coming from the
renal artery and afferent arterioles is filtered. THe glomerular filtrate is essentially identical to plasma, and
no chemical separation occurs upto this point. If the kidneys deliver this filtrate for excretion, the body loses
many valuable materials, including water, at a rate faster than the one at which they can supplied by synthesis
or feeding. The rest of the nephron therefore recovers these valuable materials and returns them to the blood.
Thus about 80 per cent of the filtrate is reabsorbed in the proximal tubule, and of the remaining, about 95 per
cent is further reabsorbed by the end of the collecting ducts.

This reabsorption or seepage creates a radial component of the velocity in the cylindrical tubule, which
must be considered along with the axial component of the velocity (see Fig. 14.1). Due to loss of fluid from

Figure 14.1: Two-dimensional flow in renal tubule.

the walls, both the radial and axial velocities decrease with z. Mathematically, we have to solve the problem
of flow of viscous fluid in circular cylinder when there are axial and radial components of velocity and the
radial velocity at all points on the surface of the cylinder is prescribed and is a decreasing function ϕ(z) of z.

14.1.2 Basic Equations and Boundary Conditions

At the outset, we may note that the equation of motion can be simplified since the inertial term in relation
to the viscous terms can be neglectedd. THe average tubular radius is about 10−3 cm, the average velocity
is abut 10−1 cm/sec, since this is very much less than one, we neglect the inertial terms to get the following
equations of continuity and motion

1

r

∂

∂r
(rvr) +

∂vz
∂z

= 0, (14.1.1)

1

µ

∂p

∂r
=

∂

∂r

(
1

r

∂

∂r
(rvr)

)
+
∂2vr
∂z2

, (14.1.2)

1

µ

∂p

∂z
=

∂

∂r

(
1

r

∂

∂r
(rvz)

)
+
∂2vz
∂z2

, (14.1.3)
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The boundary conditions are

∂vz
∂r

= 0, vr = 0, vz = finite at r = 0, (14.1.4)

vz = 0, vr = ϕ(z) at r = R, (14.1.5)

p = p0 at z = 0, (14.1.6)

p = pL at z = L. (14.1.7)

Eliminating p between (14.1.2) and (14.1.3), we get

∂2

∂r∂z

[
1

r

∂

∂z
(rvz)

]
+
∂3vr
∂z3

=
∂

∂r

[
1

r

∂

∂r

(
r
vz
∂r

)]
+

∂3vz
∂z2∂r

. (14.1.8)

Taking the partial derivative of this equation with respect to z and substituting from (14.1.1), we get[
∂

∂r

(
1

r

∂

∂r

(
r
∂

∂r

(
1

r

∂

∂r

)))
+ 2

∂

∂r

(
1

r

∂

∂r

(
∂2

∂z2

))
+

1

r

∂4

∂z4

]
(rvr) = 0. (14.1.9)

Alternatively, we can satisfy (14.1.1) by taking

vr =
1

r

∂ψ

∂z
, vz = −1

r

∂ψ

∂r
. (14.1.10)

Substituting (14.1.9) in (14.1.7), we get
D2(D2ψ) = 0, (14.1.11)

where the operator D2 is defined by

D2 ≡ ∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2
. (14.1.12)

If
vr = f(r)g(z), (14.1.13)

then the form of (14.1.8) suggests that an analytical solution may be possible if

g(z) = A0 +A1z or g(z) = A2e
−γz. (14.1.14)

From (14.1.5) since vr = ϕ(z) when r = R, we get

f(R)g(z) = ϕ(z). (14.1.15)

This suggests that we may get an analytical solution when the radial component of velocity on the surface of
the cylinder is given by

ϕ(z) = a0 + a1z or ϕ(z) = ceγz. (14.1.16)

We shall give the solutions for a special cases in §14.1.3.

14.1.3 Solution When Radial Velocity at Wall Decreases Linearly with z

For (14.1.11), we try the solution

ψ(r, z) = F (r)

(
a0z +

1

2
a1z

2

)
+G(r) (14.1.17)
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so that using (14.1.10), we get

vr =
1

r
F (r)(a0 + a1z), (14.1.18)

vz = −1

r
F ′(r)

(
a0z +

1

2
a1z

2

)
− 1

r
G′(r), (14.1.19)

D2ψ =

(
d2

dr2
− 1

r

d

dr

)
F (r)

(
a0z +

1

2
a1z

2

)
+

(
d2

dr2
− 1

r

d

dr

)
G(r) + a1F (r),(14.1.20)

D2(D2ψ) =

(
d2

dr2
− 1

r

d

dr

)2

F (r)

(
a0z +

1

2
a1z

2

)
+

(
d2

dr2
− 1

r

d

dr

2)
G(r)

+2a1

(
d2

dr2
− 1

r

d

dr

)
F (r) = 0. (14.1.21)

From (14.1.1) and (14.1.21), we get(
d2

dr2
− 1

r

d

dr

)2

F (r) = 0, (14.1.22)(
d2

dr2
− 1

r

d

dr

)2

G(r) + 2a1

(
d2

dr2
− 1

r

d

dr

)
F (r) = 0. (14.1.23)

Equation (14.1.22) gives(
d2

dr2
− 1

r

d

dr

)
H(r) = 0,

(
d2

dr2
− 1

r

d

dr

)
F (r) = H(r). (14.1.24)

Solving (14.1.24), we get

H(r) = Ar2 +B, (14.1.25)

r2
d2F

dr2
− r

dF

dr
= Ar4 −Br2. (14.1.26)

Integrating (14.1.26), we obtain

F (r) = C +Dr2 +
Ar4

8
+
Br2

2
ln r. (14.1.27)

From (14.1.23) and (14.1.27), we have(
d2

dr2
− 1

r

d

dr

)[(
d2

dr2
− 1

r

d

dr

)
G(r) + 2a1F (r)

]
= 0. (14.1.28)

Using (14.1.24) and (14.1.25), we get(
d2

dr2
− 1

r

d

dr

)
G(r) + 2a1F (r) =Mr2 +N. (14.1.29)

Now from (14.1.24), (14.1.25), (14.1.18) and (14.1.19), we have

d

dr

[
1

r
F ′(r)

]
= 0 at r = 0, (14.1.30)

d

dr

[
1

r
G′(r)

]
= 0 at r = 0, (14.1.31)

1

r
F (r) = 0 at r = 0, (14.1.32)

1

r
F ′(r) and

1

r
G′(r) are finite at r = 0, (14.1.33)

F ′(R) = 0, G′(R) = 0, F (R) = R. (14.1.34)
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From (14.1.27), (14.1.32) and (14.1.33), we obtain

C = 0, B = 0. (14.1.35)

From (14.1.27), (14.1.34) and (14.1.35)

2DR+
1

2
AR3 = 0, DR2 +

AR4

8
= R (14.1.36)

so that

F (r) =
2r2

R
− r4

R3
= R

[
2
( r
R

)2
−
( r
R

)4]
. (14.1.37)

Substituting (14.1.37) in (14.1.29), we get

d2G

dr2
− 1

r

dG

dr
=Mr2 +N − 4a1

r2

R
+ 2a1

r4

R3
. (14.1.38)

Integrating (14.1.38), we obtain

G(r) =M1r
2 +N1 +

Mr4

8
+
Nr2 ln r

2
− a1

2

r4

R
+
a1
12

r6

R3
. (14.1.39)

From (14.1.33) and (14.1.39), we have
N = 0. (14.1.40)

From (14.1.34) and (14.1.39), we have

2M1R+
1

2
MR3 − 3a1

2
R2 = 0. (14.1.41)

Equation 14.1.41 can determine only one of the two unknown constants M and M1. To determine both of
them, we need one more relation. This relation can be found in terms of Q0 which is the total flux at z = 0.
Using (14.1.18) and (14.1.19), we get

Q(z) =

R∫
0

2πrvz(r, z) dr

= 2π

R∫
0

[(
4r3

R3
− 4r

R

)(
a0z +

1

2
a1z

2

)
− 2M1r −

Mr3

2
− 2a1

R
r3 +

a1r
5

2R3

]
dr,(14.1.42)

∴
Q0

2πR2
=

MR2

8
− a1

3
R, (14.1.43)

⇒M =
8

R2

(
Q0

2πR2
+
a1R

3

)
, (14.1.44)

⇒M1 = − Q0

πR2
+
a1R

12
. (14.1.45)

From (14.1.39), (14.1.40), 14.1.44 and 14.1.45,

G(r) =

(
a1R

12
− Q0

πR2

)
r2 +N1 +

1

R2

(
Q0

2πR2
+
a1R

3

)
r4 − a1

2

r4

R
+
a1
12

r6

R3
. (14.1.46)

The constant N1 need not to be determined since ψ(r, z) can always contain an arbitrary constant without
affecting the velocity components.
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From (14.1.18) and (14.1.19), (14.1.27), (14.1.46), we have

vr(r, z) =

[
2
r

R
−
( r
R

)3]
(a0 + a1z), (14.1.47)

vz(r, z) = −4

(
r

R
− r3

R3

)(
a0z +

1

2
a1z

2

)
− 2

(
a1R

12
− Q0

πR2

− 4

R2

(
Q0

2πR2
+
a1R

3

)
r2 + 2a1

r2

R
− a1

2

r4

R3

)

=

(
1− r2

R2

)[
2Q0

πR2
− 2

R
(2a0z + a1z

2)− a1R

2

(
1

3
− r2

R2

)]
. (14.1.48)

Differentiating (14.1.42), we obtain

dQ

dz
= 8π(a0 + a1z)

R∫
0

(
r3

R3
− r

R

)
dr = −2πR(a0 + a1z) (14.1.49)

so that the decrease of flux is equal to the amount of the fluid coming out of the cylinder per unit length per
unit time. Integrating (14.1.49), we get

Q(z) = Q0 − πR(2a0z + a1z
2). (14.1.50)

From (14.1.48) and (14.1.50), we have

vz =

(
1− r2

R2

)[
2Q(z)

πR2
− a1R

2

(
1

3
− r2

R2

)]
. (14.1.51)

For Hagen-Poiseuille flow in a circular tube, we have

vz =

(
1− r2

R2

)
2Q

πR2
. (14.1.52)

Comparing (14.1.51) and (14.1.52), we find that there are two changes:

(i) Q is replaced by the variable Q(z), and

(ii) there is further distortion due to the varying nature of the radial flow.

Using (14.1.2), (14.1.3), (14.1.47), (14.1.48) and (14.1.50), we get

∂p

∂r
= −8µr

R2
(a0 + a1z), (14.1.53)

∂p

∂z
= −4a1µ

R

[
r2

R2
+

2Q(z)

a1πR3
+

1

2

]
. (14.1.54)

Integrating (14.1.53), we obtain

p(r, z) = −4µr2

R3
(a0 + a1z) +K(z). (14.1.55)

Differentiating (14.1.55) partially with respect to z and then substituting ∂p/∂z in (14.1.54), we get

K ′(z) = −4a1µ

R

[
1

3
+

2Q(z)

a1πR2

]
(14.1.56)
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so that

K(z) = −4a1µ

R

[
1

3
z +

2zQ(z)

a1πR3

]
+K0, (14.1.57)

where

Q(z) =

z∫
0

Q(z) dz. (14.1.58)

Substituting from (14.1.57) in (14.1.56), we get

p(r, z)− p(0, 0) = −4µ

R
(a0 + a1z)

r2

R2
− µ

(
4a1
3R

+
8Q

πR4

)
z. (14.1.59)

The average pressure p(z) at any section is given by

p(z) =

R∫
0

p(r, z)2πr dr

R∫
0

2πr dr

= −µ
[
2a0
R

+

(
8Q(z)

πR4
+

10a1
3R

)
z

]
(14.1.60)

Thus the pressure drop over the tube length L is

∆p = p(0)− p(L) = µ

[
8Q(L)

πR4
+

10a1
3R

]
L. (14.1.61)
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Unit 15

Course Structure

• Diffusion and Diffusion-Reaction Models

• Fick’s Laws of Diffusion

• Solution of the One-dimensional Diffusion Equation

• Solution of the Two-dimensional Diffusion Equation

15.1 The Diffusion Equation

15.1.1 Fick’s Laws of Diffusion

Let c(x, y, z, t) be the concentration of a solute or the amount of the solute per unit volume at the point (x, y, z)
at time t. Due to the concentration gradient grad c, there is a flow of solute given by the current density vector
j, which, according to Fick’s first law of diffusion, is given by

j = D grad c = −D∇c (15.1.1)

or

jx = −D ∂c

∂x
, jy = −D∂c

∂y
, jz = −D∂c

∂z
. (15.1.2)

Here the quantities jx, jy, jz give respectively the amounts of the solute crossing the planes perpendicular to
x, y, z axes per unit area per unit time so that the dimensions of D are

ML−2T−1

ML−3L−1
= L2T−1. (15.1.3)

The negative signs in (15.1.1) and (15.1.2) indicate that the flow takes place in the direction of decresing con-
centration. D can vary with x, y, z but we shall take it to be constant. Its values for some common biological
solutes in water lie between 0.05× 10−6 and 10× 10−6 cm2/sec.
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Figure 15.1: Control volume.

Now, consider a volume V with surface S (see Fig. 15.1). The rate of change of the amount of the solute is
given by

∂

∂t

∫
V

c(x, y, z, t) dx dy dz. (15.1.4)

The amount of the solute which comes out of the surface S per unit time is given by∫
S

j · n̂ dS, (15.1.5)

where n̂ is the unit normal vector to the surface. If there is no source or sink inside the volume, then on using
(15.1.1), (15.1.4) and (15.1.5), and Gauss’ divergence theorem, we get

∂

∂t

∫
V

c(x, y, z, t) dx dy dz = −
∫
S

j · n̂ dS

=

∫
S

(D grad c) · n̂ dS

=

∫
V

div (D grad c) dx dy dz (15.1.6)

so that ∫
V

[
∂c

∂t
− div (D grad c)

]
dx dy dz = 0. (15.1.7)

Since (15.1.7) holds for all volumes, we get Fick’s second law of diffusion as

∂c

∂t
= div (D grad c). (15.1.8)

Since D is assumed to be constant, we get the diffusion equation

∂c

∂t
= D div (grad c) = D∇2c = D

(
∂2c

∂x2
+
∂2c

∂y2
+
∂2c

∂z2

)
. (15.1.9)

The equation governing the temperature θ of a heat-conducting homogeneous solid is given by

∂θ

∂t
= k

(
∂2θ

∂x2
+
∂2θ

∂y2
+
∂2θ

∂z2

)
. (15.1.10)

where k is called the thermal diffusivity of the solid. The diffusion equation is therefore also known as the
heat-conduction equation.
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15.1.2 Some Solution of the One-dimensional Diffusion Equation

Solution I

If there is diffusion only in the direction of the x-axis, (15.1.9) gives

∂c

∂t
= D

∂2c

∂x2
. (15.1.11)

By differentiating and substituting in (15.1.11), it can be easily verified that

c = c(x, t) =
m

(4πDt)1/2
exp

[
− x2

4Dt

]
(15.1.12)

is a solution of (15.1.11). Also,

∞∫
−∞

c(x, t) dx =
m

(4πDt)1/2

∞∫
−∞

exp

[
− x2

4Dt

]
dx

=
m√
2π

∞∫
−∞

exp

[
−1

2
y2
]
dy = m (15.1.13)

so that m denotes the total amount of the diffusing solute. It is easily seen that
c

m
is the density function

for the normal probability distribution with mean zero and variance 2Dt. The graphs of c
m against x for

Dt = 4, 1, 1/4, 1/9 and 1/6 are given in Fig. 15.2.

Figure 15.2: Graph of c/m against x.
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The area under each of these curves is unity. As t → 0, the variance tends to zero and we get Dirac
delta-function δ(x) which vanishes everywhere except at x = 0 and is such that

∞∫
−∞

δ(x) dx = 1,

∞∫
−∞

f(x)δ(x) dx = f(0). (15.1.14)

It thus appears that

δ(x) = lim
t→0

1

(4πDt)1/2
exp

[
− x2

4Dt

]
. (15.1.15)

Thus (15.1.12) gives the concentration due to a solute mass m placed at x = 0 at time t = 0. If a unit mass of
solute is placed at x = ξ, the concentration c(x, t) is given by

c(x, t) =
1

(4πDt)1/2
exp

[
−(x− ξ)2

Dt

]
. (15.1.16)

If the solute has an initial density distribution A(ξ) dξ, then the concentration of the solute at time t is given
by

c(x, t) =
1

(4πDt)1/2

∞∫
0

A(ξ) exp

[
−(x− ξ)2

Dt

]
dξ. (15.1.17)

Solution II

For obtaining the second solution of (15.1.11), if c(x, t) satisfies (15.1.11), then
∂c

∂x
also satisfies it. Con-

versely, if (15.1.12) is a solution of (15.1.11), then

m

(4πDt)1/2

x∫
−∞

exp

[
− x2

4Dt

]
dx =

m√
π

η∫
0

exp[−η2] dη, (15.1.18)

where
η =

x

(4Dt)1/2
, (15.1.19)

is also a solution of (15.1.11). If we define error function erf(z) and error function complement erfc(z) as

erf(z) =
2√
π

z∫
0

exp[−η2] dη,

ercf(z) = 1− erf(z) =
2√
π

∞∫
z

exp[−η2] dη,

(15.1.20)

then we find that erfc
[

x

(4Dt)1/2

]
is a solution of the one-dimensional diffusion equation. We may note that

erf(−z) = erf(z), erf(0) = 0, erf(∞) = 1. (15.1.21)

Since both erf(z) and erfc(z) are tabulated functions, we have a convenient solution of the one dimensional
diffusion equation.
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Solution III

For solving the boundary value problem for which there is no flux at x = 0 and x = a, i.e., for solving
(15.1.11) subject to the boundary conditions

∂c

∂x
= 0 at x = 0, x = a, (15.1.22)

we use the method of separation of variables and try the solution of the form

c(x, t) = X(x)T (t) (15.1.23)

for (15.1.11) to get
1

T

dT

dt
=
D

X

d2X

dx2
= −k2 (say) (15.1.24)

so that

c(x, t) =
∑
k

exp[−k2t]
[
Ak cos

(
kx√
D

)
+Bk sin

(
kx√
D

)]
. (15.1.25)

Equation (15.1.22) then give

Bk = 0,
k√
D

=
nπ

a
(15.1.26)

so that

c(x, t) =
∞∑
n=0

Cn exp

[
−n

2π2Dt

a2

]
cos
[nπx
a

]
. (15.1.27)

To determine the constants Cn, we make use of the knowledge of the initial distribution of concentration
c(x, 0) = f(x), so that

f(x) =
∞∑
n=0

Cn cos
(nπx

a

)
. (15.1.28)

Expanding f(x) in a half-range cosine series, we get

C0 =
1

a

a∫
0

f(x) dx, (15.1.29)

Cn =
2

a

a∫
0

f(x) cos
(nπx

a

)
dx (n = 1, 2, 3, . . .). (15.1.30)

As t→ ∞, we get, from (15.1.27) and (15.1.29),

lim
t→∞

c(x, t) = C0 =
1

a

a∫
0

f(x) dx (15.1.31)

which is only the average value of the initial concentration. This shows that, as t → ∞, the concentration
tends to become uniform and equal to the average value of the initial concentration. In fact, from (15.1.27),

a∫
0

c(x, t) dx = C0a =

a∫
0

f(x) dx (15.1.32)

so that the total amount of the solute at any time t is equal to the initial total amount. This result is expected
since, according to boundary conditions (15.1.22), no solute enters or leaves the boundaries.
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15.1.3 Some Solutions of the Two-dimensional Diffusion Equation

Solution I

By using the method of separation of variables, it is easily seen that the solution of the equation

∂c

∂t
= D

(
∂2c

∂x2
+
∂2c

∂y2

)
(15.1.33)

is
c(x, y, t) =

∑
λ

∑
µ

Cλµ cos(λx+ ϵk) cos(µx+ ϵmu) exp[−(λ2 + µ2)Dt]. (15.1.34)

If the boundary conditions are

∂c

∂x
= 0 when x = 0, a,

∂c

∂y
= 0 when y = 0, b,

(15.1.35)

we get
ϵλ = 0, ϵµ = 0, λ =

mπ

a
, µ =

nπ

b
(15.1.36)

so that

c(x, y, t) =
∞∑

m=0

∞∑
n=0

Cmn cos
(mπx

a

)
cos
(nπx

b

)
exp

[
−
(
m2π2

a2
+
n2π2

b2

)
Dt

]
. (15.1.37)

If the initial concentration is f(x, y), then we get

C00 =
1

ab

b∫
0

a∫
0

f(x, y) dy dx, (15.1.38)

Cm0 =
2

ab

b∫
0

a∫
0

f(x, y) cos
(mπx

a

)
dy dx, (15.1.39)

C0n =
2

ab

b∫
0

a∫
0

f(x, y) cos
(mπy

b

)
dy dx, (15.1.40)

Cmn =
4

ab

b∫
0

a∫
0

f(x, y) cos
(mπx

a

)
cos
(nπy

b

)
dy dx, (15.1.41)

so that, as expected

lim
t→∞

c(x, y, t) = C00 =
1

ab

b∫
0

a∫
0

f(x, y) dy dx, (15.1.42)

b∫
0

a∫
0

c(x, y, t) dy dx = abC00 =

b∫
0

a∫
0

f(x, y) dy dx. (15.1.43)
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Solution II

For the axially-symmetric case, the diffusion equation in cylindrical polar coordinates is

∂c

∂t
= D

(
∂2c

∂r2
+

1

r

∂c

∂r
+
∂2c

∂z2

)
. (15.1.44)

By using the method of separation of variables, we get a solution of (15.1.44), namely,

c(x, z, t) =
∑
µ

∑
k

AλµJ0(
√
λ2 + µ2r) exp(−λ2Dt± µz). (15.1.45)

A solution independent of z is
c(r, t) =

∑
λ

AkJ0(λr) exp(−λ2Dt). (15.1.46)

If the flux
∂c

∂r
= 0 across the cylindrical boundary r = a, then

J1(λa) = 0 or λ =
ξ

a
, (15.1.47)

where ξ is a zero of the first order Bessel function. Hence

c(r, t) =
∞∑
n=1

BnJ0

(
ξn
r

a

)
exp

[
−
(
ξ2n
a2

)
Dt

]
, (15.1.48)

where ξn is the n-th zero of J1(x). The constants Bn are to be determined from

c(r, 0) = f(r) =
∞∑
n=1

BnJ0

(
ξn
r

a

)
. (15.1.49)

If the boundary condition is c = 0 at r = a, then (15.1.46) gives

J0(λa) = 0 (15.1.50)

so that

c(r, t) =
∞∑
n=1

Dn exp

[
−η

2
nDt

a
J0

(ηnr
a

)]
, (15.1.51)

where

Dn =
2

a2J2
1 (ηn)

a∫
0

rf(r)J0

(ηnr
a

)
dr (15.1.52)

and ηn is the n-th zero of zero order Bessel function.
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Unit 16

Course Structure

• Ecological Application of Diffusion Models

• Diffusion on the Stability of Single Species Model

• Diffusion on the Stability of Two Species Model

• Diffusion on the Stability of Prey-Predator Models

16.1 Application of Diffusion and Diffusion-Reaction Models in Population
Biology

In the absence of diffusion, if an ecological model for n species is

dci
dt

= Qi(c1, c2, . . . , cn), (16.1.1)

then a model with diffusion is represented by

∂ci
∂t

= Di∇2ci +Qi(c1, c2, . . . , cn), i = 1, 2, . . . , n, (16.1.2)

where Di is the coefficient of diffusion of the i-th substance and Qi is the rate of its generation per unit time.
Equation (16.1.2) is called diffusion-reaction equation. IN particular, ifN1(x, t),N2(x, t) denote the densities
of the two species at the point x at time t in a medium in which both species are diffusing in the direction of
the x-axis only, then a competition model with diffusion is

∂N1

∂t
= N1(a1 − b11N1 − b12N2) +D1

∂2N1

∂x2
,

∂N2

∂t
= N2(a2 − b21N1 − b22N2) +D2

∂2N2

∂x2
,

(16.1.3)

and a prey-predator model with diffusion is

∂N1

∂t
= N1(a1 − b11N1 − b12N2) +D1

∂2N1

∂x2
,

∂N2

∂t
= N2(−a2 − b21N1 − b22N2) +D2

∂2N2

∂x2
,

(16.1.4)

151



152 UNIT 16.

Now we will discuss the stabilities of the equilibrium states of these models.

16.2 Absence of Diffusive Instability for Single Species

In the absence of diffusion, let a population grow according to the law

dN

dt
= f(N). (16.2.1)

Let the population be confined to the volume 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c, and let there be diffusion.
Let there be no flux across the faces of the rectangular parallelepiped so that (16.2.1) becomes

∂N

∂t
= f(N) +D

(
∂2N

∂x2
+
∂2N

∂y2
+
∂2N

∂z2

)
. (16.2.2)

The boundary conditions are

∂N

∂x
= 0 at x = 0, a,

∂N

∂y
= 0 at y = 0, b,

∂N

∂z
= 0 at z = 0, c.

(16.2.3)

If N gives an equilibrium value for (16.2.1), it also gives an equilibrium value for (16.2.2). Let

N(x, y, z, t) = N + u(x, y, z, t), (16.2.4)

where u is sufficiently small so its squares and higher powers can be neglected. Then (16.2.2) gives

∂u

∂t
= u

∂f

∂N
+D

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
. (16.2.5)

where
∂f

∂N
denote the value of

∂f

∂N
at the equilibrium pointN . Now the boundary condition (16.2.3) becomes

∂u

∂x
= 0 at x = 0, a,

∂u

∂y
= 0 at y = 0, b,

∂u

∂z
= 0 at z = 0, c.

(16.2.6)

For (16.2.5), we try the solution

u(x, y, z, t) = eλt
∑
p

∑
n

∑
m

Amnp cos
(mπx

a

)
cos
(nπy

b

)
cos
(pπz
c

)
(16.2.7)

which automatically satisfies boundary conditions (16.2.6). Substituting (16.2.7) in (16.2.5), we get

λ− ∂f

∂N
+D

(
m2π2

∂a2
+
n2π2

b2
+
p2π2

∂c2

)
= 0 (16.2.8)
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or

λ =
∂f

∂N
−Dσ2, where σ2 =

(
m2

∂a2
+
n2

b2
+

p2

∂c2

)
π2. (16.2.9)

If, in the absence of diffusion, the equilibrium position is unstable, then
∂f

∂N
is negative, and so λ is also

negative. Therefore, a position of equilibrium, which is stable in the absence of diffusion remains stable
when there is diffusion in a finite domain with no flux across its surfaces. Thus there is no possibility of
diffusion-induced instability when there is only one single species.

16.3 Possibility of Diffusive Instability for Two Species

If N1(x, y, z, t) and N2(x, y, z, t) are the populations of the two species, then the basic diffusion reaction
equations are

∂N1

∂t
= f1(N1, N2) +D1

(
∂2N1

∂x2
+
∂2N1

∂y2
+
∂2N1

∂z2

)
, (16.3.1)

∂N2

∂t
= f2(N1, N2) +D2

(
∂2N2

∂x2
+
∂2N2

∂y2
+
∂2N2

∂z2

)
. (16.3.2)

The equilibrium position for these equations is given by

f1(N1, N2) = 0, f2(N1, N2) = 0. (16.3.3)

If

N1(x, y, z, t) = N1 + u1(x, y, z, t),

N2(x, y, z, t) = N2 + u2(x, y, z, t),
(16.3.4)

then, after substituting (16.3.1) and (16.3.2) and linearlizing, we get

∂u1
∂t

= u1
∂f1

∂N1

+ u2
∂f1

∂N2

+D1

(
∂2u1
∂x2

+
∂2u1
∂y2

+
∂2u1
∂z2

)
, (16.3.5)

∂u2
∂t

= u1
∂f2

∂N1

+ u2
∂f2

∂N2

+D2

(
∂2u2
∂x2

+
∂2u2
∂y2

+
∂2u2
∂z2

)
(16.3.6)

where
∂fi

∂Ni

, i = 1, 2, denotes the value of
∂fi
∂Ni

at the equilibrium point N1, N2. When there is no flux, the

boundary conditions are

∂ui
∂x

= 0 at x = 0, a,

∂ui
∂y

= 0 at y = 0, b,

∂ui
∂z

= 0 at z = 0, c.

(16.3.7)

where i = 1, 2. Trying the solution

u1 = eλt
∑
p

∑
n

∑
m

amnp cos
mπx

a
cos

nπy

b
cos

pπz

c
,

u2 = eλt
∑
p

∑
n

∑
m

bmnp cos
mπx

a
cos

nπy

b
cos

pπz

c
,

(16.3.8)
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we get ∣∣∣∣∣∣∣∣∣∣
λ− ∂f1

∂N1

+D1σ
2 − ∂f1

∂N2

− ∂f2

∂N1

λ− ∂f2

∂N2

+D2σ
2

∣∣∣∣∣∣∣∣∣∣
= 0 (16.3.9)

where σ2 =
(
m2

a2
+
n2

b2
+
p2

c2

)
π2.

or

λ2 + λ

[
(D1 +D2)σ

2 − ∂f1

∂N1

− ∂f2

∂N2

]
+

(
∂f1

∂N1

∂f2

∂N2

− ∂f1

∂N2

∂f2

∂N1

)
− σ2

(
D1

∂f2

∂N2

+D2
∂f1

∂N1

)
+D1D2σ

4 = 0. (16.3.10)

In the absence of diffusion, the equation corresponding to (16.3.10) is

λ2 − λ

(
∂f1

∂N1

+
∂f2

∂N2

)
+

(
∂f1

∂N1

∂f2

∂N2

− ∂f1

∂N2

∂f2

∂N1

)
= 0. (16.3.11)

We assume that the equilibrium position (N1, N2) is stable in the absence of diffusion so that(
∂f1

∂N1

+
∂f2

∂N2

)
< 0,

(
∂f1

∂N1

∂f2

∂N2

− ∂f1

∂N2

∂f2

∂N1

)
> 0. (16.3.12)

Inequalities (16.3.12) show that the coefficient of λ in (16.3.10) is positive and the constant term in (16.3.10)
is also positive if

D1
∂f2

∂N2

+D2
∂f1

∂N1

< 0. (16.3.13)

Thus, if (16.3.13) is satisfied, the equilibrium position which is stable in the absence of diffusion remains stable
when there is diffusion. In particular, in view of the first inequality in (16.3.12), if the diffusion coefficients are
equal, diffusion fails to induce instability. Thus for diffusion-induced instability to occur, it is necessary that
D1 and D2 should be unequal; but his condition is obviously not sufficient. Even when inequality (16.3.13)
is reversed, the constant term in (16.3.10) may be (but need not to be) negative, and the equilibrium position
may be unstable when there is diffusion. A sufficient condition for diffusion-induced instability is(

∂f1

∂N1

∂f2

∂N2

− ∂f1

∂N2

∂f2

∂N1

)
+D1D2σ

4 − σ2
(
D1

∂f2

∂N2

+D2
∂f1

∂N1

)
< 0 (16.3.14)

for some integral values of m,n, p. We may note that the stable equilibrium remain stable in spite of diffusion
(16.3.13) is satisfied or if D1 = D2 or if

∂f1

∂N1

< 0,
∂f2

∂N2

< 0. (16.3.15)
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16.4 Influence of Diffusion on the Stability of Prey-Predator Models

Diffusion plays a crucial role in modifying the dynamics of prey-predator models by influencing the spatial
distribution of populations and their interactions. In classical Lotka-Volterra-type models, populations are
assumed to be well mixed, meaning that individuals have equal probability of encountering each other regard-
less of their spatial location. However, in real-world scenarios, populations are often distributed across space,
and diffusion can lead to non-trivial effects on the stability and behavior of prey-predator systems. Here are
some ways diffusion impacts the stability of these models:

1. Spatial Heterogeneity: Diffusion introduces spatial heterogeneity by allowing individuals to move
from one location to another. This can lead to spatial variation in population densities, resource avail-
ability, and encounter rates between prey and predators. As a result, the stability of the system may be
affected, with local variations in population dynamics influencing the overall behavior.

2. Spatial Patterns: Diffusion can give rise to spatial patterns in population distributions, such as traveling
waves, patchiness, or spatial segregation. These patterns can emerge due to the interplay between
local population dynamics and dispersal processes. The formation of spatial patterns can impact the
stability of the system by altering the spatial distribution of resources and interactions between prey and
predators.

3. Stabilizing or Destabilizing Effects: Diffusion can have both stabilizing and destabilizing effects on
prey-predator systems. On one hand, dispersal can enhance stability by promoting the spatial averaging
of population densities, reducing the likelihood of local extinctions or outbreaks. On the other hand,
diffusion can also destabilize the system by facilitating the spread of perturbations or enabling the
formation of spatially heterogeneous patterns that can lead to instability.

4. Spatial Synchrony: Diffusion can promote spatial synchrony, where populations in different locations
become synchronized in their dynamics. This can occur through the dispersal of individuals carrying
information about population fluctuations. Spatial synchrony can influence the stability of prey-predator
systems by affecting the persistence and resilience of populations across space.

5. Metapopulation Dynamics: Diffusion transforms the classical prey-predator model into a metapopu-
lation model, where local populations are connected through dispersal. Metapopulation dynamics can
exhibit complex behaviors such as source-sink dynamics, spatial rescue effects, and spatially implicit
Allee effects, which can have significant implications for the stability and persistence of populations.

In summary, diffusion can have profound effects on the stability of prey-predator models by introducing
spatial heterogeneity, generating spatial patterns, influencing synchrony, and altering metapopulation dynam-
ics. Understanding these effects is essential for predicting the dynamics of ecological systems and designing
effective conservation and management strategies.

We now consider the influence of diffusion on the stability of three prey-predator models:

(i) The simplest prey-predator model is

dN1

dt
= N1(a1 − α1N2),

dN2

dt
= N2(−a2 + α2N1) (16.4.1)
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so that

N1 =
a2
α2
, N2 =

a1
α1
,

∂f1

∂N1

= 0,
∂f2

∂N2

= 0,

∂f1

∂N1

= −α1
a2
α2
,

∂f2

∂N1

= α2
a1
α1
,

(16.4.2)

Then (16.3.10) and (16.3.11) becomes

λ2 + λ[(D1 +D2)σ
2] + a1a2 + σ4D1D2 = 0, (16.4.3)

λ2 + a1a2 = 0, (16.4.4)

so that the equilibrium is neutral without diffusion and is neutral or stable with diffusion. Thus diffusion
may ‘increase’ stability; at least it does not ‘decrease stability’.

(ii) For the more general prey-predator model given by (16.3.1) and (16.3.2), we have

∂f1

∂N1

≥ 0,
∂f2

∂N2

≤ 0,
∂f1

∂N2

< 0,
∂f2

∂N1

> 0. (16.4.5)

Thus, if the equilibrium is stable without diffusion and is unstable with diffusion, we get∣∣∣∣ ∂f2∂N2

∣∣∣∣ ≥ ∣∣∣∣ ∂f1∂N1

∣∣∣∣ , D2

∣∣∣∣ ∂f1∂N1

∣∣∣∣ > D1

∣∣∣∣ ∂f2∂N2

∣∣∣∣ (16.4.6)

which give D1 < D2. Thus for diffusion-induced instability, it is necessary that the coefficient of
diffusion for prey should be less than the diffusion coefficient for predator. Again, this condition is not
sufficient.

(iii) Consider the model which, in the absence of diffusion, is given by

dN1

dt
= N1[f(N1)−N2],

dN2

dt
= N2[N1 − g(N2)].

(16.4.7)

Then we have

f(N1) = N2, g(N2) = N2,

∂f1
∂N1

= N1f
′(N1),

∂f1

∂N2

= −N1,

∂f2

∂N1

= N2,
∂f2

∂N2

= −N2g
′(N2).

(16.4.8)

Now, (16.3.10) and (16.3.11) gives

λ2 + λ[(D1 +D2)σ
2 −N1f

′(N1) +N2g
′(N2)] + [−N1N2f

′(N1)g
′(N2) +N1N2]

+D1D2σ
4 − σ2[D2N1f

′(N1)−D1N2g
′(N2)] = 0, (16.4.9)

⇒ λ2 + λ[−N1f
′(N1) +N2g

′(N2)] +N1N2[1− f ′(N1)g
′(N2)] = 0. (16.4.10)

When there is no diffusion, the equilibrium is stable if

N2g
′(N2)−N1f

′(N1) > 0, 1− f ′(N1)g
′(N2) > 0. (16.4.11)
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When there is diffusion, the equilibrium can be unstable if

D2N1f
′(N1) > D1N2g

′(N2). (16.4.12)

By the same reasoning as before, D1 < D2. If f ′(N1) > 0, g′(N2) > 0, we can find the values of
m, n, p so that the equilibrium with diffusion is unstable. However, if f ′(N1) < 0, then g′(N2) > 0.
This is not possible, and the equilibrium continues to be stable.
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Unit 17

Course Structure

• Stochastic Model exploring Disease Dynamics

• The Deterministic Model

• The Way from Deterministic to Stochastic Model

• Formulation of the Kolmogorov’s Forward Equation

• The Quasi-Stationary distribution

• Distribution of the Time to Extinction

• Diffusion approximation and approximation of Quasi-Stationary distribution

17.1 Stochastic Model Exploring Fundamentals of a Disease Dynamics

This Chapter aims to provide an overview of the terms and methods applied to form a mathematical model in
sexually transmitted disease, specifically AIDS. This disease mainly spreads by attacking the immune system,
particularly by depleting the CD4 cells. Antiretroviral treatment has significantly improved prognosis for HIV-
1 infection, though life-long therapy remains a requirement for continuous viral suppression. Its long-term
toxicity is also a medical concern for humans and the economic cost of such antiretroviral drugs is a major
social problem. Application of highly specialized antigen-presenting dendritic cells (DCs) as a vaccine is thus
a very promising approach to improve deteriorated immune function in HIV-1-infected individuals. DCs not
only restore qualitative impairment of CTLs, but also stimulate naive CD8+T cells from the thymus during
antiretroviral treatment in such complex immune system. The safety and efficacy of DC-based vaccine are
thus investigated in this study, in stochastic point of view. In this following chapter, we obtain some analytical
results for the stochastic model posed in this work. In particular, we derive expressions for the distribution
function and expected time to extinction of the infected CD4+T cells.

Mathematical models play a significant role in such complex immunological systems. Mathematics pro-
vides an alternative way to make predictions about the behaviour of the system. Modelling the interaction
between immune CD4 cells and HIV-1 virus has been a major area of research for many years.

159
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While studying this mathematical model the first question that arises in our mind is: why we use stochastic
approach? There are real advantages in using stochastic rather than deterministic models, particularly when
we are modelling such an internal HIV dynamics. This is because different types of cells reacting in the same
system can often give different results. Deterministic models predict an uniquely specified time at which the
infected cell reaches any chosen level, whereas with a simple stochastic model we can successfully predict
the distribution of values for this quantity. Having a distribution for the predicted outcomes is more versatile
as it helps us examining important stochastic quantities, for example the variance of the number of infective
particles at a given time and the probability that the infective cell particles have died out at a given time, which
cannot be examined using deterministic models. Even quantities such as the expected values of the number
of cells can be more accurately modelled using stochastic models because they include the effect of random
variation on these quantities which deterministic models cannot.

There is a rich number of mathematical models which were developed to describe the viral dynamics of
HIV-1. Some scientists estimated virion clearance rate and life-span the HIV-infected cells. Some researchers
analysed a simplified version of the deterministic model where the interaction term between uninfected and
infected cells is neglected as an approximation, but no stochastical study has been included in their study.
observed 123 patients of transient viraemia and provided a statistical characterisation. They suggested that
patients have different tendencies to show transient viraemia during the period of viral load suppression. Other
researchers introduced a model of AIDS incorporating the concept of stochasticity via the technique of pa-
rameter perturbation which is standard in stochastic population modelling. They show that solutions of their
described model are all non-negative and a certain type of stochastic perturbation may help in stabilising the
system. have developed a mathematical model to find out the effect of the DC-based vaccination in the system
to control the disease progression.

17.2 The Deterministic Model

We consider a mathematical model in a long term dynamics with anti-retroviral treatment and in vitro dendritic
cell vaccination i.e. with monocyte derived dendritic cells (Dmo) or DC-based vaccine loaded with HIV-1 de-
rived cytotoxic T lymphocytes (CTL) peptides in a complex immunological system. Here, we assume that the
efficacy (εART ) of ART is very high and therefore the number of uninfected T-cells remains approximately
constant and equal to TS . This model consists three compartments: (I) the number of infected CD4+T cells,
I(t), which can replicate at a rate β1 and die at a rate, µI ; (II) the activated dendritic cells concentration,
DC(t), which becomes mature from premature stage at a rate s, migrate into the lymph and die at an average
per capita death rate, µD; (III) the CTL concentration, C(t) which is reduced at rate µC .

The interaction between infected CD4+T helper cells and activated DCs may result in infection of the
former at a rate, β2. This infection is mediated via DC-sign which allows DCs to transport HIV from peripheral
regions of the body to CD4+T lymphocytes. The mature DCs also interact with CD8+T-cells at a rate kθ,
where k is the average peptide specific T-cell receptor (TCR) and θ represents the average number of the
cognate pMHC complexes per DC. The CD8+T-cell proliferation is induced by cognate antigen presenting
DC at a rate r. Based on the above assumptions we construct a non-linear system as given below:
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dI

dt
= β1(1− εART )TSI + β2DCI − µII − pIC,

dDC

dt
= s− µDDC − knDCC − β2DCI,

dC

dt
= rkn(DC +Dmo)C − µCC. (17.2.1)

Now, at the equilibrium state we assume that dC
dt = 0. Thus, the third equation of (17.2.1) implies C = 0.

Using this proviso we can transform the system (17.2.1) into two dimensional so that I(t) and DC(t) satisfy

dDC

dt
= s− µDDC − β2DCI,

dI

dt
= β1(1− εART )TSI + β2DCI − µII. (17.2.2)

17.3 Analysis of the Stochastic Model

There are two state variables, namely the number of in vitro dendritic cells and the number of infected CD4+T-
cells at time t. They jointly take values in the state space S = {(m,n) : m = 0, 1, 2, .....;n = 0, 1, 2, .....}.
The joint distribution of DC(t), I(t) at time t is denoted by pm,n(t) = P{DC(t) = m, I(t) = n}.

We use this notation even when m and/or n are negative, with the convention that pm,n(t) is then equal to 0.
The model is based on the following four basic events, i.e. influx rate of in vitro DC(t), clearance rate of
DC(t)-cells, production of infected CD4+T-cells and death of infected such cells. The transition rates of the
model are shown in Table 17.1.
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Figure 17.1: Quasi-stationary distribution of the infected cell density for different values of N (combined
density of DCs and infected CD4+T cells).
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Table 17.1: Hypothesized transition rates for stochastic version.

Event Transition Transition rates
Influx rate of in vitro DC(t) (m,n) → (m+ 1, n) λ1(m,n) = s
clearance rate of DC(t)-cells (m,n) → (m− 1, n) µ1(m,n) = µDm
Production of infected
CD4+T-cells (m,n) → (m,n+ 1) λ2(m,n) = β1(1− εART )TSn
Death of infected CD4+T-cells (m,n) → (m,n− 1) µ2(m,n) = µIn
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Figure 17.2: Expected time to extinction for the quasi-stationary distribution as a function of N for different
εART values, when εART = 0.02 (Fig. 2(a)) and 0.03 (Fig. 2(b)) respectively. Other parameter values are
taken fixed as given in Table 4.3.

17.3.1 Formulation of the Kolmogorov’s Forward Equation

The probability of exactly one increment (or one decrement) in an infinitesimally small length ∆t of time
interval is considered as {increment rate (or decrement rate) ×∆t+O(∆t)}, and that of more than one event
is O(∆t). Then the probability pm,n(t+∆t) is given by,

pm,n(t+∆t) = λ1(m− 1, n)pm−1,n(t)∆t+ µ1(m+ 1, n)pm+1,n(t)∆t

+λ2(m+ 1, n− 1)pm+1,n−1(t)∆t+ µ2(m,n+ 1)pm,n+1(t)∆t

+{1−K(m,n)∆t}pm,n(t) +O(∆t), (17.3.1)

where K(m,n) = λ1(m,n) + µ1(m,n) + λ2(m,n) + µ2(m,n).
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We can write the Kolmogorov forward equations as

p′m,n(t) = lim
∆t→0

pm,n(t+∆t)− pm,n(t)

∆t
= λ1(m− 1, n)pm−1,n(t) + µ1(m+ 1, n)pm+1,n(t)

+λ2(m+ 1, n− 1)pm+1,n−1(t) + µ2(m,n+ 1)pm,n+1(t)

−K(m,n)pm,n(t). (17.3.2)

17.3.2 The Quasi-Stationary distribution

The marginal distribution of infected CD4+T cells at time t is given by,

p.n(t) =

∞∑
m=0

pm,n(t) = P{I(t) = n}. (17.3.3)

Putting n = 0 in equations (17.3.2), we get

p′m,0(t) = λ1(m− 1, 0)pm−1,0(t) + µ1(m+ 1, 0)pm+1,0(t)

+λ2(m+ 1,−1)pm+1,−1(t) + µ2(m, 1)pm,1(t)−K(m, 0)pm,0(t).

= spm−1,0(t) + µD(m+ 1)pm+1,0(t) + µIpm,1(t)− (s+ µD)pm,0(t).

Summing over all m-values, we have
∞∑

m=0

p′m,0(t) = s
∞∑

m=0

pm−1,0(t) + µD

∞∑
m=0

(m+ 1)pm+1,0(t) + µI

∞∑
m=0

pm,1(t)

−s
∞∑

m=0

pm,0(t)− µD

∞∑
m=0

mpm,0(t).

i.e., p′.0(t) = µIp.1(t). (17.3.4)

The state probabilities qm,n(t) conditioned on not being absorbed are given as follows:

qm,n(t) = P{DC(t) = m, I(t) = n | I(t) ̸= 0}

=
pm,n(t)

1− p.0(t)
, m = 0, 1, 2, ..., n = 1, 2, 3, ... (17.3.5)

The marginal distribution of infected CD4+T-cells at time t is represented by

q.n(t) =

∞∑
m=0

qm,n(t).

Differentiating equation (17.3.5) and using (17.3.4), we have

q′m,n(t) =
p′m,n(t)

1− p.0(t)
+ µIq.1(t)

pm,n(t)

1− p.0(t)
. (17.3.6)

The differential equations for the conditional state probabilities qm,n(t) can be written as,

q′m,n(t) = λ1(m− 1, n)qm−1,n(t) + µ1(m+ 1, n)qm+1,n(t)

+λ2(m+ 1, n− 1)qm+1,n−1(t) + µ2(m,n+ 1)qm,n+1(t)

−K(m,n)qm,n(t) + µIq.1(t)qm,n(t),

m = 0, 1, 2, ..., n = 1, 2, 3, ... (17.3.7)

The quasi-stationary distribution qm,n is the solution of this system of equations.
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17.3.3 Distribution of the Time to Extinction

It is possible to find out the distribution of the time to extinction τ with the help of (17.3.2). For the events
τ > t and τ ≤ t we have

P (τ > t) = P{I(t) > 0},
P (τ ≤ t) = P{I(t) = 0} = p.0(t). (17.3.8)

From (17.3.6), by equating q′m,n(t) to 0, we have the following initial value problems

p′m,n = −µIq.1pm,n, pm,n(0) = qm,n, m = 0, 1, 2, ..., n = 1, 2, 3, ... . (17.3.9)

Solutions of (17.3.9) are given by,

pm,n(t) = qm,n exp(−µIq.1t), m = 0, 1, 2, ..., n = 1, 2, 3, ... . (17.3.10)

Summing the expressions in (17.3.10) over all m-values, we get

p.n(t) = q.n exp(−µIq.1t), n = 1, 2, 3, ... . (17.3.11)

Equation (17.3.4) can now be solved with the help of (17.3.11). Using the initial value p.0(0) = 0 we acquire
p.0(t) = 1−exp(−µIq.1t). Let τQ be the time to extinction from quasi-stationary. Then τQ has an exponential
distribution with expected value as given by,

E(τQ) =
1

µIq.1
. (17.3.12)

Figure 17.3: Percentage fall in the time to extinction of infected CD4+T cells for different values of εART .
Height difference between bars at different points indicates the percentage decrease in E(τQ).
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Table 17.2: Possible changes in system (17.2.2) with probabilities.

Change Probability
∆x1 = [1, 0]T p1 = s∆t
∆x2 = [−1, 0]T p2 = µDDC∆t+ β2DCI∆t
∆x3 = [0, 1]T p3 = β2DCI∆t+ β1(1− εART )TSI∆t
∆x4 = [0,−1]T p4 = µII∆t

17.3.4 Diffusion approximation and approximation of Quasi-Stationary distribution

The critical point of equation (17.2.2) is x̂ = (D̂C , Î), where D̂C = X
β2

, Î = sβ2−µDX
β2X

and X = µI − β1(1−
εART )TS . Possible changes in the two populations of system (17.2.2) are given in Table 17.2.

Let ∆DC and ∆I denote the changes in the state variables DC and I respectively during the time interval

from t to t+∆t. Then, with the help of Table 4.2, the mean of the vector
(

∆DC

∆I

)
is determined as follows:

E

(
∆DC

∆I

)
=

4∑
j=1

pj∆xj = b(x)∆t+O(∆t), (17.3.13)

where

b(x) =

(
s− µDDC − β2DCI

β2DCI −XI

)
. (17.3.14)
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The Jacobian matrix B(x) of b(x) with respect to x is given by,

B(x) =
∂b(x)

∂x
=

(
−µD − β2I −β2DC

β2I β2DC −X

)
. (17.3.15)

Approximating the matrix B(x) by calculating at x̂, we get

B(x̂) =

(
− sβ2

X −X
sβ2

X − µD 0

)
. (17.3.16)

Now, using Table 4.2, we find out the covariance of the vector
(

∆DC

∆I

)
as given by,

Cov
(

∆DC

∆I

)
=

4∑
j=1

pj∆xj(∆xj)
T =M(x)∆t+O(∆t), (17.3.17)

where

M(x) =

(
2s 0
0 2µII

)
. (17.3.18)

M(x) is approximated by evaluating at x̂ as follows:

M(x̂) =

(
2s 0

0 2µI(sβ2−µDX)
β2X

)
. (17.3.19)

We approximate the process N1/2{x(t) − x̂} for large values of N , the combined density of DCs and
infected CD4+T cells, by a bivariate Ornstein-Uhlenbeck process with B(x̂) and M(x̂). The stationary dis-
tribution of this process is approximately bivariate normal with mean 0 and covariance matrix Σ, which can
be determined from the following equation,

B(x̂)Σ + ΣBT (x̂) = −M(x̂). (17.3.20)

Here BT (x̂) is the transpose of B(x̂). Solving relation (17.3.20), we obtain the matrix Σ as
(
σ1 σ2
σ2 σ3

)
,

where

σ1 = X

[
1− µIX

sβ2

]
,

σ2 =
µI
β2
,

σ3 =
1

X

[
(sβ2 − µDX)

(
1− µIX

sβ2

)
− sµI

X

]
.

Note that, both of σ1 and σ3 are positive. The means of the marginal distributions of the amounts of DCs
and infected CD4+T cells are D̂C and Î respectively and the standard deviations of those are

√
σ1/N and√

σ3/N respectively. We can conclude that, the marginal distribution of infected CD4+T cell population in
quasi-stationary is approximately normal with mean Î and standard deviation

√
σ3/N . We approximate the

normal distribution by truncated at 0.5 for the consistency of I ≥ 0. Consequently, the distribution can be
approximated by the following:

q.n ≈ 1√
σ3/N

ϕ{(n− Î)/
√
σ3/N}

Φ{(Î − 0.5)/
√
σ3/N}

, (17.3.21)

where Φ and ϕ are the normal c.d.f. and the normal p.d.f. respectively.
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17.3.5 The expected time to extinction

We find the expected time to extinction E(τQ) from the quasi-stationary distribution as given by

E(τQ) =
1

µIq.1
=

√
σ3/N

µI

Φ{(Î − 0.5)/
√
σ3/N}

ϕ{(1− Î)/
√
σ3/N}

. (17.3.22)

17.4 Numerical Illustrations

To illustrate the theoretical results, numerical simulations are performed in this section for approximating
quasi-stationary density and expected time to extinction following the Monte Carlo simulations techniques.
The values of the parameters are obtained either from several literatures or estimated from different biological
sources. Here, the objective is to show how HAART treatment as well as moDC vaccine work on the dynam-
ics of infected CD4+T and how it performs on the time to extinction from different scenarios.

First, the marginal distribution profile of the infected CD4+T in Figure is plotted by varying the com-
bined density of DCs and infected CD4+T cells, N , in quasi-stationary state. We consider N = 150mm−3,
100mm−3, 50mm−3 and plot the graphs. Trajectories in this figure show that the distribution is positively
skewed for comparatively lower values and gradually becomes symmetric for higher magnitude of N . Thus,
it can be concluded that the density of infected CD4+T raises with increasing values of N .

Next, in Figures 17.2(a) and 17.2(b), the expected time to extinction, E(τQ), as a function of N and
vary the values of εART (equal to 0.02 and 0.03) from the quasi-stationary distribution is plotted. It is seen
from these two figures that the expected time to extinction raises slowly up to N = 50mm−3 and after that it
grows rapidly with increasing density ofN , which leads to a much longer duration to achieve extinction. Also,
application of antiretroviral drugs can slows down the fast generation frequency of infected CD4+T, which
is evident in the Figure 17.2(a). It can be observed that the expected extinction time of infected CD4+T
decreases phenomenally with a small increment in efficacy of drug dosage. Increasing drug dosage from
εART = 0.02 to 0.03 results shortening the period of time to extinction.

In Figure 17.3, the results found in Figures 17.2(a) and 17.2(b) is considered again and compared them
in bar diagram form. Difference between any two bars here indicates the percentage change in E(τQ). It is
clearly seen from this figure that this difference gradually decreases as time passes. To make a clear percep-
tion, nextly the graphs in I−DC plane by varying the value of εART is plotted in Figure 17.4 and trajectories
show that the rate of change in infected CD4+T cell population decreases when drug efficacy is higher. So, the
concentration of infected CD4+T cell population starts to decrease, when both HAART treatment and moDC
vaccination are carried out in the population.

Finally, in the last Figure, a bar diagram is depicted calculating the reduction of infected CD4+T cells
when two different treatments are being carried out separately (blue and red bars) and together (green bars) in
the system. From these figures, we can estimate the growth and death rates of these infected cells at different
time interval more narrowly.

It is evident from the numerical analysis that accumulation of infected cell is enhanced when the population
size is large. In such a scenario, it is found that instantaneous rate of contact is severely high and contributes
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Figure 17.5: Bar diagram calculating the reduction in infected CD4+T cells when two different treatments are
being carried out separately (blue and red bars) and together (green bars) in the system.

higher kurtosis which implies that the instant infection recurring probability is much higher in the population.
High contact rate boosts the immunity for larger signal implication which counters balance the negative effect
of such alarming contact of infection. Contrastingly, when a low susceptible population is considered, the
contact process gets diluted to a large extent and thereby the skewness of the population expands (i.e positively
skewed) while the kurtosis gets a little damped implicating a lower contact rate of the infection.

17.5 Summary

A stochastical immunological system of HIV infection in CD4+T cells is demonstrated considering antiretro-
viral treatment followed by DC-based vaccine loaded with HIV-1 derived cytotoxic T lymphocytes (CTL). It
is obtained that mathematical expressions that are useful to predict the maximum time for complete eradica-
tion of the disease. The transition states of the system using Kolmogorovs forward equation to illustrate an
approximation for the marginal distribution of infected cells to the expected time to extinction from quasi-
stationary transition region is described.

Analytical results are compared with numerical simulations. Numerical results suggest that the quasi-
stationary distribution of infected CD4+T raises with the higher magnitude of combined density, N . More-
over, high efficacy antiretroviral drugs slows down the fast generation frequency of infected CD4+T and as a
result the rate of complete eradication of the disease gets faster. But, it is evident that accumulation of infected
cell is enhanced when the population size is large. This is because instantaneous rate of contact is severely
high and contributes higher kurtosis in the population.

These findings suggest that a stochastic system gives more realistic way of modelling a immunological
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system, while a deterministic model cannot. In particular, as most real world problems are not deterministic,
stochastic models helps us in capturing the distribution of state variables from where one can derive an ex-
pression for probabilistic extinction and variances which are features that cannot be included in deterministic
models. A simple stochastic system is demonstrated that captures some important features and belief that
these findings may help students and researchers for future studies.
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Unit 18

Course Structure

• Leslie-Gower Predator-prey model with different functional responses

• Analysis of Different Functional Responses

• Effect of Nutrients on Autotroph-Herbivore Interaction

• Phytoplankton-zooplankton System and its Stability Analysis

• Bio-Control in Plankton Models with Nutrient Recycling

• Stability of food Chain Models

18.1 Leslie-Gower Predator-prey model with different functional responses

The Leslie-Gower predator-prey model is a classic mathematical model used to describe the interactions be-
tween predators and prey in ecological systems. It extends the Lotka-Volterra model by incorporating more
realistic assumptions about population dynamics. One of the key features of the Leslie-Gower model is the
inclusion of different functional responses, which describe how the predation rate of predators varies with
changes in prey density. Here’s how the model can be formulated with different functional responses:

Let P (t) represent the population of predators at time t, and N(t) represent the population of prey at time
t.

The Leslie-Gower predator-prey model with different functional responses can be represented by the fol-
lowing system of differential equations:

dN

dt
= rN

(
1− N

K

)
−
∑
i

fi(N)Pi

dPi

dt
= bifi(N)Pi − diPi

where:

• r is the intrinsic growth rate of the prey population.
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• K is the carrying capacity of the environment for the prey.

• fi(N) represents the functional response of predator i, which describes how the predation rate of preda-
tor i changes with changes in prey density.

• bi is the per capita birth rate of predator i.

• di is the per capita death rate of predator i.

The functional responses fi(N) can take various forms, representing different types of predator-prey inter-
actions. Some common functional responses include:

1. **Type I Functional Response (Linear):**

fi(N) = aiN

where ai represents the attack rate of predator i. In this functional response, the predation rate increases
linearly with prey density.

2. **Type II Functional Response (Saturating):**

fi(N) =
aiN

1 + hiN

where hi represents the handling time of predator i. In this functional response, the predation rate initially
increases with prey density but saturates as prey density increases further.

3. **Type III Functional Response (sigmoidal):**

fi(N) =
aiN

2

1 + hiN2

Similar to the Type II functional response, but with a sigmoidal shape. The predation rate initially increases
slowly, accelerates, and then saturates as prey density increases.

These different functional responses capture various aspects of predator-prey interactions and can lead to
different dynamics and stability properties of the predator-prey system. Analyzing the model with different
functional responses allows researchers to understand how the form of predator-prey interactions influences
the long-term behavior of ecological systems.

18.1.1 Characteristics, Classifications and Features

Let’s delve deeper into each of the functional responses for the Leslie-Gower predator-prey model and analyze
their mathematical characteristics:

1. Type I Functional Response (Linear):

The Type I functional response assumes a linear relationship between the predation rate and prey density.
Mathematically, it is represented as:

fi(N) = aiN

where:

• ai is the attack rate of predator i.
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Mathematical Characteristics:

• Predation Rate: Increases linearly with prey density.

• Predator Saturation: No saturation occurs. Predation rate continues to increase with increasing prey
density.

• Assumptions: Assumes predators have unlimited handling capacity and encounter prey randomly.

Analysis:

• Population Dynamics: The linear functional response implies that predation increases proportionally
with prey density, without any limitations due to predator saturation or handling capacity.

• Stability: The linear functional response can lead to stable or oscillatory dynamics, depending on other
parameters in the model. Stable coexistence of predator and prey populations is possible if the growth
rates and other parameters are appropriately balanced.

2. Type II Functional Response (Saturating):

The Type II functional response accounts for predator saturation as prey density increases. It is represented
as:

fi(N) =
aiN

1 + hiN

where:

• ai is the attack rate of predator i.

• hi is the handling time of predator i.

Mathematical Characteristics:

• Predation Rate: Initially increases with prey density but saturates as prey density increases further.

• Predator Saturation: As prey density increases, the predator’s rate of prey consumption saturates due
to handling time constraints.

• Assumptions: Assumes predators have limited handling capacity, and their predation rate saturates as
prey density increases.

Analysis:

• Population Dynamics: The Type II functional response leads to a saturating predation rate, which sta-
bilizes the predator-prey dynamics. As prey density increases, predators consume prey more efficiently,
but at a diminishing rate due to handling time constraints.

• Stability: This functional response often stabilizes the predator-prey system, promoting coexistence
between predators and prey. However, unstable dynamics can occur under certain parameter combina-
tions, leading to limit cycles or predator extinction.
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3. Type III Functional Response (Sigmoidal):

The Type III functional response is sigmoidal in shape, capturing a more complex relationship between pre-
dation rate and prey density. It is represented as:

fi(N) =
aiN

2

1 + hiN2

where:

• ai is the attack rate of predator i.

• hi is the handling time of predator i.

Figure 18.1: Different functional responses.

Mathematical Characteristics:

• Predation Rate: Initially increases slowly, accelerates, and then saturates as prey density increases.

• Predator Saturation: Similar to Type II, but with a more gradual saturation due to the sigmoidal shape
of the response curve.

• Assumptions: Assumes predators have limited handling capacity and the predation rate saturates sig-
moidally as prey density increases.
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Analysis:

• Population Dynamics: The Type III functional response introduces a more complex relationship be-
tween predation rate and prey density compared to Type II. It allows for a smoother transition from low
to high predation rates as prey density increases.

• Stability: Similar to Type II, the Type III functional response tends to stabilize the predator-prey system
by limiting the predator’s ability to overexploit prey at high densities. However, as with Type II, unstable
dynamics can occur depending on parameter values.

Summary:

Each functional response captures different aspects of predator-prey interactions, leading to distinct mathe-
matical characteristics and stability properties in the Leslie-Gower predator-prey model. While Type I is the
simplest and assumes unlimited predator capacity, Types II and III introduce predator saturation effects, with
Type III offering a smoother transition in predation rates. Analyzing the model with these functional responses
provides insights into the dynamics and stability of ecological systems under varying conditions.

18.2 Effect of Nutrients on Autotroph-Herbivore Interaction

Effect of Nutrients on Autotroph-Herbivore Interaction:

The interaction between autotrophs (plants or primary producers) and herbivores (animals that consume
plants) is a fundamental component of ecological systems. Nutrients play a crucial role in shaping this inter-
action by influencing the growth and productivity of autotrophs, which in turn affects herbivore populations.
Here’s an analysis of the effect of nutrients on autotroph-herbivore interactions:

1. Nutrient Availability and Autotroph Productivity:

• Increased Nutrient Availability: Higher nutrient availability, particularly nitrogen and phosphorus,
can enhance the growth and productivity of autotrophs. Nutrients serve as essential building blocks for
plant growth, influencing photosynthesis, biomass accumulation, and reproductive output.

• Limiting Nutrient Availability: Conversely, limited availability of nutrients can constrain autotroph
growth and productivity. Nutrient limitation can occur in ecosystems with poor soil fertility or in aquatic
systems with low nutrient input.

2. Effects on Herbivore Populations:

• Positive Feedback: Higher autotroph productivity resulting from increased nutrient availability can
lead to larger herbivore populations. More abundant food resources support higher herbivore densities
and may lead to increased herbivore reproduction rates.

• Herbivore Responses to Nutrient Variation: Herbivores may exhibit complex responses to changes
in nutrient availability. Some species may benefit from increased autotroph productivity, while others
may experience decreased foraging efficiency or increased competition for food resources.
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3. Trophic Cascades and Community Dynamics:

• Top-Down Regulation: Changes in herbivore populations due to nutrient availability can cascade
through the food web, affecting higher trophic levels. For example, increased herbivore abundance
may lead to higher predation pressure on herbivores from predators, thereby influencing community
structure and dynamics.

• Bottom-Up Regulation: Conversely, changes in autotroph productivity due to nutrient availability can
also influence higher trophic levels indirectly. This bottom-up regulation occurs when alterations in
autotroph abundance and quality affect herbivore populations, which in turn influence predator popula-
tions.

4. Ecosystem Functioning and Stability:

• Nutrient Enrichment Effects: Excessive nutrient inputs, such as from agricultural runoff or urban
pollution, can lead to eutrophication and alter autotroph-herbivore interactions. Eutrophication can
cause algal blooms, shifts in community composition, and disruptions in trophic dynamics.

• Ecosystem Resilience: Balanced nutrient cycling is essential for ecosystem resilience and stability.
Disruptions in autotroph-herbivore interactions due to nutrient imbalances can lead to ecosystem degra-
dation, loss of biodiversity, and reduced ecosystem services.

5. Management Implications:

• Nutrient Management: Sustainable management of nutrient inputs is crucial for maintaining ecosys-
tem health and functioning. Practices such as nutrient cycling, soil conservation, and watershed manage-
ment can help mitigate the negative effects of nutrient imbalances on autotroph-herbivore interactions.

• Ecosystem-Based Management: Integrated approaches that consider the complex interactions between
autotrophs, herbivores, and nutrients are essential for effective ecosystem-based management. Adaptive
management strategies that account for ecosystem dynamics and feedbacks can promote resilience and
sustainability.

In summary, nutrients play a central role in mediating autotroph-herbivore interactions, influencing produc-
tivity, population dynamics, trophic cascades, and ecosystem stability. Understanding the complex interplay
between nutrients and biotic interactions is essential for ecosystem management and conservation in the face
of environmental change.

18.3 Phytoplankton-zooplankton System and its Stability Analysis

Mathematical models of phytoplankton-zooplankton systems are essential for understanding the dynamics of
aquatic ecosystems, including nutrient cycling, primary production, and trophic interactions. These models
typically describe the population dynamics of phytoplankton (primary producers) and zooplankton (primary
consumers) and their interactions with nutrient availability. Here’s an overview of such models and their
stability analysis:

1. Basic Models:

1. Lotka-Volterra Model:
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• The Lotka-Volterra model describes the interaction between two species (e.g., phytoplankton and
zooplankton) in terms of population growth and predation.

• Equations describe the rates of change in phytoplankton and zooplankton populations over time,
considering growth, mortality, and predation rates.

• Stability analysis involves examining the stability of equilibrium points and the potential for sus-
tained oscillations or population cycles.

2. Resource-Based Models:

• Resource-based models incorporate nutrient dynamics as a driving factor for phytoplankton growth
and zooplankton grazing.

• Equations describe the dynamics of nutrient concentrations, phytoplankton biomass, and zoo-
plankton biomass, considering nutrient uptake, phytoplankton growth, grazing, and nutrient recy-
cling.

• Stability analysis involves assessing the stability of nutrient-driven equilibria and the potential for
nutrient-driven oscillations or instability.

2. Coupled Phytoplankton-Zooplankton Models:

1. Functional Response Models:

• These models describe the interaction between phytoplankton and zooplankton populations based
on functional responses that relate zooplankton grazing rates to phytoplankton biomass.

• Different functional response forms (e.g., linear, Holling type I, II, III) represent different grazing
behaviors and prey preferences of zooplankton.

• Stability analysis involves examining the stability of equilibria and the potential for oscillatory
behavior or alternative stable states.

2. Size-Structured Models:

• Size-structured models account for size-dependent interactions between phytoplankton and zoo-
plankton populations.

• Equations describe the distribution of individuals across size classes and the rates of growth, mor-
tality, and predation as functions of size.

• Stability analysis considers the stability of size-structured equilibria and the effects of size-dependent
processes on population dynamics.

3. Stability Analysis:

1. Equilibrium Stability:

• Linear stability analysis is commonly used to assess the stability of equilibrium points in phytoplankton-
zooplankton models.

• Eigenvalue analysis of the Jacobian matrix around equilibrium points helps determine stability
properties.

• Stable equilibria indicate coexistence or stable population dynamics, while unstable equilibria may
lead to oscillations or regime shifts.



178 UNIT 18.

2. Bifurcation Analysis:

• Bifurcation analysis investigates how changes in model parameters lead to qualitative shifts in
system behavior.

• Bifurcations such as Hopf bifurcations can result in the emergence of sustained oscillations or
alternative stable states.

• Understanding bifurcation phenomena helps identify critical thresholds and tipping points in phy-
toplankton zooplankton systems.

4. Applications and Management Implications:

• Mathematical models of phytoplankton-zooplankton systems have applications in ecosystem manage-
ment, fisheries management, and environmental conservation.

• They help assess the effects of environmental changes (e.g., nutrient pollution, climate change) on
aquatic ecosystems and inform strategies for sustainable resource use.

• Management strategies informed by these models aim to promote ecosystem resilience, maintain biodi-
versity, and mitigate the impacts of anthropogenic disturbances.

In summary, mathematical models of phytoplankton-zooplankton systems are valuable tools for under-
standing the dynamics of aquatic ecosystems and their responses to environmental change. Through rigorous
analysis and simulation, these models contribute to our understanding of trophic interactions, nutrient cycling,
and ecosystem stability, ultimately guiding management and conservation efforts.

18.4 Bio-Control in Plankton Models with Nutrient Recycling

Bio-control in plankton models with nutrient recycling, we’ll consider a simplified model incorporating
predator-prey interactions between phytoplankton (P ) and zooplankton (Z) populations, along with nutrient
cycling dynamics. We’ll analyze the stability of the system with and without the introduction of bio-control
(i.e., the addition of zooplankton predators).

Let’s start with the basic predator-prey model:

dP

dt
= rP

(
1− P

K

)
− αPZ

dZ

dt
= βαPZ −mZ

Where:

• P is the biomass of phytoplankton,

• Z is the biomass of zooplankton,

• r is the intrinsic growth rate of phytoplankton,

• K is the carrying capacity of the environment for phytoplankton,



18.5. STABILITY OF FOOD CHAIN MODELS 179

• α is the encounter rate coefficient between phytoplankton and zooplankton,

• β is the conversion efficiency of consumed phytoplankton biomass into zooplankton biomass,

• m is the mortality rate of zooplankton.

Now, let’s introduce the bio-control scenario by modifying the model to incorporate the addition of zoo-
plankton predators. We can represent this by adding a term γZint, where Zint is the biomass of introduced
zooplankton predators, and γ represents the predation rate of introduced predators on phytoplankton:

dP

dt
= rP

(
1− P

K

)
− αPZ − γPZint

dZ

dt
= βαPZ −mZ + γPZint

To analyze the stability of the system with and without bio-control, we’ll:
1. Find the equilibrium points (P ∗, Z∗) for both scenarios.
2. Calculate the Jacobian matrix J for each equilibrium point.
3. Compute the eigenvalues of J to determine stability.

By comparing the stability properties of the equilibrium points with and without bio-control, we can mathe-
matically demonstrate the impact of bio-control on the stability of the plankton model with nutrient recycling.

18.5 Stability of food Chain Models

Let’s consider a mathematical model of a simple food chain consisting of three trophic levels: primary produc-
ers (plants or phytoplankton, denoted by P ), primary consumers (herbivores, denoted by H), and secondary
consumers (carnivores, denoted by C). The dynamics of this system can be described by a set of ordinary
differential equations representing the rates of change of each population over time. Here’s an example model
and its analysis:

Mathematical Model:

The dynamics of the food chain can be described by the following set of differential equations:

dP

dt
= rP

(
1− P

K

)
− αPHPH

dH

dt
= αPHPH − αHCHC − µHH

dC

dt
= αHCHC − µCC

Where:

• P is the density of primary producers (e.g., plants or phytoplankton),

• H is the density of primary consumers (herbivores),
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• C is the density of secondary consumers (carnivores),

• r is the intrinsic growth rate of primary producers,

• K is the carrying capacity of the environment for primary producers,

• αPH is the consumption rate of primary producers by herbivores,

• αHC is the consumption rate of herbivores by carnivores,

• µH is the mortality rate of herbivores,

• µC is the mortality rate of carnivores.

Parameters and Variables:

• r, K, αPH , αHC , µH , and µC are model parameters representing biological rates and interactions.

• P , H , and C are state variables representing population densities.

let’s proceed with the detailed stability analysis of the food chain model

Equilibrium Points:

1. Equation for P :
dP

dt
= rP

(
1− P

K

)
− αPHPH = 0

Solving for P gives:

P ∗ = 0 or P ∗ = K − αPHH

r

2. Equation for H:
dH

dt
= αPHPH − αHCHC − µHH = 0

Solving for H gives:

H∗ = 0 or H∗ =
αPHP

αHCC + µH

3. Equation for C:
dC

dt
= αHCHC − µCC = 0

Solving for C gives:

C∗ = 0 (always)
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Jacobian Matrix:

1. Jacobian Matrix at P ∗ = 0:

JP ∗=0 =

−r 0 0
0 αPH 0
0 0 −µC


2. Jacobian Matrix at H∗ = 0:

JH∗=0 =

−r 0 0
0 −µH −αHCαPH

µH

0 0 −µC


3. Jacobian Matrix at P ∗ = K − αPHH

r , H∗ = αPHP
αHCC+µH

, and C∗ = 0:

JP ∗,H∗,C∗ =

−r + rP ∗

K −αPHP ∗

K 0
αPHH∗

αHCC+µH
−αHC − αPHH∗

αHCC+µH

0 αHC −µC


Eigenvalues:

Finally, we find the eigenvalues of each Jacobian matrix to determine their stability properties. Positive real
parts indicate instability, while negative real parts indicate stability.
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Unit 19

Course Structure

• Micobacterial Growth with Memory Phenomena

• Analysis of Fractional Mathematical Systems

• Extension of Deterministic Model

• Boundedness, Uniqueness of Solutions and Stability Analysis of Steady States

19.1 Preliminaries

Some crucial fundamental definitions from the theory of fractional calculus are presented in this section.

Definition 19.1.1. The Caputo fractional derivative operator of order ζ (ζ ≥ 0) & n ∈ N ∪ {0} is defined by

Dζ
t (u(t)) =

1

Γ(n− ζ)

∫ t

0
(t− ξ)n−ζ−1 d

n

dtn
u(ξ)dξ (19.1.1)

where n− 1 ≤ ζ < n.

Definition 19.1.2. Let v ∈ H ′(a, b), b > a, 0 < ζ < 1. Then, the time-fractional Caputo–Fabrizio fractional
differential operator is defined as

CFDζ
t (v(t)) =

M(ζ)

1− ζ

∫ t

0
exp

[
−ζ(t− ξ)

1− ζ

]
v′(ξ)dξ, t ≥ 0, 0 < ζ < 1 (19.1.2)

where M(ζ) is a normalization function which depends on ζ and satisfies the condition M(0) =M(1) = 1.

Definition 19.1.3. The Caputo–Fabrizio (CF) fractional integral operator of order 0 < ζ < 1 is given by

CFIζ
t (v(t)) =

2(1− ζ)

(2− ζ)M(ζ)
v(t) +

2ζ

(2− ζ)M(ζ)

∫ t

0
v(ξ)dξ, t ≥ 0. (19.1.3)

Here, it is important to note that

CFDζ
t (v(t)) = 0 if v(t) is a constant function.
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Furthermore, it is imperative to observe that the previous definitions completely suggest that the fractional
integral of a function of order 0 < ζ < 1 is actually represented by the average of the respective functions and
their integral of order one. Furthermore, the equation

2(1− ζ)

(2− ζ)M(ζ)
+

2ζ

(2− ζ)M(ζ)
= 1 (19.1.4)

holds true, which provides the following formula:

M(ζ) =
2

(2− ζ)
, 0 ≤ ζ < 1. (19.1.5)

Here, the specific form of the normalizing function M(ζ) given in (19.1.5) along with the boundary condi-
tions is used throughout the study and, more specifically, for the purpose of numerical simulations.

Definition 19.1.4. The Laplace transform for the CF fractional operator of order 0 < ζ ≤ 1 for k ∈ N is
given as follows:

L
(
CFDk+ζ

t (v(t))
)
(p) =

1

1− ζ
L
(
vk+1(t)L

(
exp

(
− ζ

1− ζ
t

)))
=
pk+1L(v(t))− pkv(0)− pk−1v′(0) . . .− vk(0)

p+ ζ(1− p)
.

To be precise, we can say that

L
(
CFDζ

t (v(t))
)
(p) =

pL(v(t))
p+ ζ(1− p)

, k = 0

L
(
CFDζ+1

t (v(t))
)
(p) =

p2L(v(t))− pv(0)− v′(0)

p+ ζ(1− p)
, k = 1.

19.2 The Basic Integer-Order Model and the CF Fractionalized Model

In recent years, fractional-order derivatives have gained huge importance in the field of modeling real-world
biological phenomena. The fractional-order derivative is in fact a much generalized version of the integer-
order derivative. In this chapter, we now introduce the basic three-dimensional nonlinear ODE-based mathe-
matical model developed that describes the fundamental disease dynamics of leprosy.

dSu
dt

= ν1Su

(
1− Su

Sumax

)
− β1SuBl,

dSi
dt

= β1SuBl − µSi, (19.2.1)

dBl

dt
= ν2Bl

(
1− Bl

Blmax

)
− β2SuBl + σSi,

with initial values Su(0) = Su0 ≥ 0, Si(0) = Si0 ≥ 0 and Bl(0) = B0 ≥ 0 at t = 0. Here, Su(t), Si(t) and
Bl(t) denote the concentrations of healthy Schwann cells, infected Schwann cells and M. leprae bacteria at
any time t. ν1 and ν2 describe the intrinsic growth rates of the Su(t) and Bl(t) populations, where Sumax and
Blmax are the carrying capacity of the same. β1 is the rate at which healthy cells are infected by M. leprae and
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µ denotes the natural mortality rate of Si cells. The bacterial clearance rate results from the infection and the
proliferation rates of newly produced free M. leprae bacteria, which are indicated by the parameters β2 and σ,
respectively. Modifying the above system in terms of the CF (Caputo–Fabrizio) fractional differential system
of equations, we obtain

CFDζ
t Su(t) = ν1Su

(
1− Su

Sumax

)
− β1SuBl,

CFDζ
t Si(t) = β1SuBl − µSi, (19.2.2)

CFDζ
tBl(t) = ν2Bl

(
1− Bl

Blmax

)
− β2SuBl + σSi

with initial values Su(0) = Su0 ≥ 0, Si(0) = Si0 ≥ 0 and Bl(0) = B0 ≥ 0 at t = 0.

Figure 19.1: Time series and phase portrait diagram of the CF fractionalized system (19.2.2) depicting the
unstable oscillatory behavior of the system state populations and appearance of stable limit cycles for ζ = 1.
Values of ν2 = 0.03 and Sumax = 1200 were used to simulate the subfigures in this figure. (a) Behavior of
the trajectories of system (19.2.2); (b) 3-D phase diagram for system (19.2.2) in Su − Si −Bl space.

19.2.1 The Iterative Scheme

We now consider system (19.2.2). The term SuBl is a nonlinear term and, hence, applying the Laplace
transformation operator (L) on both sides of the system (19.2.2), we obtain that

pL (Su(t))− Su(0)

p+ ζ(1− p)
= L

(
ν1Su

(
1− Su

Sumax

)
− β1SuBl

)
,

pL (Si(t))− Si(0)

p+ ζ(1− p)
= L (β1SuBl − µSi) , (19.2.3)

pL (Bl(t))−Bl(0)

p+ ζ(1− p)
= L

(
ν2Bl

(
1− Bl

Blmax

)
− β2SuBl + σSi

)
.
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The set in Equation (19.2.3) can now be rewritten in the following form:

L(Su(t)) =
Su(0)

p
+

(
p+ ζ(1− p)

p

)
L
(
ν1Su

(
1− Su

Sumax

)
− β1SuBl

)
,

L(Si(t)) =
Si(0)

p
+

(
p+ ζ(1− p)

p

)
L(β1SuBl − µSi), (19.2.4)

L(Bl(t)) =
Bl(0)

p
+

(
p+ ζ(1− p)

p

)
L
(
ν2Bl

(
1− Bl

Blmax

)
− β2SuBl + σSi

)
.

Using the inverse Laplace, we obtain

Su(t) = Su(0) + L−1

[
p+ ζ(1− p)

p
L
(
ν1Su

(
1− Su

Sumax

)
− β1SuBl

)]
,

Si(t) = Si(0) + L−1

[
p+ ζ(1− p)

p
L (β1SuBl − µSi)

]
, (19.2.5)

Bl(t) = Bl(0) + L−1

[
p+ ζ(1− p)

p
L
(
ν2Bl

(
1− Bl

Blmax

)
− β2SuBl + σSi

)]
.

We now present the series solutions generated by this method as follows:

Su =

∞∑
n=0

Sun , Si =

∞∑
n=0

Sin , Bl =

∞∑
n=0

Bln . (19.2.6)

Furthermore, the series solution representation of the only existing nonlinear term SuBl is given as

SuBl =

∞∑
n=0

Gn where Gn =

n∑
k=0

Suk

n∑
k=0

Blk −
n−1∑
k=0

Suk

n−1∑
k=0

Blk . (19.2.7)

We now use the initial conditions to achieve the following recursive formulas:

Sun+1 = Sun(0) + L−1

[
p+ ζ(1− p)

p
L
(
ν1Sun

(
1− Sun

Sumax

)
− β1SunBln

)]
,

Sin+1 = Sin(0) + L−1

[
p+ ζ(1− p)

p
L (β1SunBln − µSin)

]
, (19.2.8)

Bln+1 = Bln(0) + L−1

[
p+ ζ(1− p)

p
L
(
ν2Bln

(
1− Bln

Blmax

)
− β2SunBln + σSin

)]
.

The approximate solution is assumed to be obtained as a limit when n→ ∞, i.e., Su(t) = limn→∞ Sun(t),
Si(t) = limn→∞ Sin(t) and Bl(t) = limn→∞Bln(t).

19.2.2 Stability Analysis

In this section, first, we present the detailed definition of the T-stability of Picard’s iteration.

Definition 19.2.1. Suppose T is a self-map on a complete metric space (Y, d). Consider an iteration yn+1 =
g(T, yn). Furthermore, let us assume that P(T ) is the fixed-point set of T with P(T ) ̸= ϕ and let {yn}
converge to some point y ∈ P(T ). Let {zn} ⊂ Y and define {un} = d(Zn+1, g(T, zn)). Now, if un → 0
implies that zn → y, then the iteration method yn+1 = g(T, yn) is said to be T-stable. Furthermore, note that
the convergence of {zn} guarantees that {zn} must be bounded above. If all these conditions hold true for
yn+1 = g(T, yn), then Picard’s iteration method is called T-stable.
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Let (X, ∥.∥) be a Banach space. As every Banach space is a complete metric space with the metric induced
by the associated norm, Definition 19.2.1 holds true for (X, ∥.∥) also.

Theorem 19.2.1. Let T be a self-map on the space (X, ∥.∥), which satisfies the following:

∥Tx − Ty∥ ≤ Λ∥x− Tx∥+ ϱ∥x− y∥ for all x, y ∈ X

where Λ ≥ 0 and ϱ ∈ [0, 1). Suppose T has a fixed point. Then, T is Picard’s T-stable.

Now, let us define a self-map T as

T (Sun(t)) = Sun+1 = Sun(0) + L−1

[
p+ ζ(1− p)

p
L
(
ν1Sun

(
1− Sun

Sumax

)
− β1SunBln

)]
,

T (Sin(t)) = Sin+1 = Sin(0) + L−1

[
p+ ζ(1− p)

p
L (β1SunBln − µSin)

]
,

T (Bln(t)) = Bln+1 = Bln(0) + L−1

[
p+ ζ(1− p)

p
L
(
ν2Bln

(
1− Bln

Blmax

)
− β2SunBln + σSin

)]

For all m,n ∈ N, let us first construct the following differences:

T (Sun(t))− T (Sum(t)) = Sun(t)− Sum(t)

+ L−1

[
p+ ζ(1− p)

p
L
(
ν1Sun

(
1− Sun

Sumax

)
− β1SunBln

)]
− L−1

[
p+ ζ(1− p)

p
L
(
ν1Sum

(
1− Sum

Sumax

)
− β1SumBlm

)]
,

T (Sin(t))− T (Sim(t)) = Sin(t)− Sim(t) + L−1

[
p+ ζ(1− p)

p
L (β1SunBln − µSin)

]
− L−1

[
p+ ζ(1− p)

p
L (β1SumBlm − µSim)

]
,

T (Bln(t))− T (Blm(t)) = Bln(t)−Blm(t)

+ L−1

[
p+ ζ(1− p)

p
L
(
ν2Bln

(
1− Bln

Blmax

)
− β2SunBln + σSin

)]
− L−1

[
p+ ζ(1− p)

p
L
(
ν2Blm

(
1− Blm

Blmax

)
− β2SumBlm + σSim

)]

where p+ζ(1−p)
p is a Lagrange multiplier in fractional form. As all the solutions Sun , Sin , Bln are Cauchy

sequences in the Banach space (X, ∥.∥), it is true that ∥Sun−Sum∥ → 0, ∥Sin−Sim∥ → 0 and ∥Bln−Blm∥ →
0 as n,m→ ∞. Due to this similar behavior of the solutions, i.e., comparative influence of the solutions, we
have

∥Sun(t)− Sum(t)∥ ∼= ∥Sin(t)− Sim(t)∥,
∥Sun(t)− Sum(t)∥ ∼= ∥Bln(t)−Blm(t)∥.

(19.2.9)
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Now, applying the norm on both sides of the first equation, we obtain

∥T (Sun(t))− T (Sum(t))∥ = ∥Sun(t)− Sum(t)

+ L−1

[
p+ ζ(1− p)

p
L
(
ν1Sun

(
1− Sun

Sumax

)
− β1SunBln

)]
− L−1

[
p+ ζ(1− p)

p
L
(
ν1Sum

(
1− Sum

Sumax

)
− β1SumBlm

)]
∥

= ∥Sun(t)− Sum(t) + L−1

[
p+ ζ(1− p)

p
L
[
ν1(Sun(t)− Sum(t)

+

(
− ν1
Sumax

Sun(Sun − Sum)

)
+

(
− ν1
Sumax

Sum(Sun − Sum)

)
+ (−β1Bln(Sun − Sum)) + (−β1Sum(Bln −Blm))

]]
∥.

Using triangle inequality, we obtain

∥T (Sun(t))− T (Sum(t))∥ ≤ ∥Sun(t)− Sum(t)∥+ L−1

[
p+ ζ(1− p)

p
L
[
∥ν1(Sun(t)− Sum(t)∥

+ ∥ − ν1
Sumax

Sun(Sun − Sum)∥+ ∥ − ν1
Sumax

Sum(Sun − Sum)∥

+ ∥ − β1Bln(Sun − Sum)∥+ ∥ − β1Sum(Bln −Blm)∥
]]
.

Then, using the relations in (19.2.9), we obtain

∥T (Sun(t))− T (Sum(t))∥ ≤ ∥Sun(t)− Sum(t)∥+ L−1

[
p+ ζ(1− p)

p
L
[
∥ν1(Sun(t)− Sum(t)∥

+ ∥ − ν1
Sumax

Sun(Sun − Sum)∥+ ∥ − ν1
Sumax

Sum(Sun − Sum)∥

+ ∥ − β1Bln(Sun − Sum)∥+ ∥ − β1Sum(Sun − Sum)∥
]]

≤ ∥Sun(t)− Sum(t)∥
[
1 + ν1E1(ζ)− 2M1

ν1
Sumax

E2(ζ)

− β1(M1 + M3)E3(ζ)

]
where E1(ζ), E2(ζ) and E3(ζ) are functions of L−1

[
p+ζ(1−p)

p L(.)
]

and ∥Sun∥ < M1, ∥Sin∥ < M2 and
∥Bln∥ < M3. Proceeding similarly, we obtain from the second and third equations

∥T (Sin(t))− T (Sim(t))∥ ≤ ∥Sin(t)− Sim(t)∥
[
1 + β1(M1 + M3)E3(ζ)− µE4(ζ)

]
and

∥T (Bln(t))− T (Blm(t))∥ ≤ ∥Bln(t)−Blm(t)∥
[
1 + ν2E5(ζ)− 2M3

ν2
Blmax

E6(ζ)

− β2(M1 + M3)E3(ζ) + σE7(ζ)

]
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where E4(ζ), E5(ζ), E6(ζ) and E7(ζ) are functions of L−1
[
p+ζ(1−p)

p L(.)
]

and[
1 + ν1E1(ζ)− 2M1

ν1
Sumax

E2(ζ)− β1(M1 + M3)E3(ζ)

]
< 1,[

1 + β1(M1 + M3)E3(ζ)− µE4(ζ)

]
< 1, (19.2.10)[

1 + ν2E5(ζ)− 2M3
ν2

Blmax

E6(ζ)− β2(M1 + M3)E3(ζ) + σE7(ζ)

]
< 1.

So, we can conclude that the self-map T has a fixed point. In view of (19.2.10) and also choosing ϱ =
(0, 0, 0) and

Λ =


1 + ν1E1(ζ)− 2M1

ν1
Sumax

E2(ζ)− β1(M1 + M3)E3(ζ),

1 + β1(M1 + M3)E3(ζ)− µE4(ζ),
1 + ν2E5(ζ)− 2M3

ν2
Blmax

E6(ζ)− β2(M1 + M3)E3(ζ) + σE7(ζ),

we can see that all the conditions of Theorem 19.2.1 are satisfied. Thus, the self-mapping T is Picard’s
T-stable. Here, it is important to note that Λ is a constant, not a function.

Summarizing the previous discussions, we now present the following theorem.

Theorem 19.2.2. Consider system (19.2.2) with the set of equations denoted above. Let T be a self-map
as defined. If the conditions (19.2.10) are satisfied by T , then T has a fixed point and, hence, T is Picard’s
T-stable.

Figure 19.2: Time series and phase portrait diagram of the CF fractionalized system (19.2.2) depicting the
unstable oscillatory behavior of the system state populations and appearance of stable limit cycles for ζ = 0.8.
Values of ν2 = 0.03 and Sumax = 1200 were used to simulate the subfigures in this figure. (a) Behavior of
the trajectories of system (19.2.2); (b) 3-D phase diagram for system (19.2.2) in Su − Si −Bl space.

19.2.3 Existence of the Solutions

Using fixed-point theory, we now show the existence of the solutions of system (19.2.2) in this subsection.
For this, let us first observe that
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Su(t)− Su0(t) =
2(1− ζ)

M(ζ)(2− ζ)

(
ν1Su(t)

(
1− Su(t)

Sumax

)
− β1Su(t)Bl(t)

)
+

2ζ

M(ζ)(2− ζ)

∫ t

0

(
ν1Su(y)

(
1− Su(y)

Sumax

)
− β1Su(y)Bl(y)

)
dy,

Si(t)− Si0(t) =
2(1− ζ)

M(ζ)(2− ζ)
(β1SuBl − µSi)

+
2ζ

M(ζ)(2− ζ)

∫ t

0
(β1Su(y)Bl(y)− µSi(y)) dy,

Bl(t)−Bl0(t) =
2(1− ζ)

M(ζ)(2− ζ)

(
ν2Bl(t)

(
1− Bl(t)

Blmax

)
− β2Su(t)Bl(t) + σSi

)
+

2ζ

M(ζ)(2− ζ)

∫ t

0

(
ν2Bl(y)

(
1− Bl(y)

Blmax

)
− β2Su(y)Bl(y) + σSi(y)

)
dy.

Let T1 be an operator on H to itself, i.e., T1 : H → H. Here, T1 is chosen as an operator for the entire
system. Applying it, we obtain that

T1(Su(t)) =
2(1− ζ)

M(ζ)(2− ζ)
K1(t, Su(t)) +

2ζ

M(ζ)(2− ζ)

∫ t

0
(K1(y, Su(y))) dy,

T1(Si(t)) =
2(1− ζ)

M(ζ)(2− ζ)
(K2(t, Si(t))) +

2ζ

M(ζ)(2− ζ)

∫ t

0
(K2(y, Si(y))) dy, (19.2.11)

T1(Bl(t)) =
2(1− ζ)

M(ζ)(2− ζ)
(K3(t, Bl(t))) +

2ζ

M(ζ)(2− ζ)

∫ t

0
(K3(y,Bl(y))) dy

where

K1(t, Su(t)) = ν1Su(t)

(
1− Su(t)

Sumax

)
− β1Su(t)Bl(t),

K2(t, Si(t)) = β1Su(t)Bl(t)− µSi(t),

K3(t, Bl(t)) = ν2Bl(t)

(
1− Bl(t)

Blmax

)
− β2Su(t)Bl(t) + σSi(t).

Let P ⊂ H be bounded. We aim to show that T1(P) is compact to ensure the existence and boundedness of
the solutions of system (19.2.2), where T1 is defined as in (19.2.11). We can see that there exist positive reals
κ1, κ2 and κ3 such that ∥Su∥ < κ1, ∥Si∥ < κ2 and ∥Bl∥ < κ3. From the first equation of (19.2.11), we can
write

∥T1(Su(t))∥ = ∥ 2(1− ζ)

M(ζ)(2− ζ)
K1(t, Su(t)) +

2ζ

M(ζ)(2− ζ)

∫ t

0
(K1(y, Su(y))) dy∥

≤ 2(1− ζ)

M(ζ)(2− ζ)
∥K1(t, Su(t))∥+

2ζ

M(ζ)(2− ζ)
∥
∫ t

0
(K1(y, Su(y))) dy∥

≤
[

2(1− ζ)

M(ζ)(2− ζ)
+ a1

2ζ

M(ζ)(2− ζ)

]
∥K1(t, Su(t))∥

≤ R1

[
2(1− ζ)

M(ζ)(2− ζ)
+ a1

2ζ

M(ζ)(2− ζ)

]
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which implies

∥T1(Su(t))∥ ≤ 2R1

M(ζ)(2− ζ)
(1 + ζa1 − ζ)

and also proceeding similarly, we can obtain

∥T1(Si(t))∥ ≤ 2R2

M(ζ)(2− ζ)
(1 + ζa2 − ζ),

∥T1(Bl(t))∥ ≤ 2R3

M(ζ)(2− ζ)
(1 + ζa3 − ζ)

where
R1 = max

t∈[0,1]
Su∈[0,κ1]

K1(t, Su(t)),

R2 = max
t∈[0,1]

Si∈[0,κ2]

K2(t, Si(t)),

R3 = max
t∈[0,1]

Bl∈[0,κ3]

K3(t, Bl(t)).

Hence, we have proved that T1(P) is bounded. Let, t2 > t1 and Su, Si, Bl ∈ P. So, for a given ϵ > 0, there
exists η satisfying that ∥(t2 − t1)∥ < η, and we can write the following:

∥K1(t2, Su(t2))−K1(t1, Su(t1))∥ ≤ ν1∥Su(t2)− Su(t1)∥

+
ν1

Sumax

∥Su(t2) + Su(t1)∥ ∥Su(t2)− Su(t1)∥

+ β1∥Bl∥ ∥Su(t2)− Su(t1)∥

≤ ν1∥Su(t2)− Su(t1)∥+ 2κ1
ν1

Sumax

∥Su(t2)− Su(t1)∥

+ β1κ3∥Su(t2)− Su(t1)∥

≤
[
ν1 +

2κ1ν1
Sumax

+ β1κ3

]
∥Su(t2)− Su(t1)∥.

(19.2.12)

Assuming that if the function Su(t) is Lipschitz-continuous, i.e., for some real number L1 ≥ 0 and for all
t1, t2, the inequality ∥Su(t2)− Su(t1)∥ ≤ L1∥t2 − t1∥ holds, we can rewrite (19.2.12) as

∥K1(t2, Su(t2))−K1(t1, Su(t1))∥ ≤ G1∥t2 − t1∥ (19.2.13)

where G1 = L1

[
ν1 +

2κ1ν1
Sumax

+ β1κ3

]
. Similarly, we have

∥K2(t2, Si(t2))−K2(t1, Si(t1))∥ ≤ G2∥t2 − t1∥, (19.2.14)

∥K3(t2, Bl(t2))−K3(t1, Bl(t1))∥ ≤ G3∥t2 − t1∥ (19.2.15)

if Si(t) and Bl(t) are also Lipschitz-continuous, i.e., for some real numbers L2, L3 ≥ 0, the conditions

∥Si(t2)− Si(t1)∥ ≤ L2∥t2 − t1∥,
∥Bl(t2)−Bl(t1)∥ ≤ L3∥t2 − t1∥ hold, respectively, for all t1, t2.
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Furthermore,

∥T1(Su(t2))− T1(Su(t1))∥ ≤ 2(1− ζ)

M(ζ)(2− ζ)
∥K1(t2, Su(t2))−K1(t1, Su(t1))∥

+
2ζ

M(ζ)(2− ζ)
R1∥K1(t2, Su(t2))−K1(t1, Su(t1))∥

≤ 2(1− ζ)

M(ζ)(2− ζ)
G1∥t2 − t1∥+

2ζ

M(ζ)(2− ζ)
R1G1∥t2 − t1∥

(using inequality (19.2.13)).

Finally, choosing
η =

ϵ
2(1−ζ)

M(ζ)(2−ζ)G1 +
2ζ

M(ζ)(2−ζ)R1G1

,

we can see that ∥T1(Su(t2))− ∥T1(Su(t1))∥ ≤ ϵ holds.

Similarly proceeding and using inequalities (19.2.14) and (19.2.15), we can also easily show that ∥T1(Si(t2))−
∥T1(Si(t1))∥ ≤ ϵ and ∥T1(Bl(t2)) − ∥T1(Bl(t1))∥ ≤ ϵ hold, which guarantees the equicontinuity of T1.
Hence, according to the well-known Arzela–Ascoli theorem, we can say that T1(P) is compact. Next, we
present the following theorem by summarising the previous discussions on the existence of the solutions of
system (19.2.2), and then we move forward to show the uniqueness of the solutions of system (19.2.2).

Theorem 19.2.3. Let P ⊂ H be bounded and T1 be defined as in (19.2.11). Then, there exist κ1, κ2 and κ3
such that if the functions Su(t), Si(t) and Bl(t) are Lipschitz-continuous, i.e., if for some real numbers, L1,
L2 and L3 ≥ 0, the following conditions hold

∥Su(t2)− Su(t1)∥ ≤ L1∥t2 − t1∥,
∥Si(t2)− Si(t1)∥ ≤ L2∥t2 − t1∥,
∥Bl(t2)−Bl(t1)∥ ≤ L3∥t2 − t1∥,

for all t1, t2, then T1(P) is compact. Thus, all the solutions of system (19.2.2) exist and are bounded.

19.2.4 Uniqueness of the Solutions

To prove the uniqueness of the solutions of system (19.2.2), let us consider the mapping T1 again which was
defined previously. Now,

∥T1(Su(t))− T1(S̃u(t))∥ = ∥ 2(1− ζ)

M(ζ)(2− ζ)
(K1(t, Su(t))−K1(t, S̃u(t)))

+
2ζ

M(ζ)(2− ζ)

∫ t

0
(K1(y, Su(y))−K1(y, S̃u(y)))∥

≤
[

2D1

M(ζ)(2− ζ)

]
∥Su(t)− S̃u(t)∥.

Similarly, we can obtain

∥T1(Si(t))− T1(S̃i(t))∥ ≤
[

2D2

M(ζ)(2− ζ)

]
∥Si(t)− S̃i(t)∥,

∥T1(Bl(t))− T1(B̃l(t))∥ ≤
[

2D3

M(ζ)(2− ζ)

]
∥Bl(t)− B̃l(t)∥
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where D1, D2, D3 ∈ R. Hence, the operator T1 is a contraction if the following conditions hold:

2D1

M(ζ)(2− ζ)
∥Su(t)− S̃u(t)∥ < 1,

2D2

M(ζ)(2− ζ)
∥Si(t)− S̃i(t)∥ < 1,

2D3

M(ζ)(2− ζ)
∥Bl(t)− B̃l(t)∥ < 1

which ensures the existence of unique positive solutions of system (19.2.2) using fixed-point theorem.

19.3 Equilibria and Stability

Our CF fractionalized mathematical model (19.2.2) has two equilibria, namely the disease-free equilibrium
E0 and the endemic equilibrium E∗. Here, E0 is given as E0 = (Sumax , 0, 0). The value of the basic
reproduction number R0 is given as R0 =

β1σSumax
µ(β2Sumax−ν2)

. R0 is actually interpreted as the secondary number
of new infections in a completely susceptible healthy Schwann cell population and, based on the above, we
now present the following theorem on the stability of E0 for our system (19.2.2) as follows:

Theorem 19.3.1. The disease-free equilibrium E0 of system (19.2.2) is locally asymptotically stable if R0 <
1.

To obtain the coordinates of the endemic equilibriumE∗, we now set the right-hand sides of system (19.2.2)
to zero. Hence, we obtain the values of S∗

u, S
∗
i andB∗

l . In this context, we now present the following theorem,
which describes the required criterion about the stability of E∗.

Theorem 19.3.2. If the matrix (I − (1 − ζ)J ) is invertible, then the endemic equilibrium E∗ of the CF
fractionalized system (19.2.2) is locally asymptotically stable if all the roots of the characteristic equation
det(x(I − (1 − ζ)J ) − ζJ ) = 0 of system (19.2.2) evaluated at E∗ are negative real or have negative real
parts where J denotes the Jacobian matrix of system (19.2.2) at E∗ = (S∗

u, S
∗
i , B

∗
l ).
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Unit 20

Course Structure

• Predator prey model in presence of infection

• Jacobian, Characteristic Polynomial and Stability Analysis of Steady States

• Mathematical Model on Viral Infection of phytoplankton-zooplankton system

20.1 Predator Prey Model in Presence of Infection

Some key points explaining why studying the predator-prey model in the presence of infection is important in
ecology:

1. Population Dynamics: It helps understand how the dynamics of predator and prey populations are
influenced by the presence of infectious diseases.

2. Ecosystem Stability: Provides insights into how diseases affect the stability and resilience of ecosys-
tems by altering predator-prey interactions.

3. Disease Spread: Helps predict the spread of diseases within ecological communities through interac-
tions between predators, prey, and pathogens.

4. Biodiversity Conservation: Aids in the development of strategies for biodiversity conservation by
considering the impact of diseases on predator and prey populations.

5. Community Structure: Examines how infectious diseases shape the structure and composition of
ecological communities by altering predator-prey dynamics.

6. Species Interactions: Illustrates the complex interplay between species interactions and disease dy-
namics, leading to cascading effects throughout ecosystems.

7. Human Health: Provides insights into zoonotic diseases, which can spread from wildlife to humans
through predator-prey interactions.

8. Climate Change: Helps assess the impact of climate change on disease dynamics within predator and
prey populations, influencing ecosystem health.
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9. Resource Management: Guides resource management and conservation efforts by considering the role
of diseases in shaping predator-prey relationships.

10. Modeling Complexity: Challenges researchers to develop and refine mathematical models that incor-
porate the complexities of both ecological and epidemiological processes.

20.1.1 Jacobian, Characteristic Polynomial and Stability Analysis of Steady States

The predator-prey model in the presence of infection combines elements of the classic Lotka-Volterra predator-
prey equations with the spread of an infectious disease among one or both populations. Here’s a simplified
mathematical representation of such a model:

Let’s denote:

• P (t): The population of prey (e.g., rabbits).

• P ′(t): The rate of change of the prey population.

• Pbirth: The birth rate of the prey.

• Pdeath: The natural death rate of the prey.

• α: The infection rate of prey by the predator.

• I(t): The population of infected prey.

• β: The recovery rate of infected prey.

For the predator:

• Q(t): The population of predators (e.g., foxes).

• Q′(t): The rate of change of the predator population.

• Qbirth: The birth rate of the predator (possibly influenced by the number of infected prey).

• Qdeath: The natural death rate of the predator (possibly influenced by the number of infected prey).

• δ: The rate at which predators acquire infection from prey.

• γ: The recovery rate of infected predators.

The basic equations for such a model could be:

1. For the prey population:

dP

dt
= Pbirth · P − Pdeath · P − α · P ·Q− β · P · I

2. For the infected prey population:
dI

dt
= α · P ·Q− β · P · I

3. For the predator population:

dQ

dt
= Qbirth ·Q−Qdeath ·Q+ δ · P ·Q− γ ·Q · I
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4. For the infected predator population:

dR

dt
= δ · P ·Q− γ ·Q ·R

These equations capture the interactions between prey, predators, and the infection dynamics between them.

Let’s solve the system of equations to find the equilibrium points (P ∗, Q∗, I∗, R∗):
Given the equations:

• For the prey population: P ′ = Pbirth · P − Pdeath · P − α · P ·Q− β · P · I = 0,

• For the infected prey population: I ′ = α · P ·Q− β · P · I = 0,

• For the predator population: Q′ = Qbirth ·Q−Qdeath ·Q+ δ · P ·Q− γ ·Q · I = 0,

• For the infected predator population: R′ = δ · P ·Q− γ ·Q ·R = 0.

Setting each equation equal to zero, we can solve for the equilibrium points. However, it’s important to
note that the system of equations is nonlinear and might not have simple analytical solutions.

To find the Jacobian matrix, we first need to express the system of equations in a vector form. Let’s define
the vector of variables as X = (P,Q, I,R), and the vector of equations as F = (P ′, Q′, I ′, R′). Then, the
system of equations becomes:

F(X) =


P ′

Q′

I ′

R′

 =


Pbirth · P − Pdeath · P − α · P ·Q− β · P · I
Qbirth ·Q−Qdeath ·Q+ δ · P ·Q− γ ·Q · I

α · P ·Q− β · P · I
δ · P ·Q− γ ·Q ·R


Now, we can find the Jacobian matrix J by taking the partial derivatives of F with respect to each variable:

J =


∂P ′

∂P
∂P ′

∂Q
∂P ′

∂I
∂P ′

∂R
∂Q′

∂P
∂Q′

∂Q
∂Q′

∂I
∂Q′

∂R
∂I′

∂P
∂I′

∂Q
∂I′

∂I
∂I′

∂R
∂R′

∂P
∂R′

∂Q
∂R′

∂I
∂R′

∂R


Let’s compute these partial derivatives explicitly:

∂P ′

∂P
= Pbirth − Pdeath − α ·Q− β · I

∂P ′

∂Q
= −α · P

∂P ′

∂I
= −β · P
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∂P ′

∂R
= 0

∂Q′

∂P
= δ ·Q

∂Q′

∂Q
= Qbirth −Qdeath − α · P − γ · I

∂Q′

∂I
= −γ ·Q

∂Q′

∂R
= 0

∂I ′

∂P
= α ·Q− β · I

∂I ′

∂Q
= α · P

∂I ′

∂I
= −β · P

∂I ′

∂R
= 0

∂R′

∂P
= δ ·Q

∂R′

∂Q
= −γ ·R

∂R′

∂I
= 0

∂R′

∂R
= −γ ·Q

Now, we can assemble these partial derivatives into the Jacobian matrix J.

To find the characteristic equation related to the Jacobian matrix J, we first need to compute the determinant
of the matrix J−λI, where λ is the eigenvalue we’re solving for and I is the identity matrix. Then, we set the
determinant equal to zero to find the characteristic equation.

Let’s denote J− λI as J(λ). The characteristic equation is given by:

det(J(λ)) = 0

where det(·) denotes the determinant.
Let’s denote the elements of J(λ) as jij , where i and j are the row and column indices, respectively.
So, the characteristic equation will be of the form:

a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0 = 0

where a4, a3, a2, a1, and a0 are coefficients determined from the determinant expansion of J(λ).
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20.2 Viral Infections on Phytoplankton and Zooplankton System

• Biotic Interactions: Viral infections influence the interactions between phytoplankton and zooplankton,
impacting community structure and dynamics.

• Nutrient Cycling: Viral lysis of phytoplankton releases nutrients that can be utilized by zooplankton,
affecting nutrient cycling and ecosystem productivity.

• Top-Down Control: Viruses act as top-down regulators of phytoplankton populations by infecting and
reducing their abundance, which can cascade through the food web.

• Genetic Diversity: Viral infections drive genetic diversity in phytoplankton populations through selec-
tive pressures, influencing evolutionary processes.

• Carbon Sequestration: Viral lysis of phytoplankton affects carbon sequestration in the ocean by altering
the fate of organic carbon in the water column.

• Ecosystem Resilience: Understanding viral infections enhances our ability to predict and mitigate the
impacts of environmental stressors on ecosystem resilience.

• Biogeochemical Cycling: Viral infections play a significant role in biogeochemical cycling by mediat-
ing the fluxes of carbon, nitrogen, and other essential elements.

• Climate Feedbacks: Viral infections within phytoplankton-zooplankton systems contribute to climate
feedback loops by influencing oceanic carbon dioxide uptake and release.

• Microbial Loop: Viruses are integral components of the microbial loop, regulating the flow of energy
and nutrients between phytoplankton, zooplankton, and bacteria.

• Ecological Modeling: Incorporating viral infections into ecological models improves our ability to
accurately predict the dynamics and functioning of aquatic ecosystems under changing environmental
conditions.

20.2.1 Mathematical Model on Viral Infection of phytoplankton-zooplankton system

A mathematical model describing viral infection within a phytoplankton-zooplankton system:
Let’s denote:

• P (t): The population of phytoplankton at time t.

• Z(t): The population of zooplankton at time t.

• V (t): The population of viruses infecting phytoplankton at time t.
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Figure 20.1: Susceptible phytoplanktons (t), infected phytoplankton (t), and zoo planktonz (t) exponentially
tend to zero with probability one.

The model can be represented by the following set of differential equations:
1. **Phytoplankton Growth and Viral Infection**:

dP

dt
= rPP − gPPZ − βPV

This equation describes the growth of phytoplankton P with a logistic growth rate rP , and its consumption by
zooplankton Z at a rate gP . Additionally, the phytoplankton population is reduced due to viral infection at a
rate β.

2. **Zooplankton Growth**:
dZ

dt
= rZZ

(
1− Z

K

)
− gZPZ

This equation describes the growth of zooplankton Z with a logistic growth rate rZ and a carrying capacity
K. Zooplankton feed on phytoplankton at a rate gZ .

3. **Viral Reproduction and Decay**:

dV

dt
= pV P − dV V

This equation represents the reproduction of viruses V at a rate p proportional to the abundance of phyto-
plankton P , and the decay of viruses at a rate dV .

In this model, rP , gP , rZ , K, gZ , β, p, and dV are parameters representing growth rates, carrying capacity,
consumption rates, infection rates, and decay rates, respectively.
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This model captures the interactions between phytoplankton, zooplankton, and viruses in an aquatic ecosys-
tem affected by viral infection. Adjustments and refinements can be made based on specific ecological char-
acteristics and experimental data.
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