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Unit 1

Course Structure

• Definition of graphs, circuits, cycles

• Subgraphs, induced subgraphs, degree of a vertex

• Connectivity

1.1 Introduction

In the time of Euler, in the town of Königsberg in Prussia, there was a river containing two islands. The islands
were connected to the banks of the river by seven bridges (1.1.1). The bridges were very beautiful, and on
their days off, townspeople would spend time walking over the bridges (see figure below). As time passed,
a question arose: was it possible to plan a walk so that you cross each bridge once and only once? This is
known as the K̈nigsberg seven bridge problem. In the year 1736, Euler represented the problem as a graph
and answered the question in negative. This marked the birth of graph theory.

Figure 1.1.1: Königsberg Seven Bridge Problem

Since then it has blossomed in to a powerful tool used in nearly every branch of science and is currently
an active area of mathematics research. Over the past 200 years, graph theory has been used in a variety of
applications. Graphs are used to model electric circuits, chemical compounds, highway maps, and many more.
They are also used in the analysis of electrical circuits, finding the shortest route, project planning, linguistics,
genetics and social science.

1



2 UNIT 1.

Objectives

After reading this unit, you will be able to

• define graphs, vertex, edges

• define circuits, cycles and learn their properties

• define subgraphs

• define connected and disconnected graphs and learn their properties

• define planar graphs and trees

• deduce the Euler’s formula for connected graphs

1.2 Graphs

Definition 1.2.1. A graph G is a triple (V,E, g), where

1. V is a finite non-empty set, called the set of vertices;

2. E is a finite set (may be empty), called the set of edges;

3. g is a function, called the incidence function, that assigns to each edge, e ∈ E a one element subset
{v}, or a two-element subset {u, v}, where u, v are vertices.

For convenience, we will write g(e) = {u, v}, where v and u may be same in which case we write g(e) =
{v}.

Let G = (V,E, g) be a graph. Suppose e be an edge of this graph. Then there are vertices u and v such
that g(e) = {u, v}; the vertices u and v are called the end vertices or the endpoints of the vertex e. When a
vertex v is an endpoint of an edge e, we say that e is incident with vertex v and v is incident with the edge e.
Two vertices are said to be adjacent if there exists an edge e ∈ E such that g(e) = {u, v}. Two edges e and f
are said to be adjacent if they have a common endpoint, that is, if g(e) = {u, v} and g(f) = {v, w}. If e is an
edge such that g(e) = {u, v} such that u = v, that is, g(e) = {u}, then e is an edge from u to itself, or u is
adjacent to itself and such an edge e is called a loop on the vertex u.

From now on, we will simply write the graph G = (V,E, g) as G.

Example 1.2.2. Let V = {a, b, c, d} and E = {e, f, h, i, j} and g is defined as

g(e) = {a, b}, g(f) = {b, c}, g(h) = {c, d}, g(i) = {d, a}, g(j) = {d, b}.

Thus, G = (V,E, g) is a graph. We can also write the above definition of g as follows:

e f h i j k

{a, b} {b, c} {c, d} {d, a} {d, b} {d, b}

Such a representation of the incidence function g is the incidence table whose columns are indexed by the
edges. The vertices adjacent to an edge are placed in the second row below the edge.

In this example, we see that the edge e is incident on the two vertices a and b. Thus, the vertex a and b are
adjacent. Similarly, we see that the edges e and f are adjacent since the vertex b is common for both.
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Figure 1.2.1: G as in example 1.2.2

The set of vertices and the set of edges of a graph are finite. Thus, one of the features that make the study
of graphs easy and interesting is that they can be represented pictorially. That is, the corresponding diagram
for a graph helps us to visualize the facts easily. If we represent the graph in the above example pictorially,
then we get something as depicted in the figure 1.2.1.

The incidence function need not be one-to-one. There may be more than one edge having the same end-
points. Such edges are called parallel edges. We formally define parallel edges as follows.

Definition 1.2.3. Let G = (V,E, g) be a graph. Two edges e and f are said to be parallel if g(e) = g(f) =
{u, v} for u, v ∈ V .

In the previous example, the edges j and k are parallel edges since g(j) = g(k) = {d, b}. This can easily
be seen from the figure.

Definition 1.2.4. Let G be a graph and v be a vertex in G. We call v as isolated vertex if it is not incident with
any edge, or, v is not an endpoint of any edge.

Definition 1.2.5. Let G be a graph and v be a vertex in G. Then the degree of v is defined as the number of
edges incident with v. It is written as deg(v) or d(v). By convention, it is considered that each loop contributes
2 to the degree of a vertex.

Note that for an isolated vertex v, we will always have d(v) = 0. In fact, this is a necessary and sufficient
condition for a vertex to be isolated.

Example 1.2.6. G = (V,E, g) is a graph (see figure 1.2.2 where V = {A,B,C,D} and E = {e, f, h, i, j},
where g is defined as

e f h i j

{A,B} {B,C} {C,B} {B,A} {A,A}

Then, we can see that D is an isolated vertex. Also, d(A) = 4, d(B) = 4, d(C) = 2 and d(D) = 0. e and i
are parallel edges and f and h are also so. Notice that g(A) = g(i) irrespective of the order in which A and
B are written in the incidence table of g. But it is not the case always (as we will study in case of the directed
graphs). These graphs that we are studying now are also called undirected graphs (or simply, graphs).
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Figure 1.2.2: G in example 1.2.6

Exercise 1.2.7. Represent the following graphs pictorially and find the degree of each of its vertices. Also
state the parallel vertices and loops, if any.

1. V = {v1, v2, . . . , v7} and E = {e1, e2, . . . , e7} where g is defined as

e1 e2 e3 e4 e5 e6 e7
{v1, v2} {v1, v2} {v4, v3} {v6, v3} {v2, v4} {v6, v3} {v6, v3}

2. V = {v1, v2, v3, v4} and E = {e1, e2, e3} where g is defined as

e1 e2 e3
{v1, v2} {v3, v3} {v4, v3}

The graphs in which all the vertices are of the same degree are called the regular graphs. The two examples
of the graphs we have seen so far are not regular graphs (verify it for example 1.2.2).

Definition 1.2.8. Let G be a graph and k be a non-negative integer. Then G is called a k-regular graph if the
degree of each vertex of G is k.

An interesting k regular graph is the Petersen 3-regular graph as shown in the figure.

Figure 1.2.3: 3-regular graphs (Petersen 3 regular graph on the left)

Definition 1.2.9. Let G be a graph and v be a vertex of G. v is called an even degree vertex if d(v) is an even
number. Similarly, v is odd degree vertex if d(v) is odd.
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The Petersen 3-regular graph has every vertex an odd vertex.

Definition 1.2.10. Let n1, n2, . . . , nk be the degrees of vertices of a graph G such that n1 ≤ n2 ≤ · · · ≤ nk.
Then the finite sequence n1, n2, . . . , nk is called the degree sequence of the graph.

Clearly, every graph has a unique degree sequence. But, we can construct completely different graphs
having the same degree sequence.

Exercise 1.2.11. 1. State the even and odd vertices of the graphs in exercise 1.2.7. Also find the degree
sequence of them.

2. Construct a 1-regular graph having 3 vertices.

3. Construct two different graphs having the same degree sequence.

Consider the degree sequence of the graph in 1.2.2 which is, 2, 2, 4, 4 and adding them gives (2+2+4+4 =
)12, which is an even number. In fact, the sum of the degrees of all the vertices is always an even number
which is given in the following theorem due to Euler.

Theorem 1.2.12. The sum of the degrees of all the vertices of a graph is twice the number of edges.

Proof. Let G be a graph with n edges and m vertices, say v1, v2, . . . , vm. We want to determine

d(v1) + d(v2) + · · ·+ d(vm).

Now the degree, d(vi), of vi is the number of edges incident with vi. Each edge e is either a loop or incident
with two distinct vertices. If e is a loop on a vertex v, then e contributes 2 to the degree of v. On the other
hand, if e is incident with two distinct vertices v and w, then e contributes 1 to the degree of each vertex. Thus
we find that when we compute the sum of the degrees, each edge contributes 2 to the sum. Because there are
n edges, the total contribution to the above sum is 2n. Hence

d(v1) + d(v2) + · · ·+ d(vm) = 2n.

Corollary 1.2.13. The sum of the degrees of all the vertices of a graph is an even integer.

Proof. Since 2n is an even integer, the corollary follows from the previous theorem.

Corollary 1.2.14. In a graph, the number of odd degree vertices is even.

Proof. Suppose a graph G has k odd vertices, v1, v2, . . . , vk, and t even degree vertices, u1, u2, . . . , ut. Thus,
by the above corollary,

d(v1) + d(v2) + · · ·+ d(vk) + d(u1) + d(u2) + · · ·+ d(ut) = 2n,

where n is the number of edges. Because each d(uj) is even, it follows that d(u1) + d(u2) + · · · + d(ut)
is an even integer. Also, 2n is even. Hence, d(v1) + d(v2) + · · · + d(vk) must also be even. Now, the
sum of odd number of odd integers is an odd integer. Because each number d(vi) is an odd number and
d(v1) + d(v2) + · · · + d(vk) is even, it follows that the number k cannot be odd. So k is even and this
completes the proof.
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1.3 Directed Graphs

Definition 1.3.1. A directed graph, or digraph G is a triple (V,E, g) such that

1. V is a finite non-empty set of vertices;

2. E is a finite set (may be empty) of directed edges or arcs;

3. g : E → V × V is a function, that assigns to each edge, e ∈ E an ordered pair (u, v), where u, v are
vertices (u and v may be same).

We can represent a digraph pictorially. The only difference between the representation of graph and digraph
is in the directed edges which are drawn with arrows representing the starting and terminating vertices.

If g(e) = (u, v), then u is called the starting vertex and v is called the terminating vertex of the arc e. The
in-degree of a vertex v is the number of arcs with v as the terminating vertex and the out-degree of v is the
number of arcs with v as the starting vertex. In computing in-degree and out-degree of a vertex, we assume
that each loop contributes 1 to the in-degree and 1 to the out-degree of v.

Theorem 1.3.2. In any digraph G = (V,E, g), the following three numbers are equal:

1. The sum of the in-degrees of all the vertices;

2. The sum of the out-degrees of all the vertices;

3. The number of arcs.

Proof. The proof is similar to that of theorem 1.2.12. We just consider the fact that each arc e with starting
vertex u and terminating vertex u contributes 1 to the out-degree and 1 to the in-vertex of v. The details are
left as exercise.

Example 1.3.3. LetG be a digraph such that V = {a, b, c, d}, E = {e, f, h} and g(e) = (a, a), g(f) = (b, c)
and g(h) = (b, d). The diagram is as follows:

Figure 1.3.1: G in example 1.3.3

The in-degrees of a, b, c and d are 1, 0, 1 and 1 respectively and the out-degrees are 1, 2, 0 and 0 respectively.
Then, sum of the in-degrees of all the vertices=sum of the out-degrees of all the vertices=number of arcs=3.
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Figure 1.4.1: A simple graph

1.4 Simple Graphs

Definition 1.4.1. Let G be a graph. Then it is called a simple graph if it does not contain any parallel edges
or loop.

The graph in the figure 1.4.1 has no loop or parallel edges.

Theorem 1.4.2. Let G be a simple graph with at least two vertices. Then G has at least two vertices of same
degree.

Proof. Let G be a simple graph with n ≥ 2 vertices. G has no loops or parallel edges. Thus, the degree of a
vertex v is the same as the number of vertices adjacent to it. The graph G has n vertices. Thus, a vertex v has
at most n− 1 adjacent vertices, because v is not adjacent to itself. Hence, for any vertex v, the degree of v is
one of integers: 0, 1, 2, . . . , n− 1.

We now show that if there exists a vertex v such that d(v) = 0, then for each vertex u of G, d(u) < n− 1.
On the contrary, suppose that in G, v is a vertex with degree 0 and u is a vertex with degree n− 1. Then v is
an isolated vertex and u has n − 1 adjacent vertices. Because G is a simple graph, u is not adjacent to itself.
From this and the fact that G is simple and d(u) = n − 1, it follows that every vertex of G other than u is
adjacent to u. This implies that v is adjacent to u, which is a contradiction since v is an isolated vertex. This
proves our claim.

In a similar manner, we can prove that if there exists a vertex v in G such that the degree of v is n− 1, then
for each vertex u in G, d(u) > 0.

We now conclude that the degree of all the vertices of G are either in the set {0, 1, 2, . . . , n − 2} or in the
set {1, 2, . . . , n− 1}.

Let v1, v2, . . . , vn be the n vertices ofG. Then, either for all of i = 1, 2, . . . , n, d(vi) ∈ {0, 1, 2, . . . , n−2}
or d(vi) ∈ {1, 2, . . . , n − 1}. Thus, by the pigeonhole principle, there exists i and j, 1 ≤ i ≤ n 1 ≤ j ≤ n,
i ̸= j, such that d(vi) = d(vj). Hence there are atleast two vertices of same degree.

Remark 1.4.3. The converse of the above theorem is not true in general. For example, a and c have equal
degree in example 1.2.2, but the graph G is not simple.

Definition 1.4.4. A simple graph with n vertices in which there is an edge between every pair of distinct
vertices is called a complete graph on n vertices. This is denoted by Kn.

A complete graph of three vertices is a triangle.

Theorem 1.4.5. The number of edges in a complete graph with n vertices is n(n−1)
2 .
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Figure 1.4.2: K3 and K4

Proof. Let G be a complete graph with n vertices. Then G is a simple graph such that there exists an edge
between any two distinct vertices. Hence, for any vertex v of G, each of the remaining n − 1 vertices is
adjacent to v. Hence the degree of each vertex is n− 1. Also, since G has n vertices, so the sum of the degree
of all the vertices is n(n− 1). We know that the sum of the degree of all the vertices is 2 times the number of
edges. Let the number of edges be m. So, we have, n(n− 1) = 2m and thus, we get,

m =
n(n− 1)

2
.

1.5 Subgraph

Consider the graphG = (V,E, g) andH = (V1, E1, g1) such that V = {A,B,C,D,E, F},E = {a, b, c, d, e,
f, h} and V1 = {A,B,C,D,E}, E1 = {a, b, d} and g and g1 are as shown in the figure. It is worthy to note

that V1 ⊂ V and E1 ⊂ E. Also, g1 is the function g restricted over E1. Such a graph H is called a subgraph
of G. We will now formally define subgraphs.

Definition 1.5.1. Let G = (V,E, g) be a graphs. A graph H = (V1, E1, g1) is called a subgraph of G if V1 is
a non-empty subset of V and E1 is a subset of E and g1 is a restriction of g on E1 such that for all e ∈ E1,
we have g1(e) = g(e) = {u, v} for u, v ∈ V1.

Remark 1.5.2. Let G = (V,E) be a graph and H = (V1, E1) be a subgraph of G. From the previous
definition, it follows that if e ∈ E1, and u, v are the end vertices of e in G, then u, v ∈ V1.
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Let G be a graph with vertex set V and edge set E. Suppose that V contains more than one vertex. Then
for any vertex v ∈ V , G \ {v} denotes the subgraph whose vertex set is V1 = V \ {v} and the edge set is
E1 = {e ∈ E| v is not an end vertex of e}. Then G \ {v} is called a subgraph obtained from G by deleting
the vertex v.

Let e ∈ E, and G \ {e} denote the subgraph whose edge set is E \ {e} and the vertex set is V1 = V . Then
G \ {e} is the subgraph obtained by deleting the edge e.

Remark 1.5.3. G\{v} is obtained by deleting the vertex v and at the same time deleting all the edges incident
with v. However, the graph G \ {e} is obtained from G by deleting only the edge e without deleting any of
the vertices of G.

Exercise 1.5.4. 1. Determine which of the following graphs are simple:

2. Draw a graph having the following properties and explain why no such graph exists:

(a) Simple graph, five vertices, each of degree 2

(b) Simple graph having degree sequence 3, 3, 3, 3, 4

(c) Six edges and having the degree sequence 1, 2, 3, 4, 6

3. Find three subgraphs of G in the figure 1.5.1 with at least four vertices and six edges:

4. How many vertices are there in a graph with 20 edges if each vertex is of degree 5?

5. Does there exist a simple graph with degree sequence 1, 2, 3, 4, 5? Justify.

6. Does there exist a graph with five edges and degree sequence 1, 2, 3, 4?

1.6 Walks, Path, Cycles, Circuits

Definition 1.6.1. Let u and v be two vertices in a graphG. A walk from u to v inG, is an alternating sequence
of n+ 1 vertices and n edges of G

(u = v1, e1, v2, e2, . . . , vn−1, en−1, vn, en, vn+1 = v)

beginning with vertex u, called the initial vertex, and ending with vertex v, called the terminal vertex, in which
vi and vi+1 are endpoints of edge ei, for i = 1, 2, . . . , n.
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Figure 1.5.1

Definition 1.6.2. Let u and v be two vertices in a digraphG. A directed walk from u to v inG, is an alternating
sequence of n+ 1 vertices and n arcs of G

(u = v1, e1, v2, e2, . . . , vn−1, en−1, vn, en, vn+1 = v)

beginning with vertex u and ending with vertex v, in which each ei is an arc from vi to vi+1 for i = 1, 2, . . . , n.

Definition 1.6.3. The length of a walk(or a directed walk) is the total number of occurrences of edges(or, arcs)
in the walk(or, directed walk). A walk or directed walk of length zero is only a vertex.

A walk (or, directed walk) from a vertex u to v in a graph (or, digraph) G is also called a u − v walk (or,
directed walk). If u and v are the same, then u−v walk (or, directed walk) is called a closed walk (or, directed
walk). Otherwise, it is called an open walk (or, directed walk).

Definition 1.6.4. A walk with no repeated edges is called a trail, and a walk with no repeated vertices except
possibly the initial and terminal vertices is called a path.

Thus, from the previous definitions, it is clear that in a path, no edge can be repeated. Hence, every path is
a trail, but not conversely.

Definition 1.6.5. A walk, path, or trail is called trivial if it has only one vertex and no edges. A walk, path, or
trail that is not trivial is called nontrivial.

Definition 1.6.6. A nontrivial closed trail from a vertex u to itself is called a circuit.

Hence, a circuit is a closed walk of nonzero length from a vertex u to itself with no repeated edges.

Example 1.6.7. Consider the graph in figure 1.6.1. In this graph

(A, a,B, b, C, f, E, e,B, d,D)

is a walk of length 5. It is an open walk from A to D. This is a walk with no repeated edges. Hence this walk
is a trail since B appears twice. But

(B, b, C, f, E, i,D, j,G)

is a path of length 4 from vertex B to G.
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Figure 1.6.1

Definition 1.6.8. A circuit that does not contain any repetition of vertices except the starting and terminal
vertices is called a cycle. A cycle of length k is called a k-cycle. A cycle is called even (odd) if it contains an
even (odd) number of edges.

It follows from definition that a 3-cycle is a triangle.
Directed walks, trails, paths, circuits, cycles are defined analogously.

Definition 1.6.9. Let P = (v1, e1, v2, e2, . . . , vn−1, en−1, vn) be a walk in a graph G. A subwalk of P is a
subsequence of consecutive entries Q = (vi, ei, vi+1, ei+1, . . . , vk−1, ek−1, vk), 1 ≤ i ≤ k ≤ n, that begins
at a vertex and ends at a vertex.

From the definition, it follows that every subwalk is a walk.
Let P = (v1, e1, v2, e2, . . . , vn−1, en−1, vn) be a walk in a graph G and Q = (vi, ei, vi+1, ei+1, . . . ,

vk−1, ek−1, vk = vi) be a closed subwalk of P . If we delete this subwalk Q from P except for the ver-
tex vi, then we obtain a new walk. This walk is denoted by P − Q and is called the reduction of P by
Q.

Theorem 1.6.10. Let G be a graph and u, v be two vertices of G. If there is a walk from u to v, there is a path
from u to v.

Proof. Let P = (u = v1, e1, v2, e2, . . . , vn−1, en−1, vn = v) be a walk. If u = v, then this is a closed
walk. In this case, (u) from u to u consisting of a single vertex and no edge. Suppose P = (u =
v1, e1, v2, e2, . . . , vn−1, en−1, vn = v) is an open walk. If this is not a path, then vi = vj for some 1 ≤
i < j ≤ n. This shows that there is a closed subwalk Q from vi to vj . We reduce P to P −Q. Now, P −Q
is a new walk from u to v. If this walk is not a path, we repeat this deletion process of subwalks. Because the
number of closed subwalks in P is finite, we eventually obtain a path from u to v.

We can also follow the proof of the above theorem and deduce an analogous result for circuit.

Theorem 1.6.11. Every circuit contains a subwalk that is a cycle.

Proof. Let T be a circuit. Let S be the collection of all closed nontrivial subwalks of T . Because T ∈ S,
S is nonempty. Now S is a finite set. Thus we can find a member of S of minimum length. Let T1 be a
nontrivial closed subwalk (u = v1, e1, v2, e2, . . . , vn−1, en−1, vn = u) of T of minimum length. Since T1 is
of minimum length, T1 cannot contain a nontrivial closed subwalk other than T1. This implies that T1 has no
repeated vertices except the vertex u. Hence T1 is a cycle.



12 UNIT 1.

Definition 1.6.12. Let G be a graph. A vertex u is said to be connected to a vertex v of G if there is a u − v
walk in graph G. And G is said to be connected if for any two vertices u and v of G, there is a u− v walk in
G, otherwise G is called a disconnected graph.

We can show that a graph G is connected if and only if for any two vertices u, v ∈ G, there is a u− v path
in G. We assume that a graph with only a single vertex and no edges is connected.

We now define a relation R on the vertex set V of a graph G as

R = {(u, v) ∈ V × V : there is a u− v walk in G}.

Since the trivial walk (u) is a u − u walk in G, R is reflexive. Suppose there is a u − v walk (u =
v1, e1, v2, e2, . . . , vn−1, en−1, vn = v). Then, (v = vn, en−1, vn−1, . . . , v2, e1, v1 = u) is a v − u walk
in G. Thus, R is symmetric. Again, suppose there is a u− v walk

(u = v1, e1, v2, e2, . . . , vn−1, en−1, vn = v)

from a vertex u to v. Also, suppose there is a v − w walk (v = u1, f1, u2, f2, . . . , vm = w) from vertex v to
another vertex w. Then clearly,

(u = v1, e1, v2, e2, . . . , vn−1, en−1, vn = v = u1, f1, u2, f2, . . . , vm = w)

is a walk from vertex u to vertex w. Thus, the relation R is transitive. Hence R partitions the vertex set V
into disjoint equivalence classes. Let V1 be an equivalence class of R and E1 be the set of edges joining the
vertices in V1 in the graph G. Then G1 = (V1, E1) is a subgraph of G. In this subgraph, we see that any two
vertices are connected. This subgraph is called a component of G.

Definition 1.6.13. A subgraph H of a graph G is called a component of G if

1. any two vertices of H are connected in H , and

2. H is not properly contained in any connected subgraph of G.

Figure 1.6.2: Connected and Disconnected Graphs

Graph G in the above figure has only one component, which is G itself. Graph H , on the other hand, has
two components with vertices {A,B,C,D,E, F} and {a, b, c, d, e}.

From the definition, it follows that any component of a graph is always connected. Now, every equivalence
class of the equivalence relation R gives a component of G. Hence, every graph can be partitioned into finite
number of components. It follows that a graph G is connected if and only if G has only one component.
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Theorem 1.6.14. A connected graph with n vertices has at least n− 1 edges.

Proof. We prove the result by induction on n. If n = 1, then the result is trivially true. Assume that any
connected graph with n vertices has at least n− 1 edges. Consider a connected graph G with n+ 1 vertices.
Because G is a connected graph, the degree of each vertex of G is ≥ 1. Suppose the degree of each vertex of
G is ≥ 2. Then the sum of the degree of the vertices of G is ≥ 2(n+ 1) > 2n. Thus, the number of edges of
G is > n. Suppose now that G has a vertex v of degree 1. We construct a graph G1 by deleting the vertex v
and the edge incident with v. The graphG1 is a connected graph with n vertices. By the induction hypothesis,
the number of edges of G1 is at least n − 1. Therefore, the number of edges of G is at least n. Thus, the
result is true for a graph with n+1 vertices. Hence, by induction for any connected graph with n vertices, the
number of edges is at least n− 1.

We prove another interesting theorem for connected graphs.

Theorem 1.6.15. Let G be a simple graph with at most 2n vertices. If the degree of each vertex is at least n,
then the graph is connected.

Proof. Suppose thatG is not connected. ThenG can be partitioned into components C1, C2, . . . , Cm, m ≥ 2.
Since the degree of each vertex of G is at least n and the graph is simple, we find that each vertex has at
least n adjacent vertices. Then each component contains at least n+ 1 vertices. This implies that the number
of vertices of G is at least m(n + 1) ≥ 2(n + 1) > 2n. This contradiction implies that the given graph is
connected.

Few Probable Questions

1. Consider the graph below:

(a) Find an open walk of length 4. Is is a trail? Is your walk a path?

(b) Find a closed walk of length 5. Is your walk a circuit?

2. Does there exist a graph with 20 edges if each vertex is of degree 3?

3. Draw s simple graph such that every vertex is adjacent to two vertices and every edge is adjacent to two
edges.
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4. Define a path of a graph G. If G has exactly two vertices of odd degree, then show that there exists a
path between these two vertices.

5. Define simple graph. If there is a trail from a vertex u to another vertex v of a graph G, then show that
there is a path from u to v.

6. Define connected graph. Show that a simple graph with n vertices and m components can have at most
(n−m)(n−m+1)

2 edges.

7. Let G be a connected graph with at least two vertices. If the number of edges in G is less than the
number of vertices, then prove that G has a vertex of degree 1.



Unit 2

Course Structure

• Trees, Euler’s formula for connected graphs, Spanning trees

• Complete and complete bipartite graphs

2.1 Introduction

In the previous unit, we learnt about the basic definitions of graph theory and certain properties related to
them. This unit is a continuation of the previous unit.

Objectives

After reading this unit, you will be able to

• define complete graphs, bipartite graphs, and complete bipartite graphs

• define trees and spanning trees

• learn various properties of connected graphs due to Euler

2.2 Bipartite graphs

Definition 2.2.1. A simple graph G is called a bipartite graph if the vertex set V of G can be partitioned into
nonempty subsets V1 and V2 such that each edge of G is incident with one vertex in V1 and one vertex in V2.
V1 ∪ V2 is called a bipartition of G.

In the figure 2.2.1, the graph in (a) is a bipartite graph with partition {A} and {B,C,D}. Whereas, the
second graph is not bipartite as we can easily verify. (Verify!)

Definition 2.2.2. A bipartite graph G with bipartition V1 ∪ V2 is called a complete bipartite graph on m and
n vertices if the subsets V1 and V2 contain m and n vertices, respectively, such that there is an edge between
each pair of vertices v1 ∈ V1 and v2 ∈ V2. A complete bipartite graph with m and n vertices is denoted by
Km,n.

15
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Figure 2.2.1

The two graphs in the above figure represents two complete bipartite graphs. (a) is K1,3 while (b) is K2,3.
Note that the number of edges in the graph Km,n is mn.

Definition 2.2.3. Let G be a graph. Then the distance between two vertices u, v of G, written as d(u, v), is
the length of a shortest path, if any exists, from u to v.

If G is a connected graph, then we can prove that

1. d(u, v) ≥ 0, and equality holds if and only if u = v;

2. d(u, v) = d(v, u);

3. d(u, v) + d(v, w) ≥ d(u,w), for all vertices u, v, w ∈ G.

We will now deduce a necessary and sufficient condition for a graph to be bipartite.

Theorem 2.2.4. A graph is bipartite if and only if it does not contain any cycle of odd length.

Proof. Let G = (V,E) be a bipartite graph with bipartition V = V1 ∪ V2. Now, each edge of G is incident
with one vertex in V1 and one vertex in V2. Let (v1, e1, v2, e2, . . . , vk, ek, v1) be a cycle in G. Because vi and
vi+1 are end vertices of ei, for i = 1, 2, . . . , k (assuming vk+1 = v1), it follows that for i = 1, 2, . . . , k, if
vi ∈ V1, then vi+1 ∈ V2. Suppose v1 ∈ V1. This implies that vk ∈ V2. Also it follows that vi ∈ V1 if and only
if i is odd. Now vk ∈ V2, which implies that k is even and hence the length of this cycle is even. This implies
that the length of each cycle is even.
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Conversely, let G be a graph such that G has no odd cycle. Suppose G is partitioned into components
C1, C2, . . . , Cm, m ≥ 1. If we can show that each Ci is a bipartite graph, then G will be also so. We therefore
assume that G is connected. Let u be an arbitrary but fixed vector of G. Define the subsets V1 and V2 by

V1 = {v ∈ V | d(u, v) is even} V2 = {w ∈ V | d(u,w) is odd}.

From our assumption that G is a connected graph, it follows that every vertex of G is either in V1 or in V2.
Then {V1, V2} is a partition of V . Because d(u, u) = 0, it follows that u ∈ V1. Let v be an adjacent vertex of
u. Then d(u, v) = 1. Hence, v ∈ V2.

Suppose there are two distinct vertices v and w in V1 and suppose there exists an edge e with v, w as end
vertices. Then there is a walk from u to v in G and hence there is a shortest path, say P1, from u to v.
Similarly, we have a shortest path P2, from u to w. Because v and w belong to V1, these two shortest paths
are of even length. Paths P1 and P2 may have several vertices and edges in common.

Now starting from u, let x be the last vertex common to both P1 and P2. Let P ∗
1 be the section of the path

of P1 from u to x and let P ∗
2 be the section of the path of P2 from u to x. Because P1 and P2 are the shortest

paths, P ∗
1 and P ∗

2 have equal lengths, which are either both even or both odd. Let P
′
1 be the part of P1 from

x to v and P
′
2 be the part of P2 from x to w. It follows that the lengths of P

′
1 and P

′
2 are both either even or

odd. Now the walk P
′
1 followed by e followed by P

′
2 forms a closed walk C from x to x. Moreover, C does

not contain any repetitions of the vertices. Hence C is a cycle. Because the lengths of paths P
′
1 and P

′
2 are

both even or odd, C must be of odd length, which is a contradiction. Thus, v and w cannot be both in V1.
Similarly, we can show that v and w cannot both belong to V2. Hence each edge of G connects one vertex of
V1 with one vertex of V2. Consequently, G is bipartite.

Exercise 2.2.5. 1. Draw a complete bipartite graph on 3 and 4 vertices.

2. How many edges are there in each of the following graphs

(a)K2,3 (b)K4,3 (c)K4,4 (d)Kn,n

3. Prove that a simple graph with a cycle of length 3 can’t be a bipartite graph.

2.3 Special Circuits

2.3.1 Euler Circuits

Let us consider a connected graph with more than one vertex such that every vertex has odd degree. For
example consider the graph in the figure 2.3.1. It is a connected graph whose every vertex is of odd degree.
This graph has no circuit, so it has no circuit that contains all the edges. Also the graph K4 contains 4 vertices
and 6 edges. The degree of each vertex is 3. And this graph also has no circuit consisting of all the edges.
But there are circuits consisting of all the edges for some graphs which are of special interest. Let us write the
following

Definition 2.3.1. A circuit in a graph that includes all the edges of the graph is called an Euler Circuit. And
a graph G is called Eulerian if either G is trivial graph or G has an Euler circuit.
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Figure 2.3.1: G with odd vertices

Figure 2.3.2: Königsberg Bridge problem

Recall the Königsberg bridge problem at the beginning of unit 1. The problem was to determine whether
it is possible to take a walk that crosses each bridge exactly once before returning to the starting point. Euler
converted this into a problem of graph theory as follows : Each of the islands A, B, C and D are considered
as the vertices of a graph and the seven bridges a the seven vertices of the graph. Now the problem reduces to
finding a circuit in the graph such that it contains all the edges, or, to find an Euler circuit, or to show that the
graph is Eulerian. It is evident from the figure that there does not exist any Euler circuits of the graph.

Example 2.3.2. Consider the graph below.

Each vertex of the above graph are even vertices. In fact, this is a feature of Eulerian graphs as we will soon
show.

Theorem 2.3.3. If a connected graph G is Eulerian, then every vertex of G has even degree.

Proof. Suppose that G is Eulerian.
First suppose that G is the trivial graph. Then G has only one vertex v and no edges. Hence the degree of

v is 0 which is even.
Next suppose that G contains more than one vertex. Since G is Eulerian, it has an Euler circuit, say

C : (v1, e1, v2, e2, v3, . . . , en−1, vn = v1)
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from a vertex v1 to vn = v1. Now, C contains all the vertices (since G is connected) and all the edges of
G. However, there are no repeated edges in C, though in C a vertex may appear more than once. Let u be a
vertex of G. Since G is connected, u is not an isolated vertex. So u is the end vertex of some edge. Since C
contains all the edges, it follows that u is a member of C.

Suppose u is v1. Let us say that this is the first appearance of u in C. Now, if u is also vn, we say that vn is
the last appearance of u in C. For each of these two appearances of u, the edge e1 and the edge en−1 together
contribute 2 to the degree of u.

Suppose now u is vi in C for some i, 1 < i < n. Then u is an end vertex of the edges ei−1 and ei. These
edges together contribute 2 to the degree of u. It now follows that the degree of any vertex in C is even. Hence
the degree of any vertex in G is even.

Suppose G is connected in which every vertex is of even degree. We shall show that G contains an Euler
circuit. To do so, we first prove the following lemma.

Lemma 2.3.4. Let G be a connected graph with one or two vertices. If every vertex of G is of even degree,
then G has an Euler circuit.

Proof. Suppose G is a graph with only one vertex, say u. Now there may exist zero or more loops at u.
However, the number of loops at u must be finite. If there is no loop at u, then (u) is an Euler circuit of G.
Also suppose that there are loops e1, e2, . . . , en, n ≥ 1, at u. Then (u, e1, u, e2, . . . , en, u) is an Euler circuit
of G. Hence, G contains an Euler circuit.

Suppose now that G has two vertices u and v such that both are of even degree. Because G is con-
nected, u and v are connected. So there exists an even number of parallel edges between u and v. Let
{f1, f2, . . . , f2k}, k ≥ 1 be the set of all edges between u and v. Let e1, e2, . . . , en, n ≥ 0, be the loops at u
and let g1, g2, . . . , gm, m ≥ 0, be the loops at v. (If n = 0, then there are no loops at u. Similarly, if m = 0,
there are no loops at v). Now,

(u, e1, u, e2, . . . , u, en, u, f1, v, g1, v, g2, v, . . . , gm, v, f2, u, f3, v, , f4, . . . , f2k−1, v, f2k, u)

is a trail that begins at u, traverses all the loops incident with u, traverses one edge from u to v, traverses all
the loops at v, then traverses one edge from v to u, and then traverses all the edges between u and v. This trail
does not contain any repeated edges. Hence, it is a circuit from u to u. Because this circuit contains all the
edges of G, it follows that the graph G has an Euler circuit.

Theorem 2.3.5. Let G be a connected graph such that every vertex of G is of even degree. Then G has an
Euler circuit.

Proof. Suppose G has n edges. We prove by induction on the number of edges of G to show that G has an
Euler circuit.

Basic Step: Suppose n = 0. Because G has no edges, it follows that G has a single vertex, say u. Then (u)
is an Euler circuit.

Inductive hypothesis: Let n be a positive integer. Assume that any connected graph with k edges, 0 ≤ k <
n, in which every vertex has even degree has an Euler circuit.

Inductive step: Let G = (V,E) be a connected graph with n edges and the degree of each vertex of G is
even. If the number of vertices of G is 1 or 2, then by previous lemma, it follows that G has an Euler circuit.
So assume that G has at least three vertices.

Since G is connected, there are vertices v1, v2, v3 and edges e1, e2 such that v1, v2 are the end vertices of
e1, and v2, v3 are the end vertices of e2. Now consider the subgraph G1 = (V1, E1), where V1 = V and
E1 = E − {e1, e2}. Next we add a new edge e with v1, v3 as end vertices to the subgraph and obtain a new
graph G2 = (V2, E2), where V2 = V , E2 = E1 ∪ {e}.
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Notice that the graph G2 is obtained from G by deleting edges e1, e2, but not removing any vertices, and
adding a new edge e with end vertices v1 and v3.

In G, suppose deg(v1) = r, deg(v2) = m, and deg(v3) = t. Because we deleted edges e1, e2 in G,
deg(v1) = r − 1, deg(v2) = m − 2, and deg(v3) = t − 1. Now in graph G2, we add a new edge e with
end vertices v1 and v3. Hence, in graph G2, we have deg(v1) = r, deg(v2) = m − 2, deg(v3) = t. While
constructing G1 from G and G2 from G1, the other vertices of G were not disturbed; i.e., their degree in G2

is the same as their degree in G. Thus, it follows that every vertex of G2 is of even degree.
Now graph G2 may not be a connected graph. We show that the number of components of G2 is less than

or equal to two.
Since v1 and v3 are the end vertices of the edge e in G2, it follows that v1 and v3 belong to the same

component of G2, say C1. Now, vertex v2 may not be in C1. Let C2 be the component of G2 that contains v2.
Let v be a vertex of G2. Then v is also a vertex of G. Since G is a connected graph, there is a path P from v
to v1 in G.

If P contains one of the edges e1 or e2, then P cannot be a path from v to v1 in G2. Let P1 be the path in
G2 that is a portion of the path P starting at v whose edges are also in G2. Path P1 may terminate at v1, v2, or
v3. If P1 is a path from v to v1 in G1, then v and v1 belong to the same component, C1. If P1 ends at v3, then
(P1, e, v1) is a path from v to v1. Hence in this case, v also belongs to the same component, C1. Suppose P1

ends at v2. Then v belongs to component C2. Thus, any vertex v of G2 belongs to either C1 or C2. Hence, C2

has one(if C1 = C2) or two components.
Suppose G2 has only one component, C1. Then G2 is a connected graph with n − 1 edges. Thus, by the

inductive hypothesis G2 has an Euler circuit, say T1. From circuit T1, we can construct an Euler circuit T in
G by simply replacing the subpath (v1, e, v3) by the path (v1, e1, v2, e2, v3). Hence in this case, we find that
G is Eulerian.

Suppose G2 has two components, C1 and C2. Now, each component Ci, i = 1, 2 is a connected graph such
that each vertex has even degree and the number of edges in Ci is ni < n. Hence, by the inductive hypothesis,
Ci has an Euler circuit Ti, i = 1, 2. Now, T1 contains v1, v3 and T2 contains v2. Hence (v1, e, v3) is a subpath
of T1. Moreover, we can assume that T2 is a circuit from v2 to v2.

We now construct an Euler circuit inG by modifying T1 as follows: In T1, replace (v1, e, v3) by (v1, e2, v2),
followed by T2, followed by (v2, e2, v3). Thus, we find that G has an Euler circuit. The result now follows by
induction.

The above theorem is an effective way of determining when a connected graph is Eulerian.

Example 2.3.6. Consider the Königsberg bridge problem. All the vertices in the graph are of odd degree.
Then by the preceding two theorems, we can say that there does not exist an Euler circuit for the problem.

But if we add two more edges as shown in the figure, then the resulting graph is Eulerian since every vertex
is of even degree.

Definition 2.3.7. An open trail in a graph is called an Euler trail if it contains all the edges.
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Example 2.3.8. Consider the following graph. It is a connected graph having two vertices of odd degree. So

it does not have an Euler circuit but the trail (B, g, F, e, E, d,D, c, C, b, B, a,A, f, F ) contains all the edges
of G. Hence this is an Euler trail.

Theorem 2.3.9. A connected graph G has an open Euler trail if and only if G has only two vertices of odd
degree.

Proof. Suppose G has an open Euler trail P from a vertex u to a vertex v of G. Construct a new graph G1 by
adding a new edge e to G with u and v as the end vertices. In G1, the trail P with e forms an Euler circuit.
Hence every vertex of G1 is of even degree. In graph G1, e contributes 1 each to the degree of the vertices u
and v. Since G does not contain the edge e, it follows that u and v are the only vertices of odd degree in G.

Conversely assume that a connected graph G has only two vertices u and v of odd degree. Construct a new
graph, G1, by adding a new edge, e, to G with u and v as the end vertices. Then G1 is a connected graph
where every vertex is of even degree. Then G1 contains an Euler circuit, say P . Now, (u, e, v) is a subpath of
P . This subpath is not present in G. Hence, if we delete (u, e, v) from P , then we obtain an open Euler trail
P1 from u to V in G. Hence the theorem is done.

2.4 Trees

Definition 2.4.1. A graph that is connected and has no cycles is called a tree. Generally, a graph that does not
contain any cycles is called an acyclic graph.

Example 2.4.2. Consider the graphs below.

All the graphs are connected. The graphs a and c clearly contains no cycle and hence are trees. Also, the
graphs b and d contains cycles and hence are not trees.

Let T be a tree. Then T is a simple connected graph, so T does not have any parallel edges or loops. Let u
and v be two vertices in T . It follows that there is at most one edge connecting u and v. Since G is connected,
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there is a path from u to v. Let P = (u, e1, u1, e2, . . . , uk, ek, v). If no confusion arises, then we write the
path P as (u, u1, . . . , uk, v), that is, when listing the vertices of the path, we will omit the edges.

Theorem 2.4.3. Let u and v be two vertices of a tree T . Then there exists only one path from u to v.

Proof. If u = v, then the result is trivial.
Suppose u ̸= v. Because T is connected, there is at least one path from u to v. Suppose there are distinct

paths P1 = (u, u1, . . . , uk, v) and P2 = (u, v1, . . . , vt, v) from u to v. Since P1 and P2 are distinct, we have
the following two cases.

Case 1: {u1, . . . , uk} ∩ {v1, . . . , vt} = ∅. Then the path P1 followed by P2, that is,

(u, u1, . . . , uk, v, vt, . . . , v1, u),

forms a cycle from u to u, which is a contradiction.

Case 2: {u1, . . . , uk} ∩ {v1, . . . , vt} ≠ ∅. Hence ui = vj for some i and j.

Let w1 be the first common vertex other than u and v, on paths P1 and P2. Next, we follow path P1

until we come to the first vertex ws, which is again on both P1 and P2. This vertex ws is different from
w1. We must get such a vertex ws, because P1 and P2 meet again at v. Let P ∗

1 be the portion of the path
P1 from w1 to ws and P ∗

2 be the portion of path P2 from ws to w1. Then, P ∗
1 followed by P ∗

2 forms a
cycle from w1 to w1 in graph T . But this contradicts our assumption that T is a tree, so it has no cycles.

Hence T does not contain two distinct paths between any two distinct vertices u and v.

Theorem 2.4.4. In a tree with more than one vertex, there are at least two vertices of degree 1.

Proof. Let T be a tree with more than one vertex. Since T is a connected graph with at least two vertices,
there is a path with at least two distinct vertices. Because the number of vertices and the number of edges is
finite, the number of paths in T is also finite. Thus we can find a path P of maximal length. Suppose path P
is from vertex u to vertex v. We show that deg(u) = deg(v) = 1.

Suppose deg(v) ̸= 1. Let P be the path (u = v1, e1, v2, e2, v3, . . . , vk−1, ek−1, v). Since deg(v) ̸= 1,
there exists an edge ek with v as an end vertex such that ek ̸= ek−1. Since T has no loops, the other end
of ek can’t be v. Suppose the other end is vk. Suppose vk = vi for some i such that 1 ≤ i ≤ k − 1.
Then (v, ek, vi, ei+1, vi+1, . . . , vk−1, ek−1, v) is a cycle from v to v, which contradicts the fact T is a tree. If
vk ̸= vi, 1 ≤ i ≤ k − 1, then we get the path (v1, e1, v2, e2, v3, . . . , vk−1, ek−1, v, ek, vk) whose length is
greater than that of P . This contradicts the fact that path P is of maximal length in T . It now follows that
deg(v) = 1. Similarly, we can show that deg(u) = 1.

The converse of the above theorem is not true as shown by the following example.

Example 2.4.5. Consider the graph in the given figure.
This is a connected graph and it has at least two vertices of degree 1. But it contains a cycle. Hence it is

not a tree.

Theorem 2.4.6. Let T be a tree with n vertices, n ≥ 1. Then T has exactly n− 1 edges.

Proof. We prove the result by induction on n.
Basic Step: Let n = 1. Since T is a simple graph, it does not contain any loop. Therefore it does not

contain any edge and hence the number of edges in T is 0 = 1− 1. Hence the theorem is true for n = 1.
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Inductive hypothesis: Let k ≥ 1 be a positive integer. We assume that the theorem holds for any tree with
k vertices.

Inductive step: Let T be a tree with k + 1 vertices. Since k + 1 ≥ 2, it follows from theorem 2.4.4 that
T has at least two vertices of degree 1. Let u be a vertex of degree 1 in T . We construct a new graph G by
deleting u from T and also the edge e, which is incident on u. Now, G is still a connected graph and does
not contain any cycle. Hence G is a tree with k vertices. By inductive hypothesis, we find that G has exactly
k − 1 edges. This implies that T has k edges. Hence by induction, the theorem holds for any integer n.

The converse of the above theorem is not true in general. This is proved by the following example.

Example 2.4.7. The given graph is clearly a graph containing 4 vertices and 3 = 4 − 1 edges. But this is
clearly not a tree. Also, it is not connected.

Theorem 2.4.8. Let T be a graph with n vertices. Then the following are equivalent:

1. T is a tree.

2. T has no loops and if u and v are two distinct vertices in T , then there exists only one path from u to v.

3. T is a connected graph and has n− 1 edges.

4. T has no cycles and has n− 1 edges.

2.5 Spanning Tree

We begin with the following definition.

Definition 2.5.1. A tree T is called a spanning tree of a graph G if T is a subgraph of G and T contains all
the vertices of G.

Note that the spanning tree of a graph need not be unique. The following theorem gives a necessary and
sufficient condition for a graph to have a spanning tree.
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Theorem 2.5.2. A graph G has a spanning tree if and only if G is connected.

Proof. Suppose G has a spanning tree, G1. G1 contains all the vertices of G. Then between any two vertices,
there exists a path in G1, which is also a path of G. Hence, G is a connected graph.

Conversely, suppose G is a connected graph. If G has no cycles, then G is a tree. Suppose G has cycles.
Let C1 be a cycle in G and e1 be an edge in C1. Now construct the graph G1 = G \ {e1}, which is obtained
by deleting the edge e1 from G but not removing any vertex from G. Clearly, G1 is a subgraph of G and it
contains all the vertices of G. Because e1 is an edge of a cycle, G1 is still a connected graph. If G1 is acyclic,
then G1 is a tree. If G1 contains a cycle C2, then we delete an edge e2 from C2 and construct a connected
subgraph G2 that contains all the vertices. If G2 contains cycles, then we continue this process. Since G has
a finite number of edges, it contains only a finite number of cycles. Hence, continuing the process of deleting
an edge from a cycle, we eventually obtain a connected subgraph Gk that contains all the vertices of G and is
also acyclic. It follows that Gk is a spanning tree of G.

Exercise 2.5.3. 1. Draw a tree with 9 vertices such that three vertices are of degree 3.

2. How many edges are there in a tree with 16 vertices?

3. How many vertices are there in a tree with 16 edges?

4. Suppose there exists a simple connected graph with 16 vertices that has 15 edges. Does it contain a
vertex of degree 1? Justify your answer.

Few Probable Questions

1. Define bipartite graphs. Show that a graph is bipartite if and only if it does not contain any cycle of odd
length.

2. Define Euler circuit. Deduce a necessary condition for a connected graph to be Eulerian.

3. Deduce a necessary and sufficient condition for a connected graph G to have an Euler trail.

4. Define a tree. Show that in a tree T , there exits only one path between two vertices of T .

5. Show that in a tree with more than one vertex, there exits at least two vertices of degree 1. Is the
converse true? Justify.

6. Show that a tree with n vertices has n− 1 edges. Is the converse true? Justify.



Unit 3

Course Structure

• Planar graphs and their properties

• Fundamental cut set and cycles. Matrix representation of graphs

3.1 Introduction

The present unit starts with the matrix representation of graphs. We have dealt with two types of matrix
representations of graphs, viz., the adjacency matrix and the incidence matrix. The matrix representations are
compact and say everything about the graph in a very simple manner as we shall see.

The next topic that is covered is the graph isomorphisms. A graph can exist in different forms having the
same number of vertices, edges, and also the same edge connectivity. Such graphs are called isomorphic
graphs or “equal" or “same" graphs.

Next we have covered the planar graphs. Such graphs in which the can be drawn in a plane of paper can
be thought of as a planar graph and such graphs that don’t satisfy this property is called a non-planar graph.
Of particular importance are the connected simple planar graphs from which we can deduce the Kuratowski’s
theorem (next unit) that characterises simple non-planar graphs. The proof of this is however excluded.

We have now given a brief idea about all that we are about to study. Let’s explore!

Objectives

After reading this unit, you will be able to

• define incidence matrix and adjacency matrix of a graph

• say when two graphs are said to be same (or, isomorphic)

• define planar graphs and learn related properties

• define planar graphs and related terms like faces, boundaries, etc.

• deduce important results related to planar graphs

25
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3.2 Matrix Representation of a Graph

Definition 3.2.1. Let G be a graph with n vertices, where n > 0. Let V (G) = {v1, v2, . . . , vn}. The
adjacency matrix AG with respect to the particular listing, v1, v2, . . . , vn of n vertices of G is an n × n
matrix [aij ] such that the (i, j)th entry of AG is the number of edges from vi to vj . That is,

aij = number of edges from vi to vj .

Since aij is the number of edges from vi to vj , the adjacency matrix AG is a square matrix over the set of
non-negative integers.

If G is a digraph, then the adjacency matrix AG with respect to the particular listing v1, v2, . . . , vn of n
vertices of G is an n× n matrix [aij ] such that the (i, j)th entry is the number of arcs from ai to aj .

Example 3.2.2. Consider the graph G below. The vertices of the graph are {A,B,C,D,E, F}. Then the

adjacency matrix with respect to this ordering of the vertices is

0 1 0 0 1 1
1 0 1 0 0 0
0 1 0 1 0 1
0 0 1 0 1 1
1 0 0 1 0 1
1 0 1 1 1 0


Example 3.2.3. Consider another graph 3.2.1. The vertices of the graph is {A,B,C,D}. The adjacency

Figure 3.2.1

matrix of the graph with respect to the listing is
0 2 1 0
2 0 1 1
1 1 0 0
0 1 0 1
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Notice that the matrix AG is symmetric symmetric since aij = aji. But, if G is a digraph, then the
adjacency matrix need not be symmetric. The adjacency matrix has the following properties:

1. If G does not contain any loops and parallel edges, then each element of AG is either 0 or 1.

2. If G does not contain any loops, then all the diagonal elements of AG are 0.

Example 3.2.4. Let A denote 5× 5 matrix 
1 0 1 1 0
0 0 2 0 1
1 2 0 0 0
1 0 0 1 1
0 1 0 1 0

 .
We construct a graph G such that AG = A. For this, we denote the rows by A,B,C,D,E and the columns
by A,B,C,D,E. Now we draw a graph with vertices A,B,C,D,E. Since (1, 1) and (4, 4) are the only
diagonal elements with entries equal to one, we draw one loop each at the vertices A and D only. Now, we
see that (1, 2)th element= (2, 1)th element = 0 ⇒ there is no edge betweenA andB. Again, (1, 3)th element
= (3, 1)th element = 1 ⇒ there exists one edge between A and C. Continuing in this way, we find the
following graph

Definition 3.2.5. Let G be a graph with n vertices v1, v2, . . . , vn, where n > 0 and m edges e1, e2, . . . , em.
The incidence matrix IG with respect to the ordering v1, v2, . . . , vn of vertices and e1, e2, . . . , em edges is an
n×m matrix [aij ] such that

aij = 0; if vi is not an end vertex of ej ,

= 1; if vi is an end vertex of ej but ej is not a loop,

= 2; if ej is a loop at vi.

Exercise 3.2.6. 1. Find the adjacency matrix of the following graphs with respect to the listingA,B,C,D
of the vertices:

2. Draw the graph of G represented by the given adjacency matrix

(a) AG =


0 2 2 0
2 0 0 1
2 0 0 1
0 1 1 1

 (b) AG =

0 1 2
1 0 0
2 1 0

 (c) AG =

0 1 1
1 0 1
1 1 1


3. Find the adjacency matrix of the digraph with respect to the listing A,B,C,D:
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4. Draw the digraph represented by the given adjacency matrices:

(a)

1 1 2
1 0 1
2 1 0

 (b)

0 0 1
1 0 1
1 1 1


5. Find the adjacency matrices of the graphs K3 and K2,3.

3.3 Isomorphism

Definition 3.3.1. Let G1 = (V1, E1, g1) and G2 = (V2, E2, g2) be two graphs. G1 is said to be isomorphic to
G2 if there exists a one-to-one correspondence f : V1 → V2 and a one-to-one correspondence h : E1 → E2

in such a way that for any edge ek ∈ E1, g1(ek) = {vi, vj} in G1 if and only if g2(h(ek)) = {f(vi), f(vj)}
in G2.

In other words, if G1 = (V1, E1) and G2 = (V2, E2) be two graphs, then G1 is said to be isomorphic to
G2 if there exist a one-to-one correspondence f : V1 → V2 and a one-to-one correspondence h : E1 → E2

such that for any edge ek in E1, vertices vi, vj are end vertices of ek in G1 if and only if f(vi), f(vj) are end
vertices of h(ek) in G2. When we say two graphs are same, we mean they are isomorphic to each other.

Example 3.3.2. Let G and H be graphs as in figure 3.3.1 Both these graphs have six vertices and six edges.
Moreover, both the graphs are simple. The degree sequence of both the graphs is 2, 2, 2, 2, 2, 2.

Let us define f : V1 → V2 and h : E1 → E2 by

f : A 7→ U, B 7→ V, C 7→W, D 7→ X, E 7→ Y, F 7→ Z;

h : a 7→ u, b 7→ v, c 7→ w, d 7→ x, e 7→ y, f 7→ z.

Then we can check that these maps f and h serve as the one-to-one correspondence maps between the vertex
sets and edge sets of the two graphs that satisfies the isomorphism conditions. Thus G and H are isomorphic.
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Figure 3.3.1

If two graphs G1 and G2 are isomorphic, then it is written as G1 ≃ G2.
The following theorem is evident

Theorem 3.3.3. Let G, G1, G2 and G3 be graphs. Then the following assertions hold:

(i) G ≃ G;

(ii) If G1 ≃ G2, then G2 ≃ G1;

(iii) If G1 ≃ G2, and G2 ≃ G3, then G1 ≃ G3.

Proof. Left as an exercise.

Definition 3.3.4. Two graph G1 and G2 are said to be different if G1 is not isomorphic to G2.

Let us write few properties of isomorphic graphs.

1. Two graphsG1 andG2 are isomorphic if and only if there exists a one-to-one correspondence f between
the vertex sets of them such that if v1, v2 are adjacent vertices in G1, then f(v1) and f(v2) are adjacent
vertices in G2.

2. Two graphs G1 and G2 are isomorphic. Then G1 has a vertex of degree k if and only if G2 has a vertex
of degree k.

3. Two graphs G1 and G2 are isomorphic. Then G1 has a cycle of length k if and only if G2 has a cycle of
length k.

3.4 Planar Graphs

Consider the graph in figure 3.4.1a. It can be redrawn as in the figure 3.4.1b.
We can also say that the above two graphs are isomorphic or equal. In the latter graph, notice that no two

edges intersect except at the vertices. Such graphs are called planar graphs as we will formally define now.

Definition 3.4.1. A graph G is called a planar graph if it can be drawn in the plane such that no two edges
intersect except at the vertices, which may the common end point of the edges. We can also say that a graph
is planar if it is isomorphic to a graph having the property said above.

Definition 3.4.2. A graph drawn in the plane (on paper or a chalkboard) is called a plane graph if no two
edges meet at any point except the common vertex, if they meet at all.
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(a) (b)

Figure 3.4.1: Planar Graphs

From the preceding two definitions, it is clear that a graph is a planar graph if and only if it has a pictorial
representation in a plane which is a plane graph. The pictorial representation of a planar graph G as a plane
graph is called the planar representation of G.

Consider the planar representation of a planar graph given below

Let G denotes the graph in the above figure. Then G divides the plane into different regions, called the
faces of G. Suppose x is a point in the plane that is not a vertex of G or a point on any edge of G. Then a
face of G containing x is the set of all points on the plane that can be reached from x by a straight line or a
curved line that does not cross any edge of G or pass through any vertex of G. Thus, it follows that a face is
a region produced by a planar graph that is an area of the plane bounded by the edges and that is not further
subdivided into sub-areas.

The set of edges that bound a region is called its boundary. Of course, there exists a region of infinite area
in any plane graph G. This is the part of the plane that lies outside the planar representation of G. This region
is called the exterior face. A face that is not exterior is called an interior face. We illustrate these concepts
by the following example.

Example 3.4.3. Consider the graph below
This plane graph divides the plane into three regions:

1: Bounded by the cycle (A, a,B, b, C, f, A). The boundary of P consists of the edges a, b, f .

2: Bounded by the cycle (D, d,E, e, C, c,D). The boundary of Q consists of the edges d, e, c.

3: The part of the plane outside this plane graph. The boundary of the region consists of the edges
a, b, c, d, e and f .

It follows that this plane graph contains three faces, namely P,Q and R.
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For this plane graph, the number of edges ne = 6, the number of vertices nv = 5, the number of faces
nf = 3, and we see that

nv − ne + nf = 2.

Theorem 3.4.4. Let G be a connected planar graph with nv vertices, ne edges and nf faces. Then nv − ne +
nf = 2.

Proof. We prove the theorem by induction on ne.
Basic Step: Let ne = 0. Then it has only one vertex and one region, which is the exterior region. Then,

nv − ne + nf = 1− 0 + 1 = 2.
Inductive hypothesis: Let k be a positive integer and assume that nv − ne + nf = 2 for any connected

planar graph with ne = k − 1.
Inductive Step: Let G be a connected planar graph with ne = k edges and nf = t vertices. Suppose G has

no cycles. ThenG has no interior region, which implies that the exterior region is the only region of the graph.
Thus, nf = 1. We now show that G contains a vertex of degree 1. Choose a vertex v in G. If deg(v) = 1, we
are done. Suppose deg(v) > 1. Let v1 be an adjacent vertex of v. Since G has no cycles, G is loop free and
hence v1 ̸= v. If deg(v1) = 1, we are done. Suppose deg(v1) > 1. Let v2 be an adjacent vertex of v1. Since
G has no cycles, G is loop free and hence v2 is different from v and v1. If deg(v2) ̸= 1, we find an adjacent
vertex v3 of v2 different from v, v1 and v2. Because G has finite number of vertices, it follows that G has a
vertex u of degree 1. We now delete this vertex and thus from a new connected planar graph H with k − 1
edges and t− 1 vertices. By the inductive hypothesis, for this graph H , we have, nv − ne + nf = 2. Hence,
(t− 1)− (k − 1) + nf = 2, which implies that t− k + nf = 2, that is, nv − ne + nf = 2 holds for G.

Suppose now that G has a cycle C. Let e be an edge in C. Now construct a new graph G1 = G \ {e}. This
is still a connected planar graph. For this planar graph G1, we compute nv, ne and nf . Let nf = m. In the
construction of G1, we delete only the edge without deleting any vertex. Therefore, nv = t, ne = k−1. Now,
C \ {e} will not form a boundary in G1. Thus in G1, nf = m − 1. Hence G1 is a connected planar graph
with nv = t vertices, ne = k − 1 edges, and nf = m − 1 faces. By the inductive hypothesis, it follows that
t− (k − 1) + (m− 1) = 2. This implies that t− k +m = 2. Hence, nv − ne + nf = 2.

The result now follows by induction.

Exercise 3.4.5. Verify the above theorem for the following graphs:

Corollary 3.4.6. The graph K3,3 is not a planar graph.

Theorem 3.4.7. Let G be a connected simple planar graph with nv ≥ 3 vertices and ne edges. Then

ne ≤ 3nv − 6.
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Proof. Since G is a planar graph, it has a planar representation. Consider a planar representation of G.
Suppose nv = 3. Because G is a simple connected graph with 3 vertices, it follows that ne ≤ 3. Then
ne ≤ 3 · 3− 6 = 3, which implies that ne ≤ 3nv − 6.

Suppose now nv ≥ 3. If G does not contain any cycles then we can show that ne = nv − 1. Now,
3nv − 6 = (nv − 1) + (nv − 2) + (nv − 3) > (nv − 1) = ne.

SupposeG contains a cycle. BecauseG is simple, it may contain a cycle with 3 edges. Thus, the number of
edges in the boundary of a face is ≥ 3. Now, there are nf faces and every edge is a member of some boundary
of the planar representation. Hence, the total number of appearances of the edges in boundaries of nf faces is
≥ nf · 3. In counting these appearances, an edge may be counted atmost two times. Thus, the total number of
appearances of the ne edges in boundaries is ≤ 2ne. Hence, nf · 3 ≤ 2ne. Now, by Euler’s theorem,

nv − ne + nf = 2

⇒ 3nv − 3ne + 3nf = 6

⇒ 3ne = 3nv + 3nf − 6

⇒ 3ne ≤ 3nv + 2ne − 6

⇒ ne ≤ 3nv − 6.

Corollary 3.4.8. The graph K5 is not a planar graph.

Proof. Left as an exercise.

Few Probable Questions

1. Define isomorphism of graphs. Determine whether the following graphs are isomorphic:

2. Define planar graphs. Show that for a connected simple planar graph G with nv ≥ 3, ne ≤ 3nv − 6.

3. Show that for a connected planar graph, nv − ne + nf = 2.



Unit 4

Course Structure

• Kuratowski’s theorem (statement only) and its use

• Chromatic index, chromatic numbers and stability numbers

4.1 Introduction

In the previous unit, we saw that K5 and K3,3 are not planar. In this unit, we will see that this property of
the two above graphs are used in general to characterise planarity of graphs as shown by Kuratowski. Further,
we have dealt with the graph coloring. It is nothing but a simple way of labelling graph components such
as vertices, edges, and regions under some constraints. Vertex coloring and edge coloring are two common
graph coloring problems. The graph coloring problem has huge number of applications, like making schedule
or time tables, sudoku, map coloring, etc.

Objectives

After reading this unit, you will be able to

• get to know the Kuratowski’s theorem and its consequences;

• define vertex and edge coloring and related terms

4.2 Kuratowski’s Theorem

Let G = (V,E) be a graph. Suppose that e is an edge with v1, v2 as end vertices. Construct the subgraph
G1 = G \ {e}. To construct G1, we have deleted edge e without deleting any vertices from G. We now
construct a new graph, G2 = (V2, E2), by taking V2 = V ∪{w}, E2 = (E \ {e})∪{f1, f2} such that w ̸∈ V ,
f1, f2 ̸∈ E, v1, w are end vertices of f1 and v2, w are end vertices of f2. The process of obtaining G2 from G
is called a one-step subdivision of an edge of G.

Definition 4.2.1. A graph H is said to be a subdivision of a graph G if there exist graphs H0, H1, H2, . . . ,Hn

such that H0 = G, Hn = H , and Hi is obtained from Hi−1 be a one-step subdivision of an edge of Hi−1 for
i =, 1, 2, . . . , n.

33
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If a graph H is a subdivision of a graph G, then we say that H is obtained from G by subdividing the edges
of G.

Example 4.2.2. Consider graphs G and H below.

We see that H is obtained from H by a finite sequence of subdivisions of edges. H is obtained from G by
dividing the edge a one time, b one time and c twice.

Definition 4.2.3. Two graphs G and H are said to be homeomorphic graphs if there is an isomorphism from
a subdivision of G to a subdivision of H .

Consider the following example.

Example 4.2.4. Consider the graphs G and H below. We see that G contains a cycle of length 5, and H

contains a cycle of length 4. Hence these two graphs are not isomorphic. But we find a subdivision G′ of G

Figure 4.2.1

and H ′ of H such that G′ and H ′ are isomorphic (see fig. 4.2.1). Hence G and H are homeomorphic.

In 1930, Kuratowski proved the following famous theorem, characterising simple planar graphs in terms of
K5 and K3,3.



4.3. GRAPH COLORING 35

Theorem 4.2.5. Kuratowski. A simple graph is planar if and only if it does not contain a subgraph homeo-
morphic to K5 or K3,3.

The proof of the above theorem is omitted.

4.3 Graph Coloring

Definition 4.3.1. Let G = (V,E) be a simple graph and C = {c1, c2, . . . , cn} be a set of n colors. A vertex
coloring of G using the colors of C is a function f : V → C. Let f : V → C be a vertex coloring of G.If for
every adjacent vertices u, v ∈ V , f(u) ̸= f(v), then f is called a proper vertex coloring.

For each vertex v, its image f(v) is called the color of v. It follows that a vertex coloring of a graph G is
an assignment of the colors c1, c2, . . . , cn to the vertices of graph G. Similarly, a proper vertex coloring of
G is an assignment of the colors c1, c2, . . . , cn to the vertices of G such that adjacent vertices have different
colors. The following graph is an illustration.

Example 4.3.2. Consider the following graph:

This is a graph with 4 vertices A,B,C and D. Suppose C = {r, b, y, g}, where r denotes red, b denotes
blue, y denotes yellow and g denotes green. Define f : V → C by

A 7→ r

B 7→ g

C 7→ y

D 7→ b.

Then f is a proper vertex coloring with four colors.

Definition 4.3.3. The smallest number of colors needed to make a proper vertex coloring of a simple graph G
is called the chromatic number of G and is denoted by χ(G).

Next we determine the chromatic number of bipartite graphs.

Theorem 4.3.4. Let G be a nontrivial simple graph. Then χ(G) = 2 if and only if G is a bipartite graph.

Proof. Let G = (V,E) be a bipartite graph. Then vertex set V can be partitioned into two non-empty subsets
V1 and V2 such that each edge of G is incident with one vertex of V1 and one vertex of V2. Let C = {c1, c2}
be a set of two colors.

Define a function f : V → C such that

f(v) = c1; if v ∈ V1

= c2; if v ∈ V2.
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Since V1∩V2 = ∅, it follows that f is well-defined. Now, no two vertices of V1 are adjacent. Therefore, all the
vertices can have the same color. Similarly, all the vertices of V2 can have the same color. From the definition
of f , it follows that two adjacent vertices of G have different colors. Thus, χ(G) ≤ 2. Also, since G has at
least one edge, χ(G) < 1. Hence combining, we get χ(G) = 2.

Conversely suppose that χ(G) = 2. This implies that the graph contains at least one edge. Also, there
exists a function f : V → C = {c1, c2} such that no two adjacent vertices have the same image.

Let V1 = {v ∈ V : f(v) = c1} and V2 = {v ∈ V : f(v) = c2}. It follows that V1 ∩ V2 = ∅ and
V1 ∪ V2 = V . Let e be an edge with end vertices v1 and v2. Because v1 and v2 can’t have the same color,
v1 ∈ V1 and v2 ∈ V2. Thus, G is a bipartite graph.

Definition 4.3.5. Let G be a graph with vertices v1, v2, . . . , vn−1, vn. The maximum of the integers deg(vi),
for i = 1, 2, . . . , n is denoted by ∆(G).

Theorem 4.3.6. For any simple graph G, χ(G) ≤ ∆(G) + 1.

Proof. We prove this theorem by induction on n, where n is the number of vertices of G.
Basic Step: Let n = 1. Then G is a graph with only one vertex and G has no edge. Hence χ(G) = 1 and

∆(G) = 0. This implies that χ(G) ≤ ∆(G) + 1 for n = 1.
Inductive hypothesis: Suppose that k > 1 is an integer such that for any simple graphG, with k−1 vertices,

χ(G) ≤ ∆(G) + 1.
Inductive step: Let G be a simple graph with k vertices. Consider a vertex v of G and construct the graph

G1 = G \ {v}. The graph G1 is obtained by deleting the vertex v and also all the edges incident on v.
Clearly, ∆(G1) ≤ ∆(G). This is a simple graph with k − 1 vertices. Thus, by the inductive hypothesis,
χ(G1) ≤ ∆(G1) + 1. Then, χ(G1) ≤ ∆(G) + 1. This implies that G1 can be properly colored by atmost
∆(G1) + 1 colors. Now, v has atmost ∆(G) adjacent vertices. Because ∆(G) < ∆(G) + 1, it follows that
not all the ∆(G) + 1 colors are needed to color these ∆(G) adjacent vertices. Thus, from these ∆(G) + 1
colors one unused color is definitely available to color vertex v. Hence, χ(G) ≤ ∆(G) + 1.

Definition 4.3.7. Let G = (V,E) be a simple graph and C = {c1, c2, . . . , cn} be a set of n colors. An edge
coloring of G using the colors of C is a function f : E → C. Let f : E → C be an edge coloring of G.
If, for any two edges e1 and e2 meeting at a common vertex, f(e1) ̸= f(e2), then f is called a proper edge
coloring.

For each edge e, its image f(e) is called the color of e. It follows that a proper edge coloring of a graph
G is an assignment of the colors c1, c2, . . . , cn to the edges of graph G such that any two edges meeting at a
common vertex have different colors. The following graph is an illustration.

Example 4.3.8. Consider the graph G in fig 4.3.1.
The graph G has six edges a, b, c, d, e, f . Suppose C = {R,B, Y,G}, where R denotes red, B denotes

blue, Y denotes yellow, and G denotes green. Define f : E → C by

a 7→ R

c 7→ G

d 7→ B

f 7→ Y

b 7→ B

e 7→ R.

Then f is a proper edge coloring of the graph G.
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Figure 4.3.1

Definition 4.3.9. The smallest number of colors needed to make a proper coloring of the edges of a simple
graph G is called the chromatic index of G, and is denoted by χ′(G).

For a simple graph, we have the following theorem.

Theorem 4.3.10. For any simple graph G, we have, χ′(G) = ∆(G) or χ′(G) = ∆(G) + 1.

Let us see a few examples.

Example 4.3.11. In a connected simple planar graph, there exists a vertex v such that deg(v) ≤ 5.
We know that in a connected simple planar graph, ne ≤ 3nv − 6. Suppose deg(v) ≥ 6 for all vertices v.

Now,
∑

deg(v) = 2ne. Hence 2ne ≥ 6nv. Again, 2ne ≤ 6nv −12. This implies that 6nv ≤ 6nv −12. Thus,
we find that 0 ≤ −12, which is absurd. Hence the result.

Example 4.3.12. For the graph K2,3, we find χ(K2,3). Let us first draw the graph (fig. 4.3.2). We see that

Figure 4.3.2

p, q, r are adjacent vertices of both a and b. LetC = {G,R} be the set of two colors. Let us define f : V → C
as follows:

p 7→ R

a 7→ G

b 7→ G

q 7→ R

r 7→ R.

This is a proper coloring of G. Hence χ(K2,3) = 2.
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Example 4.3.13. For the graph Kn, we find χ(Kn). Kn is a complete graph with n vertices. For any vertex
v of Kn, each of the remaining n− 1 vertices is an adjacent vertex of v. Hence we need n distinct colors for
proper coloring of Kn. Then, χ(Kn) ≥ n. But Kn has n vertices. So, χ(Kn) = n.

Few Probable Questions

1. Define chromatic number of a graph G. Show that a simple nontrivial graph G has chromatic number 2
if and only if G is bipartite.

2. Show that for any simple graph G, χ(G) ≤ ∆(G) + 1.

3. Find χ(G) for each of the following graphs:



Unit 5

Course Structure

• Lattices as partial ordered sets. Their properties. Lattices as algebraic system

• Some special Lattices e.g. complete complemented and distributed lattices

5.1 Introduction

A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.
It consists of a partially ordered set in which every two elements have a unique supremum (also called a least
upper bound or join) and a unique infimum (also called a greatest lower bound or meet). An example is given
by the natural numbers, partially ordered by divisibility, for which the unique supremum is the least common
multiple and the unique infimum is the greatest common divisor.

Lattices can also be characterized as algebraic structures satisfying certain axiomatic identities. Since the
two definitions are equivalent, lattice theory draws on both order theory and universal algebra. Semilattices
include lattices, which in turn include Heyting and Boolean algebras. These "lattice-like" structures all admit
order-theoretic as well as algebraic descriptions.

Objectives

After reading this unit, you will be able to

• define partial ordered sets and see its examples

• upper and lower bounds of a poset

• define lattice and deduce the algebra of join and meet

• draw the Hasse diagram for posets

39
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5.2 Partially Ordered Sets

Definition 5.2.1. A relation R on a set S is called antisymmetric if for all a, b ∈ S, aRb ∈ R and bRa ∈ R
implies a = b.

On the set of all integers, the usual "less than or equal to" relation is an antisymmetric relation since a ≤ b
and b ≤ a implies a = b.

Similarly if T is the set of all subsets of a setA, then the inclusion relation ”⊆” is an antisymmetric relation
since for any two subsets X and Y of A, we always have X ⊆ Y and Y ⊆ X implies X = Y .

Definition 5.2.2. A relation R on a set A is called a partial order on A if R is reflexive, antisymmetric and
transitive. In other words, if R satisfies the following conditions:

1. aRa for all a ∈ A;

2. For all a, b ∈ A if aRb and bRa, then a = b;

3. For all a, b, c ∈ A, if aRb and bRc, then aRc.

A set A together with a partial order relation R is called a partially ordered set, or poset, and we denote
this poset by (A,R).

Let (A,R) be a poset. If there is no confusion about the partial order, we may refer to the poset simply by
A.

Example 5.2.3. The set Z, together with the usual "less than or equal to", ≤ relation is a poset. Note that the
relation ’<’ is not a partial order relation on Z since the relation is not reflexive.

Example 5.2.4. Consider N, the set of all natural numbers, and the divisibility relation R on N. That is, for
all a, b ∈ N, aRb if a|b, that is, there exists a positive integer c such that b = ac. Check that this relation R is
partial ordered. Thus, N with the divisibility relation is a poset.

Though the divisibility relation is a partial order relation on the set of all positive integers, it is not so on
the set of all nonzero integers. For example, 5 = (−1)(−5) and also, −5 = (−1)(5) and thus, 5|(−5) and
(−5)|5 but 5 ̸= −5.

Let R be a partial order on a set A, that is, (A,R) is a poset. We usually denote R by ≤A, or simple ≤. If
A is a partially ordered set with a partial order ≤, then we denote it has (A,≤A) or (A,≤).

Definition 5.2.5. Let (S,≤) be a poset and a, b ∈ S. If either a ≤ b or b ≤ a holds, then we say that a and b
are comparable. The poset (S,≤) is called a linearly set, or totally ordered set, or a chain. if for all a, b ∈ S,
either a ≤ b or b ≤ a.

Example 5.2.6. Consider the poset (Z,≤) with the less equal to relation. For any two integers a and b, either
a < b , or a = b, or b < a. Thus, any two integers with respect to the partial order ≤ are comparable. Hence
(Z,≤) is a chain.

Example 5.2.7. Consider the poset (N,≤) with respect to the divisibility relation. Notice here that 2 does not
divide 5 and 5 does not divide 2. Thus, 2 and 5 are not comparable and hence (N,≤) is not a chain.

Theorem 5.2.8. Any subset T of a poset S is itself a poset under the same relation (restricted to T ). Any
subset of a chain is a chain.
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5.2.1 Digraphs of Posets

Because any partial order is also a relation, we can give a digraph representation of partial order.

Example 5.2.9. On the set S = {a, b, c}, consider the relation

R = {(a, a), (b, b), (c, c), (a, b)}.

The digraph of R is shown below.

From the directed graph it follows that the given relation is reflexive and transitive. This relation is also
asymmetric because there is a directed edge from a to b, but there is no directed edge from b to a. Again, in
the graph we notice that there are two distinct vertices a and c such that there are no directed edges from a to
c and from c to a.

In a digraph of a partial order, one can see that if there is a directed edge from a vertex a to a different
vertex b, then there is no directed edge from b to a.

Theorem 5.2.10. A digraph of a partial order relation R cannot contain a closed directed path other than
loops. (A path a1, a2, . . . , an in a digraph is closed if a1Ra2, a2Ra3, . . . , anRa1.)

By the above theorem, it follows that if a digraph of a relation contains a closed path other than loops, then
the corresponding relation is not a partial order.

Example 5.2.11. On the set S = {a, b, c}, consider the relation

R = {(a, a), (b, b), (c, c), (a, b), (b, c), (c, a)}.

The digraph of the above relation is given by

In this digraph, a, b, c, a forms a closed path. Hence, the given relation is not a partial order relation.

Hasse Diagram

Posets can also be represented visually by Hasse diagram. First we define a few terms that we will need in the
sequel.

Let (S,≤) be a poset and x, y ∈ S. We say that y covers x, if x ≤ y, x ̸= y, and there are no element
x ∈ S such that x < z < y.
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We draw a diagram using the elements of S as follows: We represent the elements of S in the diagram by
the elements themselves such that if x ≤ y, then y is placed above x. We connect x with y by a line segment
if and only if y covers x. The resulting diagram is called the Hasse diagram of (S,≤). We see the illustration
below.

Example 5.2.12. Let S = {1, 2, 3}. Then P(S) = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, S}. Now, (P(S),≤
) is a poset, where ≤ denotes the set inclusion relation. The poset diagram of (P(S),≤) is shown in fig. 5.2.1.

Figure 5.2.1

Minimal and Maximal Elements

Definition 5.2.13. Let (S,≤) be a poset. An element a ∈ S is called

1. a minimal element if there is no element b ∈ S such that b < a,

2. a maximal element if there is no element b ∈ S such that a < b,

3. a greatest element if b ≤ a for all b ∈ S,

4. a least element if a ≤ b for all b ∈ S.

Let us illustrate this with the following example.

Example 5.2.14. Let S = {2, 4, 5, 10, 15, 20}. Let (S,≤) be a poset where ≤ denotes the divisibility relation.
Then the Hasse diagram becomes

Now, it is clear from the Hasse diagram that there exists no greatest or least element of the poset since no
element a satisfies b ≤ a for all b ∈ S ( for example, 2 ≤ 15 is not satisfied and also, 15 ≤ 20 is not satisfied),
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and also, no element a exists that satisfy a ≤ b for every b ∈ S (if we consider 2 or 5 as the least element then
we see that 2 ≤ 5 does not hold and also 5 ≤ 2 does not hold). Now, 5 and 2 are definitely minimal elements
since there exist no element b ∈ S such that b < 2 or b < 5 (in other words, there is no line segment in the
Hasse diagram extending below 2 or 5). Also, 20 and 15 are maximal elements of the poset (verify).

The following lemma ensures the existence of minimal element for every finite poset.

Lemma 5.2.15. Let (S,≤) be a poset such that S is a finite non-empty set. Then this poset has a minimal
element.

Proof. Let a1 be an element of S. If a1 is a minimal element, then we are done. Suppose a1 is not a minimal
element. Then there exists a2 ∈ S such that a2 < a1. If a2 is a minimal element, then we are done, otherwise
there exists a3 ∈ S such that a3 < a2. If a3 is not a minimal element, then we repeat this process. Now,
a3 < a2 < a1 shows that a3, a2, a1 are distinct elements in S. Since S is finite, after a finite number of steps,
we get an element an ∈ S, such that an is a minimal element.

We must note that, a poset (S,≤), where S is a finite non-empty set, has minimal and maximal elements
but may not have least or greatest elements. You can take the previous example as a confirmation of this fact.

Definition 5.2.16. Let S be a set and let ≤1 and ≤2 be two partial orders on S. The relation ≤2 is said to be
compatible with the relation ≤1 if a ≤1 b implies a ≤2 b.

It should be noted that given a finite non-empty set, say S, we can define a linear order in it as follows.
Since S is non-empty, S has at least one element. Choose an element S, and call it the first element, a1. Let

S1 = S \ {a1}. If S1 is not empty, then from S1, choose an element a2. Let S2 = S \ {a1, a2}. If S2 is not
empty, then from S2, choose an element a3. Let S3 = S\{a1, a2, a3}. If S3 is not empty, continue this process.
Since S is a finite set, this process must stop after a finite number of steps. Hence, there exists a positive integer
n such that Sn = S \ {a1, . . . , an} is empty, where an is the element of Sn−1 = S \ {a1, . . . , an−1}. We now
define a partial order ≤1 on S by a1 ≤1 a2 ≤1 a3 · · · ≤1 an. This means that ai ≤1 aj if and only if either
i = j or i < j, where i, j ∈ {1, 2, . . . , n}. It follows that this is a linear order.

Next suppose that not only S is a finite non-empty set, but S also has a partial order ≤. Can we define a
linear order ≤1 on S that is compatible with the partial order ≤? This following theorem is all about answering
this question.

Theorem 5.2.17. Let (S,≤) be a finite poset. There exists a linear order ≤1 on S which is compatible with
the relation ≤.

We omit the proof of this theorem and go on to define lattices.

5.3 Lattice

Definition 5.3.1. Let (S,≤) be a poset and let {a, b} be a subset of S. An element c ∈ S is called an upper
bound of {a, b} if a ≤ c and b ≤ c. Also, if T is any subset of S, then c ∈ S is called an upper bound of T if
t ≤ c for all t ∈ T .

An element d ∈ S is called least upper bound (lub) of {a, b} if,

1. d is an upper bound of {a, b}; and

2. if c ∈ S is an upper bound of {a, b}, then d ≤ c.

We can also define the lub of any general subset T of S and denote it by supT .
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Example 5.3.2. Consider the set N together with the divisibility relation. Consider the subset {12, 8}. We
see that 24, 48, 72 are all common divisors of 12 and 8. Hence 12 ≤ 24 and 8 ≤ 24; 12 ≤ 48 and 8 ≤ 48;
12 ≤ 48 and 8 ≤ 48; 12 ≤ 72 and 8 ≤ 72. Thus, 24, 48, 72 are upper bounds of {12, 8} and hence 24 is the
least upper bound of {12, 8}. Notice that 24 ̸∈ {12, 8}.

Theorem 5.3.3. In a poset (S,≤), if a subset {a, b} of S has a lub, then it is unique.

Proof. Let a, b ∈ S and a lub of {a, b} exists. Suppose c, d ∈ S are two lubs of {a, b}. Then c and d are upper
bounds of {a, b}. Since c is a lub of {a, b} and d is an upper bound, so c ≤ d. Similarly, d ≤ c. Then we have
c ≤ d and d ≤ c. By antisymmetry, we can say that c = d. Hence the result.

The lub of {a, b} in (S,≤), if it exists, is denoted by a ∨ b, or the "join" of a and b.

Definition 5.3.4. Let (S,≤) be a poset and let {a, b} be a subset of S. An element c ∈ S is called a lower
bound of {a, b} if c ≤ a and c ≤ b. Also, if T is any subset of S, then c ∈ S is called an lower bound of T if
c ≤ t for all t ∈ T .

An element d ∈ S is called greatest lower bound (glb) of {a, b} if,

1. d is a lower bound of {a, b}; and

2. if c ∈ S is a lower bound of {a, b}, then c ≤ d.

We can also define the glb of any general subset T of S and denote it by inf T .

Then similar to the previous theorem, we can prove the following

Theorem 5.3.5. In a poset (S,≤), if a subset {a, b} of S has a glb, then it is unique.

Proof. Left as an exercise.

The glb of {a, b} in (S,≤), if it exists, is denoted by a ∧ b, or the "meet" of a and b.

Definition 5.3.6. A poset (L,≤) is called a lattice if both a ∨ b and a ∧ b exist for all a, b ∈ L. A lattice L is
called complete if each of its subsets has a lub and glb in L.

Example 5.3.7. Any chain is a lattice in which a ∧ b is simply the smaller of a and b and a ∨ b is simply the
bigger of the two. Not every lattice is complete; the rational numbers are not complete with respect to the
"usual less than or equal to relation", and the real numbers (in their natural order) are also not complete unless
−∞ and ∞ are adjoined to it.

Example 5.3.8. Let L be the set of all nonnegative real numbers. Then (L,≤) is a poset, where ≤ denotes the
usual "less than or equal to" relation. Let a, b ∈ L. Now, max{a, b} ∈ L and min{a, b} ∈ L. It is easy to see
that max{a, b} is the lub of {a, b} and min{a, b} is the glb of {a, b}. For example, max{2, 5} = 5 = 2 ∨ 5
and min{2, 5} = 2 = 2 ∧ 5. Hence (L,≤) is a lattice. But it is not complete as we have discussed in the
previous example.

Example 5.3.9. Let S be a set. Then (P(S),≤) is a poset, where ≤ is the set inclusion relation. For A,B ∈
P(S), we can show that A ∨ B = A ∪ B and A ∧ B = A ∩ B. Hence (P(S),≤) is a lattice. This lattice is
however, complete and the glb of any family A of subsets of S is simply

⋂
AAα and the lub is

⋃
AAα, both

of which belong to P(S).

Theorem 5.3.10. Let (L,≤) be a lattice and let a, b ∈ L. Then

L1. a ∨ b = b ∨ a, a ∧ b = b ∧ a (commutative laws),
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L2. a ∨ (b ∨ c) = (a ∨ b) ∨ c, a ∧ (b ∧ c) = (a ∧ b) ∧ c (associative laws),

L3. a ∨ a = a, a ∧ a = a (idempotent laws),

L4. a ∨ (a ∧ b) = a, a ∧ (a ∨ b) = a (absorption laws).

Proof. Left as an exercise.

Theorem 5.3.11. Let (S,≤) be a poset and a, b ∈ S. Then the following conditions are equivalent:

1. a ≤ b;

2. a ∨ b = b;

3. a ∧ b = a.

This is known as the consistency of the poset.

Proof. Left as exercise.

Theorem 5.3.12. In any lattice (L,≤), the operations of join and meet are isotonic, that is, if b ≤ c, then

a ∧ b ≤ a ∧ c and a ∨ b ≤ a ∨ c.

Proof. Let b ≤ c. Then
a ∧ b = (a ∧ a) ∧ (b ∧ c) = (a ∧ b) ∧ (a ∧ c),

whence a ∧ b ≤ a ∧ c by consistency. Similarly, the other inequality can be shown.

Theorem 5.3.13. In any lattice (L,≤), we have the distributive inequalities

D (a ∧ b) ∨ (a ∧ c) ≤ a ∧ (b ∨ c),
D’ a ∨ (b ∧ c) ≤ (a ∨ b) ∧ (a ∨ c),

for all a, b, c ∈ L.

Proof. Clearly, a∧b ≤ a and a∧b ≤ b ≤ b∨c. Hence, a∧b ≤ a∧ (b∨c). Also, a∧c ≤ a, a∧c ≤ c ≤ b∨c.
Hence, a ∧ c ≤ a ∧ (b ∨ c). That is, a ∧ (b ∨ c) is an upper bound of a ∧ b and a ∧ c, from which, D follows.
Similarly, we can prove D’.

Definition 5.3.14. A lattice (L,≤) is called distributive if it satisfies

D1. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),

for all a, b, c ∈ L.

The two previous examples of lattices that we discussed earlier, were both distributive lattices. However, it
is worth mentioning that all lattices are not distributive as we see in the following example.

Example 5.3.15. Consider the lattice in the figure 5.3.1.
Since a ∧ (b ∨ c) = a ∧ 1 = a ̸= 0 = 0 ∨ 0 = (a ∧ b) ∨ (a ∧ c), so this lattice is not distributive.

The next theorem gives a necessary and sufficient condition for a lattice to be distributive.
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Figure 5.3.1

Theorem 5.3.16. A lattice (L,≤) is distributive if and only if

D2. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),

for all a, b, c ∈ L.

Proof. Suppose (L,≤) is distributive. Let a, b, c ∈ L. Then

(a ∨ b) ∧ (a ∨ c) = ((a ∨ b) ∧ a) ∨ ((a ∨ b) ∧ c) by D1

= (a ∧ (a ∨ b)) ∨ ((a ∨ b) ∧ c) by L1

= a ∨ ((a ∨ b) ∧ c) by L4

= a ∨ (c ∧ (a ∨ b)) by L1

= a ∨ ((c ∧ a) ∨ (c ∧ b)) by D1

= (a ∨ (c ∧ a)) ∨ (c ∧ b) by L2

= (a ∨ (c ∧ a)) ∨ (b ∧ c) by L1

= a ∨ (b ∧ c) by L4.

Hence, a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c). Similarly, we can show that D2⇒D1.

Theorem 5.3.17. In a distributive lattice (L,≤),

a ∧ b = a ∧ c and a ∨ b = a ∨ c⇒ b = c,

for all a, b, c ∈ L.

Proof. Let (L,≤) be a distributive lattice. Now,

b = b ∧ (a ∨ b)
= b ∧ (a ∨ c)
= (b ∧ a) ∨ (b ∧ c)
= (a ∧ c) ∨ (b ∧ c)
= (c ∧ a) ∨ (c ∧ b)
= c ∧ (a ∨ b)
= c ∧ (a ∨ c)
= c.



5.3. LATTICE 47

Note that a poset (L,≤) may not contain a greatest element, but from the antisymmetric property of ≤, it
can be shown that if there exists a greatest element in a poset, then it is unique, for if, a and b are two such
elements, then a ≤ b and by the same argument, b ≤ a, which implies that a = b. Similarly, a poset may
contain at most one least element. We denote the greatest element of L by I and the least element by O. The
elements O and I , when they exist, are called the universal bounds of L, since then O ≤ x and x ≤ I for all
x ∈ L.

Theorem 5.3.18. If (L,≤) is a poset having O and I , then

O ∧ x = O and O ∨ x = x,

x ∧ I = x and x ∨ I = I,

for all x ∈ L.

Proof. Left as exercise.

Theorem 5.3.19. Let (L,≤) be a lattice. Then for all a, b, c ∈ L,

a ≤ c⇒ a ∨ (b ∧ c) ≤ (a ∨ b) ∧ c.

This is called modular inequality.

Proof. We have, a ≤ a ∨ b and a ≤ c. Hence, a ≤ (a ∨ b) ∧ c. Also, b ∧ c ≤ b ≤ a ∨ b and b ∧ c ≤ c. Thus,
b ∧ c ≤ (a ∨ b) ∧ c. Thus, combining, we get the desired result.

Definition 5.3.20. Let (L,≤) be a lattice with I and O. If a ∈ L, then an element b ∈ L is said to be a
complement of a if a ∨ b = I and a ∧ b = O.

Example 5.3.21. Let D30 denote the set of all positive divisors of 30. Then

D30 = {1, 2, 3, 5, 6, 10, 15, 30}.

Now, (D30,≤) is a poset, where a ≤ b if and only if a divides b. Since 1 divides all the elements of D30, it
follows that 1 ≤ m for all m ∈ D30. Thus, 1 is the least element of this poset. Again, every member of D30

divides 30. Thus, m ≤ 30. Hence, 30 is the greatest element of this poset. The Hasse diagram of this poset is
given by fig. 5.3.2.

Figure 5.3.2

Let a, b ∈ D30. Let d = gcd(a, b) and m = lcm(a, b). Now, d|a and d|b. Hence, d ≤ a and d ≤ b. This
shows that d is a lower bound of {a, b}. Let c ∈ D30 and c ≤ a and c ≤ b. Then c|a and c|b and since d is
the gcd of a and b, so c|d, and hence c ≤ d. Thus, d = gcd(a, b) = glb{a, b}. Since all the positive divisors
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of a, b are also divisors of 30, d ∈ D30, so d = a ∧ b. Similarly we can show that m ∈ D30 and m = a ∨ b.
Hence D30 is a complete lattice with least element 1 and greatest element 30.

Now, for any a ∈ D30, 30
a ∈ D30. Using properties of gcd and lcm, we can show that for any a ∈ D30,

a ∧ 30

a
= 1 and a ∨ 30

a
= 30.

Hence, every element a has a complement 30
a in D30.

Note that for any positive integer n, we can construct the lattice (Dn,≤), where ≤ denotes the usual
divisibility relation in a similar way as shown in the preceding example.

Theorem 5.3.22. In a distributive lattice (L,≤) with I and O, every element has at most one complement.

Proof. Let a ∈ L. Suppose b, c are two complements of a in L. Then a∨ b = I and a∧ b = O; a∨ c = I and
a ∧ c = O. Hence a ∨ b = a ∨ c and a ∧ b = a ∧ c. Then by theorem 5.3.17, it follows that b = c. Hence the
result.

A special type of distributive lattice is the Boolean Algebra. We will read about it in the upcoming units.

Few Probable Questions

1. Define poset. Show that every non-empty finite set has a minimal element.

2. Define lattice. Deduce the modular inequality of a lattice.

3. Deduce the distributive inequality of a lattice.

4. Deduce the necessary and sufficient condition for a lattice to be distributive.

5. Draw the Hasse diagram ofD36 with respect to the usual divisibility relation and show that it is a lattice.
Also, find the complement of each of the elements of D36, if it exists.



Unit 6

Course Structure

• Sublattices. Direct products and Homomorphism.

6.1 Introduction

This unit is a continuation of the previous one. Here we will be focusing on two procedures to get a new
lattice from old ones. One is the notion of sublattice, where a subset of a lattice becomes a lattice in itself.
The other is by defining a lattice using Cartesian product of two or more lattices. Further, we will learn about
lattice homomorphism. As the name suggests, it is a mapping that preserves the lattice structure between two
lattices. Let us explore to know more.

Objectives

After reading this unit, you will be able to

• define sublattice and direct product of lattice

• define and understand lattice homomorphism

6.2 Sublattice

Definition 6.2.1. A sublattice of a lattice L is a subset X of L such that a, b ∈ X imply a ∧ b ∈ X and
a ∨ b ∈ X .

A sublattice is a lattice in its own right with the same join and meet operations. The empty set is a sublattice;
so is any one-element subset. More generally, given a ≤ b in a lattice L, the interval [a, b] of all elements
x ∈ L such that a ≤ x and x ≤ b is a sublattice.

A subset of a lattice L can be itself under the same (relative) order without being a lattice. Let us check the
following example.

49
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Example 6.2.2. Let Σ consist of the subgroups of a group G and let ≤ be the usual set inclusion relation.
Then Σ is a complete lattice with H ∧ K = H ∩ K and H ∨ K the least subgroup in Σ containing H and
K (which is not their set-theoretic union). Here, the set-union of two non-comparable subgroups is never a
subgroup (since we know that the union of two subgroups H and K is a subgroup if and only if either H ≤ K
or K ≤ H). Hence this lattice is not a sublattice of the lattice of all subsets of G.

Definition 6.2.3. A property of subsets of a set I is a closure property when

1. I has the property, and

2. any intersection of subsets having the given property itself has this property.

Theorem 6.2.4. Let L be any complete lattice and let S be any subset of L such that

1. I ∈ S, and

2. T ⊂ S implies inf T ∈ S.

Then S is a complete lattice.

Proof. For any non-empty subset T of S, evidently inf T ∈ L is a member of S by 2, and it is the glb of T in
S. Also, let U be the set of all upper bounds of T in S. It is non-empty since I ∈ S. Then, inf U ∈ S is also
an upper bound of T . Moreover, it is the least upper bound since inf U ≤ u for all u ∈ U . This proves that S
is a complete lattice.

Corollary 6.2.5. Those subsets of any set which have a given closure property form a complete lattice, in
which the lattice meet of any family of subsets Sα is their intersection, and their lattice join is the intersection
of all subsets Tβ which contain every Sα.

6.3 Direct Product of Lattices

Let us consider two lattices (L1,∨,∧) and (L2,∨,∧). Also let L = L1 × L2 = {(a, b) | a ∈ L1, b ∈ L2}.
How can we define join and meet operations on this new set L? Let us take two elements (a1, b1) and (a2, b2)
from L. Let us try and define the join and meet as follows:

(a1, b1) ∨ (a2, b2) = (a1 ∨ a2, b1 ∨ b2)
(a1, b1) ∧ (a2, b2) = (a1 ∧ a2, b1 ∧ b2).

Then (L,∨,∧) is the direct product of (L1,∨,∧) and (L2,∨,∧).
Let us consider the following example.

Example 6.3.1. Consider a lattice (L,≤) as shown in the following figure, where L = {1, 2}. Determine
(L2,≤), where L2 = L× L.

2

1

Figure 6.3.1: Hasse diagram of L
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First let us start by finding L2. We see that

L2 = L× L = {(1, 1), (1, 2), (2, 1), (2, 2)}.

Now take (1, 1), (1, 2) ∈ L2. Then

(1, 1) ∨ (1, 2) = (1 ∨ 1, 1 ∨ 2) = (1, 2).

Also,
(1, 1) ∧ (1, 2) = (1 ∧ 1, 1 ∧ 2) = (1, 1).

Similarly we can check for every pair of elements of L2. The Hasse diagram of L2 is given as follows.

(1, 1)

(2, 1)

(2, 2)

(1, 2)

Figure 6.3.2

In the above example we have taken for granted that L2 forms a lattice. However, we need to show that it
is indeed true.

Theorem 6.3.2. The direct product L1 × L2 of any two lattices L1 and L2 is a lattice.

Proof. For any two elements (a1, b1) and (a2, b2) in L = L1 × L2, the element (a1 ∨ a2, b1 ∨ b2) contains
both (a1, b1) and (a2, b2), hence is an upper bound for the pair. Moreover every other upper bound (u, v) of
the two satisfies a1 ≤ u and a2 ≤ u and hence by the definition of lub, a1 ∨ a2 ≤ u. Similarly, b1 ∨ b2 ≤ v,
and so, (a1 ∨ a2, b1 ∨ b2) ≤ (u, v). This shows that

(a1 ∨ a2, b1 ∨ b2) = (a1, b1) ∨ (a2, b2),

if the latter exists. By a similar argument for lower bound, we can show that

(a1 ∧ a2, b1 ∧ b2) = (a1, b1) ∧ (a2, b2),

if the latter exists. This shows that L is a lattice.

Theorem 6.3.3. The direct product of two distributive lattices is a distributive lattice.

Proof. Let L and M be two distributive lattices and (a1, b1), (a2, b2) and (a3, b3) be elements in their product
L×M . Then

[(a1, b1) ∨ (a2, b2)] ∧ (a3, b3) = (a1 ∨ a2, b1 ∨ b2) ∧ (a3, b3)

= ((a1 ∨ a2) ∧ a3, (b1 ∨ b2) ∧ b3)
= ((a1 ∧ a3) ∨ (a2 ∧ a3), (b1 ∧ b3) ∨ (b2 ∧ b3))
= ((a1 ∧ a3), (b1 ∧ b3)) ∨ ((a2 ∧ a3), (b2 ∧ b3))
= ((a1, b1) ∧ (a3, b3)) ∨ ((a2, b2) ∧ (a3, b3)).

We can similarly verify the other distributive law.
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6.4 Lattice Homomorphism

Let (L,∨,∧) and (M,∨,∧) be two lattices. A function f : L→M is called a lattice homomorphism if

f(a ∨ b) = f(a) ∨ f(b)
and

f(a ∧ b) = f(a) ∧ f(b)

where a, b ∈ L.
This can be easily seen that a lattice homomorphism if it preserves the join and meet operations. We

can also say that the mapping f is a lattice homomorphism if it is both a join-homomorphism and a meet-
homomorphism. To understand better, let us check the following example.

Example 6.4.1. Consider the latticesD6 = {1, 2, 3, 6} andD30 = {1, 2, 3, 5, 6, 10, 15, 30} with the divisibil-
ity relation. We shall check whether there exist a lattice homomorphism between the two lattices. The Hasse
diagram of the two lattices are given below.

1

3

6

2

(a) D6

1

5

10

2

3

15

30

6

(b) D30

Figure 6.4.1: Hasse Diagrams of D6 and D30

For a function to be homomorphism, we need to check for the two conditions stated in the preceding
definition. Let us define a function f : D6 → D30 as follows.

f(1) = 1, f(2) = 6, f(3) = 15, f(6) = 30.

Now we see that
f(1 ∨ 2) = f(2) = 6; f(1) ∨ f(2) = 1 ∨ 6 = 6

and
f(1 ∧ 2) = f(1) = 1; f(1) ∧ f(2) = 1 ∧ 6 = 1.

Hence, we see that the two conditions of homomorphism are satisfied for 1, 2 inD6. In this way, we can check
that the two join and meet homomorphism conditions are satisfied for every pair of elements in D6. Thus, f
is a lattice homomorphism.

If further, f is bijective, then f is called a lattice isomorphism. In the above example, we see that f is not
surjective. Hence it can’t be a lattice isomorphism.

Example 6.4.2. Consider the lattice N with the usual order. Let S = {1, 2, 3} with the usual order. Let
f : N → S be a homomorphism. If f(m) = 0 and f(n) = 1, then m ≤ n, or else, we have

f(m ∨ n) = f(m) = 0, f(m) ∨ f(n) = 0 ∨ 1 = 1.

Thus, f(m ∨ n) ̸= f(m) ∨ f(n). So f must have one of the following forms.
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1. f−1(0) = N;

2. f−1(0) = {1, 2, . . . , k} and f−1(1) = N \ {1, 2, . . . , k} for some k ∈ N;

3. f−1(0) = {1, 2, . . . , k}, f−1(1) = {k + 1, k + 2, . . . , k + r} and f−1(2) = N \ {1, 2, . . . , k + r} for
some k, r ∈ N.

Few Probable Questions

1. Define direct product of lattice. Show that the direct product is two lattice is a lattice.



Unit 7

Course Structure

• Boolean Algebra Basic Definitions, Duality, Basic theorems, Boolean algebra as lattices.

7.1 Introduction

In mathematics and mathematical logic, Boolean algebra is the branch of algebra in which the values of the
variables are the truth values true and false, usually denoted 1 and 0 respectively. Instead of elementary algebra
where the values of the variables are numbers, and the prime operations are addition and multiplication, the
main operations of Boolean algebra are the meet (and) denoted as ∧, the join (or) denoted as ∨, and the
negation (not) denoted as ¬. It is thus a formalism for describing logical operations in the same way that
elementary algebra describes numerical operations.

Boolean algebra was introduced by George Boole in his first book The Mathematical Analysis of Logic
(1847), and set forth more fully in his An Investigation of the Laws of Thought (1854). According to Hunt-
ington, the term “Boolean algebra" was first suggested by Sheffer in 1913, although Charles Sanders Peirce in
1880 gave the title “A Boolean Algebra with One Constant" to the first chapter of his “The Simplest Mathe-
matics". Boolean algebra has been fundamental in the development of digital electronics, and is provided for
in all modern programming languages. It is also used in set theory and statistics.

Objectives

After reading this unit, you will be able to:

• define Boolean algebra and derive some useful properties of it

• establish a partial order relation on a Boolean algebra

• deduce that an Boolean algebra is a lattice with respect to the partial order defined

7.2 Boolean Algebra

Though we gave a rough idea about Boolean Algebra in the previous unit, we start afresh in this unit to define
Boolean Algebra.
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Definition 7.2.1. A class of elements B together with two binary operations (+) and (·) (where a · b will be
written as ab) is a Boolean algebra if and only if it satisfies the following postulates:

B1. The operations (+) and (·) are commutative.

B2. There exist in B distinct identity elements 0 and 1 relative to the operations (+) and (·) respectively.

B3. Each operation is distributive over the other.

B4. For every a ∈ B, there exists an element a′ in B such that

a+ a′ = 1 and aa′ = 0.

The symbols ” + ” and ” · ” is just a convention. We could use any other symbols in place of these two.

Example 7.2.2. Let S be any set and P(S) be the set of all subsets of S. Then P(S) forms a Boolean
algebra where the binary operations (+) and (·) are the set-theoretic union and intersections respectively. The
corresponding identity elements are S and ∅ respectively. For every element T ∈ P(S), the complement is
given by S \ T .

Theorem 7.2.3. Every statement or algebraic identity deducible from the postulates of a Boolean algebra
remains valid if the operations (+) and (·), and the identity elements 0 and 1 are interchanged throughout.

This theorem is called the principle of duality.

Proof. The proof of this theorem follows at once from the symmetry of the postulates with respect to the two
operations and the two identities.

It should be noted that the steps in one proof are dual statements to those in the other, and the justification
for each step is the same postulate or theorem in one case as in the other.

Theorem 7.2.4. For every element a in a Boolean algebra B,

a+ a = a and aa = a.

Proof.

a = a+ 0 by B2

= a+ aa′ by B4

= (a+ a)(a+ a′) by B3

= (a+ a)(1) by B4

= a+ a, by B2

and similarly,

a = a(1) by B2

= a(a+ a′) by B4

= aa+ aa′ by B3

= aa+ 0 by B4

= aa. by B2
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Thus, we can say that (+) and (·) operations are idempotent.

Theorem 7.2.5. For every element a in a Boolean algebra B,

a+ 1 = 1 and a0 = 0.

Proof.

1 = a+ a′ by B4

= a+ a′(1) by B2

= (a+ a′)(a+ 1) by B3

= 1(a+ 1) by B4

= a+ 1. by B2

The other part is left as an exercise.

Theorem 7.2.6. For each pair of elements a and b in a Boolean algebra B,

a+ ab = a and a(a+ b) = a.

Proof.

a = 1a by B2

= (1 + b)a by Theorem 7.2.5

= 1a+ ba by B3 and B1

= a+ ba by B2

= a+ ab. by B1

The other part is left as exercise.

Theorem 7.2.7. In every Boolean algebra B, each of the binary operations (+) and (·) is associative. That is,
for every a, b, and c in B,

a+ (b+ c) = (a+ b) + c and a(bc) = (ab)c.

Proof. First we will show that a+ a(bc) = a+ (ab)c, as follows:

a+ a(bc) = a by Theorem 7.2.6

= a(a+ c) by Theorem 7.2.6

= (a+ ab)(a+ c) by Theorem 7.2.6

= a+ (ab)c. by B3

Next we will show that a′ + a(bc) = a′ + (ab)c, as follows:

a′ + a(bc) = (a′ + a)(a′ + bc) by B3

= 1(a′ + bc) by B4

= a′ + bc by B2

= (a′ + b)(a′ + c) by B3

= [1(a′ + b)](a′ + c) by B2

= [(a′ + a)(a′ + b)](a′ + c) by B4

= (a′ + ab)(a′ + c) by B3

= a′ + (ab)c. by B3
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Now if we multiply these two equations, we obtain

[a+ a(bc)][a′ + a(bc)] = [a+ (ab)c][a′ + (ab)c]. (7.2.1)

The left side of the above equation may be reduced as follows

[a+ a(bc)][a′ + a(bc)] = [a(bc) + a][a(bc) + a′] by B1

= a(bc) + aa′ by B3

= a(bc) + 0 by B4

= a(bc). by B2

Similarly, the right side of equation (7.2.1) reduces as follows:

[a+ (ab)c][a′ + (ab)c] = [(ab)c+ a][(ab)c+ a′] by B1

= (ab)c+ aa′ by B3

= (ab)c+ 0 by B4

= (ab)c. by B2

Thus, equation (7.2.1) reduces to
a(bc) = (ab)c,

which is the required associative law we were to prove. By duality principle, the analogous part for (+)
follows.

From now on, we shall write both a(bc) and (ab)c as abc, and similarly, we shall write both (a+ b)+ c and
a+ (b+ c) as a+ b+ c.

Theorem 7.2.8. The element a′ associated with the element a in a Boolean algebra is unique.

Proof. Suppose that a+ x = 1, ax = 0, and also that a+ y = 1, ay = 0. Then,

x = 1.x by B2

= (a+ y)x by assumption

= (ax+ yx) by B3 and B1

= 0 + yx by assumption

= yx by B2

= xy by B1

= xy + 0 by B2

= xy + ay by assumption

= (x+ a)y by B3 and B1

= 1y by assumption

= y. by B2

Thus any two elements associated with a as specified in B4 are equal. In other words, a′ is uniquely
determined by a. We will refer to a′ as the complement of a.

Theorem 7.2.9. For every a in a Boolean algebra B, (a′)′ = a.
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Proof. By B4, a+ a′ = 1 and aa′ = 0. But this is exactly the necessary condition that (a′)′ is equal to a. By
the previous theorem, this is unique and hence the result.

Theorem 7.2.10. S. In any Boolean algebra, 0′ = 1 and 1′ = 0.

Proof. By theorem 7.2.5, 1 + 0 = 1, and 1 · 0 = 0. Since theorem 7.2.8 shows that for each a there is only
one element a′, these equations imply that 0′ = 1, and 1′ = 0.

Theorem 7.2.11. For every a and b in a Boolean algebra B,

(ab)′ = a′ + b′ and (a+ b)′ = a′b′.

Proof. First,

(ab)(a′ + b′) = aba′ + abb′ by B3

= 0b+ a0 by B1, B2, B4

= 0 + 0 = 0. by theorem 7.2.5

Further,

ab+ a′ + b′ = a′ + b′ + ab by B1

= (a′ + b′ + a)(a′ + b′ + b) by B3

= (1 + b′)(1 + a′) by B4 and B1

= 1. by theorem 7.2.5 and B2

Now, by B4 and theorem 7.2.8, we can show that (ab)′ = a′ + b′. The part can be shown by duality principle.

This is known as D’Morgan’s law.

7.3 Boolean Algebra as Lattices

We now define an order relation on a Boolean algebra B by the following.

Definition 7.3.1. The "order" relation a ≤ b is defined by the statement:
For every a and b in a Boolean algebra B, a ≤ b if and only if ab′ = 0.

Let us see certain properties of the relation as follows:

Theorem 7.3.2. The following four properties of ≤ are valid in every Boolean algebra for arbitrary elements
x, y, and z:

1. x ≤ x (reflexive);

2. if x ≤ y and y ≤ x, then x = y (antisymmetry);

3. if x ≤ y and y ≤ z, then x ≤ z (transitive);

4. if x ≤ y and x ≤ z, then x ≤ yz;

5. if x ≤ y, then x ≤ y + z, for any z;

6. x ≤ y if and only if y′ ≤ x′.
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Proof. 1. Left for reader.

2. x ≤ y and y ≤ z are equivalent to xy′ = 0 and yx′ = 0 respectively. Now,

x = x(1) by B2

= x(y + y′) by B4

= xy + xy′ by B3

= xy by assumption

= yx by B1

= yx+ yx′ by B2 and assumption

= y(x+ x′) by B3

= y(1) = y. by B4

3. x ≤ y is equivalent to xy′ = 0. Also, y ≤ z is equivalent to yz′ = 0. Now,

xz′ = xz′(1) by B2

= xz′(y + y′) by B4

= xyz′ + xy′z′ by B1 and associativity

= 0 + 0. by assumption

Thus, x ≤ z.

4. x ≤ y and x ≤ z are equivalent to xy′ = 0 and xz′ = 0 respectively. Now,

x(yz)′ = x(y′ + z′) by theorem 7.2.11

= xy′ + xz′ by B3

= 0. by assumption

Hence x ≤ yz.

5. x ≤ y is equivalent to xy′ = 0. Let z ∈ B be arbitrary. Then

x(y + z)′ = x(y′z′) by theorem 7.2.11

= 0. by associativity and assumption

Thus, x ≤ y + z for any z ∈ B.

6. x ≤ y is equivalent to xy′ = 0. Thus,

y′(x′)′ = y′x by theorem 7.2.9

= xy′ by B1

= 0. by assumption

Hence, y′ ≤ x′.

The first three points of the above theorem show that B forms a poset with respect to the relation ≤ defined
above. We will show that Boolean algebra forms lattice with respect to the defined partial order.
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Theorem 7.3.3. Let B be a Boolean algebra with respect to the partial order ≤ defined as x ≤ y if and only
if xy′ = 0. Then B is a lattice with respect to ≤.

Proof. We will be done if we show that {x, y} has lub and glb in B. We show that x+ y is the lub and xy is
the glb of the set. Since x(x + y)′ = x(x′y′) = xx′y′ = 0 and similarly, y(x + y)′ = 0 so x ≤ (x + y) and
y ≤ (x+ y). Thus, x+ y is an upper bound of {x, y}. Let z be any other upper bound of {x, y}. Then x ≤ z
and y ≤ z which imply xz′ = 0 and yz′ = 0. Now,

(x+ y)z′ = xz′ + yz′ = 0

which shows that x + y ≤ z. Thus, x + y is the lub of {x, y}. We can similarly show that xy is the glb of
{x, y}. Thus, (B,≤) forms a lattice.

The join and meet are defined as x ∨ y = x+ y and x ∧ y = xy, for any arbitrary x, y ∈ B.
Also, note from the previous theorems that a Boolean algebra is distributive, and each element of it has a

complement. Thus, a Boolean algebra is a distributive complemented lattice. Let us see certain examples.

Example 7.3.4. Let B be a Boolean algebra. We simplify the expression x+ (yx)′, where x, y ∈ B.
We have,

x+ (yx)′ = x+ (y′ + x′) by theorem 7.2.11

= (x+ x′) + y′ by B1

= 1 + y′ by B4

= (0y)′ = 0′ = 1. by theorems 7.2.11 and 7.2.10

Example 7.3.5. In a Boolean algebra B, we simplify (xy)′(x′ + y)(y′ + y), for x, y ∈ B.
We have,

(xy)′(x′ + y)(y′ + y) = (xy)′(x′ + y) by B4 and B2

= (x′ + y′)(x′ + y) by theorem 7.2.11

= x′ + y′y by theorem 7.2.7

= x′. by B4

Example 7.3.6. In a Boolean algebra B, we simplify (x+ z)(xt+ xt′) + xz + z, for x, z, t ∈ B.
We have,

(x+ z)(xt+ xt′) + xz + z = (x+ z)x(t+ t′) + xz + z

= (x+ z)x+ xz + z

= x((x+ z) + z) + z

= x(x+ z)

= xx+ xz + z

= x+ (x+ 1)z

= x+ z.

Example 7.3.7. In a Boolean algebra B, we simplify x′(x+ y) + (y + xx)(x+ y′), for x, y ∈ B.
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We have,

x′(x+ y) + (y + xx)(x+ y′) = x′x+ x′y + (y + x)x+ (y + x)y′

= x′y + (y + x)x+ (y + x)y′

= x′y + yx+ xx+ yy′ + xy′

= x′y + yx+ x+ xy′

= x′y + x(y + 1 + y′)

= x′y + x

= x+ x′y

= (x+ x′)(x+ y)

= x+ y.

Few Probable Questions

1. Establish the distributive property of Boolean algebra.

2. Define a partial order relation on a Boolean algebra B. Hence show that it is a lattice with respect to the
defined partial order.

3. Deduce the De’Morgan’s law for Boolean algebra.

4. Show that the complement of an element in a Boolean algebra is always unique.

5. Show that 0′ = 1 and 1′ = 0 in a Boolean algebra.

6. In a Boolean algebra B, show that for any a, b ∈ B, a(a+ b) = a.

7. Deduce the idempotent property of both the binary operators (+) and (·) in a Boolean algebra.

8. In a Boolean algebra B, simplify the following:

(a) y(x′z + xz′) + x(yz + yz′);

(b) xyz + x′ + xy′z;

(c) (xy′ + x′y)′(x+ y);

(d) (xy)′(x′ + y)(y′ + y).



Unit 8

Course Structure

• Boolean functions, Sum and Product of Boolean algebra, Minimal Boolean Expressions, Prime impli-
cants Propositions and Truth tables.

8.1 Introduction

This unit starts with the dnf and cnf which are normals forms and continuation of the previous unit. Next we
move on to logic gates. Logic is an extensive field of study with many special areas of inquiry. In general,
logic is concerned with the study and analysis of methods of reasoning or argumentation. Symbolic logic
is not precisely defined as distinct from logic in general, but might be described as a study of logic which
employs an extensive use of symbols. In any discussion of logic, the treatment centers around the concept
of a proposition (statement). The principal tool for treatment of propositions is the algebra of propositions, a
Boolean algebra. In talking about propositions, we will also investigate certain logical forms which represent
acceptable techniques for constructing precise proofs of theorems. Since statements are formed from words,
it is apparent that some consideration must be given to words and their meanings. No logical argument can be
based on words that are not precisely described. That part of logic which is concerned with the structure of
statements is much more difficult than the areas mentioned previously, and in fact, has not been satisfactorily
formalized.

Objectives

After reading this unit, you will be able to

• define disjunctive normal forms and deduce related results

• define conjunctive normal forms and deduce related results

• solve problems related to dnf and cnf

• define propositions and learn to form complex propositions by conjunction, disjunction and negation

• show that the set of all propositions form a Boolean algebra with respect to the conjunction, disjunction
and negation so defined

• draw truth tables for complex propositions
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8.2 Disjunctive Normal Form

We start assuming that the reader is familiar with the terms monomial, polynomial, terms, factor, variable
constants. By a Boolean function we will mean any expression which represents the combination of a finite
set of symbols, each representing a constant or a variable, by the operations of (+), (·), or complement. Thus,
(a′+b)′c+ab′x+0 is a Boolean function provided that each of the symbols a, b, c, x represents an element of
a Boolean algebra. Further example such as the equation x + x′ = 1 represents the statement that a function
x+ x′ of the variable x equals the constant 1.

Among the functions of n variables x1, x2, . . . , xn which can be written, a particular class of functions is
of special interest, namely, those written as a sum of terms in which each term is a product involving all n
variables either with or without a prime. Examples of such functions are x+ x′, xy′, xyz′ + x′yzxy′z in one,
two, and three variables, respectively. The following definition gives a name to such functions.

Definition 8.2.1. A Boolean function is said to be in disjunctive normal form in n variables x1x2, . . . , xn, for
n > 0, if the function is a sum of terms of the type f1(x1)f2(x2) · · · fn(xn), where fi(xi) is xi, or x′i for each
i = 1, 2, . . . , n, and no two terms are identical. In addition, 0 and 1 are said to be in disjunctive normal form
in n variables for any n ≥ 0.

Some important properties of the disjunctive normal form are given in the following theorems.

Theorem 8.2.2. Every function in a Boolean algebra which contains no constants is equal to a function in
disjunctive normal form.

Proof. Let an arbitrary function (without constants) of the n variables x1, x2, . . . , xn denoted by f . If f
contains an expression of the form (A+B)′ or (AB)′ for some functions A and B, then D’Morgan’s law may
be applied to yield A′B′ and A′ + B′ respectively. This process may be continued until each prime which
appears applies only to a single variable xi.

Next, by applying the distributive law of (·) over (+), f can be reduced to a polynomial.
Now suppose some term t does not contain either xi or x′i for some variable xi. This term may be multiplied

by xi + x′i without changing the function. Continuing this process for each missing variable in each of the
terms in f will give an equivalent function whose terms contain xj or x′j for each j = 1, 2, . . . , n.

Finally by idempotent property, duplicate terms are eliminated and this completes the proof.

The following is an illustration.

Example 8.2.3. Write the function f = (xy′ + xz)′ + x′ in disjunctive normal form.
We have,

(xy′ + xz)′ + x′ = (xy′)′(xz)′ + x′

= (x′ + y)(x′ + z′) + x′

= x′ + x′y + yz′ + x′

= x′(x+ y′)(z + z′) + yz′(x+ x′)

= x′yz + x′yz′ + x′y′z + x′y′z′ + xyz′ + x′yz′

= x′y′z + xyz′ + x′yz′ + x′y′z + x′y′z′.

The usefulness of the normal form lies primarily in the fact that each function uniquely determines a normal
form in a given number of variables, as we shall see in later theorems. However, any function may be placed
in normal form in more than one way by changing the number of variables. For example, f = xy is in normal
form in x and y, but if xy is multiplied by z + z′, then f = xyz + xyz′ also in normal form in the variables
x, y, and z. Similarly, g = x′yz + xyz + x′yz′ − xyz′ is in normal form in x, y, and z, but reduces, on
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factoring, to g = x′y − xy, which is in normal form in x and y. From now on we shall assume that unless
stated otherwise, disjunctive normal form refers to that disjunctive normal form which contains the smallest
possible number of variables. With this exception, we will be able to show that the normal form of a function
is uniquely determined by the function.

Suppose that we desire to select a single term out of the possible terms in a disjunctive normal form in n
variables. This corresponds to selecting either xi or x′i, for each of the n variables xi, i = 1, 2, . . . , n. Thus
there are exactly 2n distinct terms which may occur in a normal form in n variables.

Theorem 8.2.4. That disjunctive normal form in n variables which contains 2n terms is called the complete
disjunctive normal form in n variables.

It will be a consequence of the following theorems that the complete disjunctive normal form is identically
1. A simple argument to prove this directly is to note that for any variable xj , the coefficients of xj and x′j
must be identical in a complete normal form, namely, these coefficients are each the complete normal form in
the remaining n− 1 variables. Factoring serves to eliminate xj , and this process may be repeated to eliminate
each variable in succession, thus reducing the expression to 1.

Theorem 8.2.5. If each of n variables is assigned the value 0 or 1 in an arbitrary, but fixed manner, then
exactly one term of the complete disjunctive normal form in the n variables will have the value 1 and all other
terms will have the value 0.

Proof. Let a1, a2, . . . , an represent the values assigned to x1, x2, . . . , xn in that order, where each ai is 0 or
1. Select a term from the complete normal form as follows: use xi if ai = 1, and use x′i if ai = 0 for each
xi, i = 1, 2, . . . , n. The term so selected is then a product of n ones, and hence is 1. All other terms in the
complete normal form will contain at least one factor 0 and hence will be 0.

Corollary 8.2.6. Two functions are equal if and only if their respective disjunctive normal forms contain the
same terms.

Proof. Two functions with the same terms are obviously equal. Conversely, if two functions are equal, then
they must have the same value for every choice of value for each variable. In particular, they assume the same
value for each set of values 0 and 1 which may be assigned to the variables. By idempotent property, the
combinations of values of 0 and 1 which, when assigned to the variables, make the function assume the value
1 uniquely determine the terms which are present in the normal form for the function. Hence both normal
forms contain the same terms.

Corollary 8.2.7. To establish any identity in Boolean algebra, it is sufficient to check the value of each
function for all combinations of 0 and 1 which may be assigned to the variables.

We have seen in the preceding theorems that a function is completely determined by the values it assumes
for each possible assignment of 0 and 1 to the respective variables. This suggests that functions could be
conveniently specified by giving a table to represent such properties. In applications, particularly to the design
of circuits, this is precisely the way in which Boolean functions are constructed. If such a table has been given,
then the function, in disjunctive normal form, may be written down by inspection. For each set of conditions
for which the function is to be 1, a corresponding term is included in the disjunctive normal form selected,
as indicated in the proof of the idempotent property in the previous unit. The sum of these terms gives the
function, although not necessarily in simplest form. The following example indicates this method.

Example 8.2.8. Find and simplify the function f(x, y, z) specified by table 8.1
Note that the table shows the value of f for each of the 23 = 8 possible assignments of 0 and 1 to x, y, and

z.
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Row x y z f(x, y, z)

1 1 1 1 0
2 1 1 0 1
3 1 0 1 1
4 1 0 0 0
5 0 1 1 0
6 0 1 0 0
7 0 0 1 1
8 0 0 0 0

Table 8.1

We observe that for the combinations represented by rows 2, 3 and 7 of the table, the function will have
the value 1. Thus the disjunctive normal form of f will contain three terms. For 2, since the x variable is
1, y variable is 1 and z variable is zero, the term in f corresponding to this combination will be xyz′ (note
that the value if 1 by idempotent property). Similarly, for the terms in 3 and 7th rows, we get xy′z and x′y′z
respectively (each giving values 1). Thus, summing these terms over, we get f(x, y, z) = xyz′+xy′z+x′y′z.
We have

f(x, y, z) = xyz′ + xy′z + x′y′z

= xyz′ + (x+ x′)y′z

= xyz′ + y′z.

Exercise 8.2.9. 1. Express the following in disjunctive normal form in the smallest possible number of
variables:

(a) x′yz + xy′z′ + x′y′z + x′yz′ + xy′z + x′y′z′

(b) (x+ y′)(y + z′)(z + x′)(x′ + y′)

(c) (u+ v + w)(uv + u′w)′

(d) xy′ + xz + xy

(e) xyz + (x+ y)(x+ z)

(f) x+ x′y

(g) (x+ y)(x+ y′)(x′ + z)

2. Write separately, and simplify, the three functions f1, f2 and f3 as given in the table 8.3.

8.3 Conjunctive Normal Form

There are other normal forms, besides the disjunctive normal form, which are equally useful. One of these
represents each function as a product of sums, rather than as a sum of products. If each statement in the
preceding section were replaced by its dual, the resulting discussion would be a corresponding treatment of
this second form called the conjunctive normal form. To make this clear, the definition and theorems are
repeated here in their dual forms. No proofs are needed, of course, because of the principle of duality.
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Row x y z f1 f2 f3
1 1 1 1 0 0 1
2 1 1 0 1 1 1
3 1 0 1 0 1 0
4 1 0 0 1 0 0
5 0 1 1 0 0 0
6 0 1 0 0 1 0
7 0 0 1 0 1 1
8 0 0 0 0 0 1

Table 8.2

Definition 8.3.1. A Boolean function is said to be in conjunctive normal form in n variables x1, x2, . . . , xn
for n > 0, if the function is a product of factors of the type f1(x1) + f2(x2) + · · ·+ fn(xn), where f + i(xi)
is xi or x′i for each i = 1, 2, . . . , n, and no two factors are identical. In addition, 0 and 1 are said to be in
conjunctive normal form in n variables for n ≥ 0.

Theorem 8.3.2. Every function in a Boolean algebra which contains no constants is equal to a function in
conjunctive normal form.

Example 8.3.3. Write the function (xy′ + xz)′ + x′ in conjunctive normal form.
The procedure is essentially dual to that of the disjunctive normal form that we saw in the previous section,

although, depending on the initial form of the function, it may require more steps to perform the reduction
in one case than in another. Here, after primes are removed from parentheses, the function is factored into
linear factors and then extra variables are introduced as needed by adding, within each factor, products of the
form ww′. The final step is to expand into linear factors again and remove like factors. The solution for this
example is given by the steps below.

(xy′ + xz)′ + x′ = (x′ + y)(x′ + z′) + x′

= (x′ + x′ + y)(x′ + x′ + z′)

= (x′ + y)(x′ + z′)

= (x′ + y + zz′)(x+ z′ + yy′)

= (x′ + y + z)(x′ + y + z′)(x′ + y + z′)(x′ + y′ + z′)

= (x′ + y + z)(x′ + y + z′)(x′ + y′ + z′).

Definition 8.3.4. That conjunctive normal form in n variables which contains 2n factors is called the complete
conjunctive normal form in n variables.

Theorem 8.3.5. If each of n variables is assigned the value 0 or 1 in an arbitrary, but fixed manner, then
exactly one factor of the complete conjunctive normal form in the n variables will have the value 0 and all
other factors will have the value 1.

Note that to select the factor which will be 0 when a set of values a1, a2, . . . , an are assigned to x1, x2, . . . , xn
in that order, where each ai is 0 or 1, we simply apply duality principle of that described in the previous sec-
tion. xi is selected if ai = 0 and x′i is selected if ai = 1 for each i = 1, 2, . . . , n. The proper factor is then the
sum of these letters, each of which has value 0. All other factors have the value 1.

Corollary 8.3.6. Two functions, each expressed in conjunctive normal form in n variables, are equal if and
only if they contain identical factors.
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Row x y z f(x, y, z)

1 1 1 1 1
2 1 1 0 1
3 1 0 1 0
4 1 0 0 1
5 0 1 1 1
6 0 1 0 1
7 0 0 1 0
8 0 0 0 1

Example 8.3.7. Find and simplify the function f(x, y, z) specified in the table above.
Observe that only two rows of the table show the value 0 for f . Corresponding to the third row, we see that

x is 1, y is 0 and z is 1. So the corresponding factor will be x′ + y + z′. Similarly, for the 7th row, we have
the term as x+ y + z′. Thus, we would have f(x, y, z) = (x′ + y + z′)(x+ y + z′) which gives us,

f(x, y, z) = (x′ + y + z′)(x+ y + z′)

= x′y + x′z′ + y + yz′ + z′x+ z′y

= (x′ + 1)y + z′(x′ + y + x+ y)

= y + z′(x′ + x+ y)

= y + z′(1 + y)

= y + z′.

In problems of this type, the disjunctive normal form would normally be used if the number of 1’s is were
less than the number of 0’s in the f column, and the conjunctive normal form would be used if the number of
0’s were less than the number of l’s.

Again, as in the previous section, we can use the conjunctive normal form to find complements of functions
written in this form by inspection. The complement of any function written in conjunctive normal form is that
function whose factors are exactly those factors of the complete conjunctive normal form which are missing
from the given function. For example, the complement of (x+ y′)(x′ + y) is (x+ y)(x′ + y′).

It may be desirable to change a function from one normal form to the other. This can be done more readily
than by following the general procedure for converting a function to a particular form. An example will
illustrate the method, which is based on the fact that (f ′)′ = f .

Example 8.3.8. Find the conjunctive normal form for the function

f = xyz + x′yz + xy′z′ + x′yz′.

We have,

f = xyz + x′yz + xy′z′ + x′yz′

= [(xyz + x′yz + xy′z′ + x′yz′)′]′

= [(x′ + y′ + z′)(x+ y′+, z′)(x′ + y + z)(x+ y′ + z)]′

= (x+ y + z)(x′ + y + z′)(x+ y + z′)(x′ + y′ + z).

Here, the first complement was taken with the aid of D’Morgan’s law and the second complement was taken
by the method discussed above. These steps could have been reversed, with the same results. A similar
procedure will change a function from conjunctive normal form to disjunctive normal form.
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Exercise 8.3.9. 1. Express each of the following in conjunctive normal form in the smallest possible num-
ber of variables:

(a) xyz + (x+ y)(x+ z)

(b) (x′y + xyz′ + xy′z + x′y′z′t+ t′)′

(c) x′yz + xy′z′ + x′y′z + x′yz′ + xy′z + x′y′z′

(d) (x+ y′)(y + z′)(z + x′)(x′ + y′)

(e) (u+ v + w)(uv + u′w)′

(f) xy′ + xz + xy

(g) xyz + (x+ y)(x+ z)

2. Change each of the following from disjunctive normal form to conjunctive normal form:

(a) uv + u′v + u′v′

(b) abc+ ab′c′ + a′bc′ + a′b′c+ a′b′c′

3. Change each of the following from conjunctive normal form to disjunctive normal form:

(a) (x+ y′)(x′ + y)(x′ + y′)

(b) (u+ v + w)(u+ v + w′)(u+ v + w)(u′ + v + w′)(u′ + v′ + w)(u′ + v′ + w′)

4. Write separately, and simplify, the four functions f1, f2, f3 and f4 as given in the table below. Use
whichever normal form seems easier.

Row x y z f1 f2 f3 f4
1 1 1 1 1 0 0 1
2 1 1 0 0 1 1 1
3 1 0 1 1 0 0 1
4 1 0 0 1 0 1 0
5 0 1 1 1 0 1 1
6 0 1 0 1 0 1 1
7 0 0 1 0 1 0 1
8 0 0 0 1 0 0 0

Table 8.3

8.4 Propositions and definitions of symbols

In the algebra of sets, it is necessary to start with certain primitive concepts in the form of undefined terms.
This is typical of any formal system and is true of the algebra of propositions as well. The terms true, false,
and proposition will be taken here as undefined. Without any attempt to investigate the philosophical meaning
of truth and falsehood, we will assume that the words true and false are attributes which apply to propositions.
By a proposition, we will infer the content of meaning of any declarative sentence which is free of ambiguity
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and which has the property that it is either true or false, but not both. The following examples are typical
propositions:

3 is a prime number;

living creatures exist on the planet Venus.

Note that of these propositions, the first is known to be true, while the second is either true or false. In contrast
to these, the following is not a proposition:

this statement you are reading is false.

We shall use lower case italic letters to represent propositions. Where no specific proposition is given, these
will be called propositional variables and used to represent arbitrary propositions.

From any proposition, or set of propositions, other propositions may be formed. The simplest example is
that of forming from the proposition p, the negation of p, denoted by ¬p or p′. or example, suppose that p is
the proposition

sleeping is pleasant.

has negation
sleeping is unpleasant.

Any two propositions p and q may be combined in various ways to form new propositions. To illustrate, let p
be the proposition

ice is cold,

and let q be the proposition
blood is green.

These propositions may be combined by the connective and to form the proposition

ice is cold and blood is green.

This proposition is referred to as the conjunction of p and q. We will denote the conjunction of p and q by
pq, and we will require that the proposition be true in those cases in which both p and q are true, and false in
cases in which either one or both of p and q are false.

Another way in which the propositions in the preceding paragraph may be combined is indicated in the
proposition

either ice is cold or blood is green.

This proposition is referred to as the disjunction of p and q. We will denote the disjunction of p and q by p+q
and is the proposition "either p or q or both". We will require that this proposition be true whenever either one
of p and q or both are true, and false only when both are false.

It follows from our definitions that the negation of "p or q" is the proposition "not p and not q," which can
also be stated "neither p nor q." Likewise, the negation of "p and q" is "either not p or not q. " That is, the laws
of D’Morgan hold for propositions just as they do for sets. In symbolic form we have the following laws for
propositions:

(p+ q)′ = p′q′

(pq)′ = p′ + q′.

Example 8.4.1. Let p be the proposition "missiles are costly" and q be the proposition "Grandpa chews gum".
Write in English the propositions represented by the symbols
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1. p+ q′ 2. p′q′ 3. pq′ + p′q

We have

p : missiles are costly;

q : Grandpa chews gum;

p′ : missiles are not costly;

q′ : Grandpa does not chew gum;

Then,

1. p+ q′ : Either missiles are costly or Grandpa does not chew gum.

2. p′q′ : Missiles are not costly and Grandpa does not chew gum.

3. pq′ + p′q : Either missiles are costly and Grandpa does not chew gum, or missiles are not costly and
Grandpa chews gum.

Exercise 8.4.2. 1. Which of the following sentences, or phrases, represent propositions?

(a) Grass is yellow.

(b) Beautiful white roses.

(c) All mathematics is difficult, and some mathematics is impossible.

2. Let p be the proposition "mathematics is easy," and let q be the proposition "two is less than three."
Write out, in reasonable English, the propositions represented by

i. p+ q ii. pq′ + p′q

8.5 Truth tables

To show that the set of propositions and the operations of conjunction, disjunction, and negation form a
Boolean algebra, it is necessary first to define the concept of equality. Two propositional functions g and h,
each functions of the n propositional variables p1, p2, . . . , pn, are said to be equal if and only if they have
the same truth value for every possible way of assigning truth values to each of the n variables. To complete
our algebra, we will create two new propositions represented by 0 and 1, respectively. We define 0 to be a
proposition that is always false, and 1 to be a proposition that is always true. The equation p = 0 is equivalent
to the statement that p is false. Similarly, q = 1 is equivalent to saying that q is true.

The definition we have given for equality makes it possible to represent a function with a table of values
exactly as was done previously. The only difference is that now we have a special meaning attached to the
symbols which appear in the table. These symbols stand for propositions rather than for abstract elements of
an arbitrary Boolean algebra. Such a table will be termed a truth table. We give an example of such a table
below.

This table represents the truth values of the propositions pq and p + q for two simple propositions p and q
according to their truth values.

The construction of a truth table for a complicated propositional function can best be carried out in steps,
using at each step the basic truth table for one of the operations (+), (·) or complement.

If it happens that the truth table for a function contains only 1’s (in the function column), we call the
corresponding proposition a tautology. Both p+ p′ and pq + pq′ + p′q + p′q′ are examples of tautologies for
any propositions p and q.
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Row p q pq p+ q

1 1 1 1 1
2 1 0 0 1
3 0 1 0 1
4 0 0 0 0

We again attempt to draw the truth table of (r′+pq)′, for three propositions p, q and r. Since we have three
propositions and two truth values, viz., 0 and 1, so we have 23 = 8 possible combinations of truth values for
the propositions. The table is given in table 8.4.

Row p q r r′ pq r′ + pq (r′ + pq)′

1 1 1 1 0 1 1 0
2 1 1 0 1 1 1 0
3 1 0 1 0 0 0 1
4 1 0 0 1 0 1 0
5 0 1 1 0 0 0 1
6 0 1 0 1 0 1 0
7 0 0 1 0 0 0 1
8 0 0 0 1 0 1 0

Table 8.4

An illustration of the usefulness of truth tables occurs in the proof of the following theorem. From the
definition of equality, it follows that two functions are equal if and only if their truth tables are identical. This
fact is used in the third part of the proof below.

Theorem 8.5.1. The algebra of propositions is a Boolean algebra.

Proof. In order to prove that the set of propositions forms a Boolean algebra, we will have to show that the
four postulates hold which we stated in the beginning of the previous unit. We begin with them one by one.

(a) From the definition of disjunction and conjunction of propositions (denoted as (·) and (+)), it follows
that they are commutative and hence the first postulate holds true.

(b) 0 is the identity element for the operation (+) since 0+p has the same truth value as p and hence equals
p. Similarly, (1)(q) has the same truth value as q and hence equals q, showing that 1 is the identity for
the operation of conjunction.

(c) Each operation is distributive over the other as is shown by the table below (table 8.5).

From table 8.5, it can be seen that the truth values of p + qr and (p + q)(p + r) are same, and hence
they are equal. Also, the truth values of pq + pr and p(q + r) are same and hence they are equal.

(d) For each proposition p, there is a second proposition p′, the negation of p, which satisfies the relations
pp′ = 0 and p+ p′ = 1 as can be verified by the truth table 8.6.

Thus, p′ is the complement of p.

Hence the theorem.
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p q r pq pr qr p+ qr pq + pr p+ q p+ r q + r p(q + r) (p+ q)(p+ r)

1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 0 0 1 1 1 1 1 1 1
1 0 1 0 1 0 1 1 1 1 1 1 1
1 0 0 0 0 0 1 0 1 1 0 0 1
0 1 1 0 0 1 1 0 1 1 1 0 1
0 1 0 0 0 0 0 0 1 0 1 0 0
0 0 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.5

p p′ pp′ p+ p′

1 0 0 1
0 1 0 1

Table 8.6

Exercise 8.5.2. 1. Determine which of the following are tautologies by constructing the truth table for
each.

(a) pq + p′ + q′ 2. p+ q + p′

2. Construct a truth table for each of the following functions.

(a) pqr + p′qr′ + p′q′r′ 2. (p′ + qr)′(pq + q′r) 3. pq′ + p′(qr + q′r)′

Few Probable Questions

1. Define disjunctive normal form. Find the disjunctive normal form for the function f(x, y, z) = (x +
y′)(y + z′)(z + x′)(x′ + y′), in the smallest possible number of variables.

2. Define conjunctive normal form. Find the conjunctive normal form for the function f(x, y, z) = xy′ +
xz + xy, in the smallest possible number of variables.

3. Convert f from cnf to dnf where f(x, y) = (x+ y′)(x′ + y)(x′ + y′).

4. Let p be the proposition "x is an even number," and let q be the proposition "x is the product of two
integers." Translate into symbols each of the following propositions.

(a) Either x is an even number, or x is a product of two integers.
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(b) Either x is an even number and a product of integers, or x is an odd number and is not a product
of integers.

(c) x is neither an even number nor a product of integers.

5. Write, in reasonable English, the negation of each of the following propositions.

(a) Either good health is desirable, or I have been misinformed.

(b) Oranges are not suitable for use in vegetable salads.

(c) There is a number which, when added to 6, gives a sum of 13.

6. Construct the truth table for (p′ + qr)′(pq + q′r).



Unit 9

Course Structure

• Logic gates and circuits, Applications of Boolean Algebra to Switching theory (using AND, OR, and
NOT gates),

• Karnaugh Map method.

9.1 Introduction

In this unit, we will introduce a third important application of Boolean algebra, the algebra of circuits, involv-
ing two-state (bistable) devices. The simplest example of such a device is a switch or contact. The theory
introduced holds equally well for such two-state devices as rectifying diodes, magnetic cores, transistors,
various types of electron tubes, etc. The nature of the two states varies with the device and includes conduct-
ing versus nonconducting, closed versus open, charged versus discharged, magnetized versus nonmagnetized,
high-potential versus low-potential, and others. The algebra of circuits is receiving more attention at present,
both from mathematicians and from engineers, than either of the two applications of Boolean algebra which
we considered in the previous chapters. The importance of the subject is reflected in the use of Boolean al-
gebra in the design and simplification of complex circuits involved in electronic computers, dial telephone
switching systems, and many varied kinds of electronic control devices. The algebra of circuits fits into the
general picture of Boolean algebra as an algebra with two elements 0 and 1. This means that except for the
terminology and meaning connecting it with circuits, it is identical with the algebra of propositions considered
as an abstract system. Either of these Boolean algebras is much more restricted than an algebra of sets.

Objectives

After reading this unit, you will be able to

• learn basic elements of a switching circuit

• learn to minimize a switching circuit using Boolean function

• define the logical circuit elements

• learn to simplify functions using Karnaugh maps

74
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9.2 Switching Circuits

For the present, we will limit our discussion to the simplest kinds of circuits, those involving only switches.
We will designate a switch by a single letter a, b, c, x, y, . . .. If two switches operate so that they open and
close simultaneously, we designate them by the same letter. If they operate so that the first is always open
when the second is closed, and closed when the second is open, we denote the first by a letter, say x, and the
second by x′ (or, equally well, the first by x′ and the second by x).

A circuit consisting of two switches x and y connected in parallel is denoted by x+y, and a circuit consisting
of x and y connected in series is denoted by xy. Thus to each series-parallel circuit, there corresponds an
algebraic expression; and conversely to each algebraic expression involving only (+), (·) and negation, there
corresponds a circuit (fig 9.2.1). We will speak of this relationship by saying that the function represents the
circuit, and the circuit realizes the function. We will agree to assign the value 1 to a letter if it represents a

Figure 9.2.1

closed switch, and the value 0 if it represents an open switch. If a and a′ both appear, then a is 1 if and only
if a′ is 0. A switch that is always closed is represented by 1, one that is always open by 0. Letters play the
role of variables which take on the value 0 or 1, and we note the close analogy to proposition variables, which
have the same possible values, although the meaning attached to these values has changed.

Two circuits involving switches a, b, . . . are said to be equivalent if the closure conditions of the two circuits
are the same for any given position of the switches involved (values of the variables a, b, . . .). That is, they are
equivalent if for every position of the switches, current may either pass through both (both closed) or not pass
through either (both open). Two algebraic expressions are defined to be equal if and only if they represent
equivalent circuits.

It is now possible, by drawing the appropriate circuits and enumerating the possible positions of the
switches involved, to check that each of the laws of Boolean algebra is valid when interpreted in terms of
switching circuits. For example, consider the circuits that realize the functions on each side of the identity
stating the distributive law for (+) over (·), shown in figure 9.2.2. By inspection, it is apparent that the circuit

Figure 9.2.2

is closed (current can pass) if switch x is closed, or if both y and z are closed, and that the circuit is open
(current cannot pass) if x and either y or z are open. Hence the circuits are equivalent, and this distributive
law holds.
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A simpler procedure for checking the validity of the fundamental laws is to note that numerical values of
the switching functions a′, ab, and a + b are identical to the truth tables for the corresponding propositional
functions (table 9.1).

Row a b a′ ab a+ b

1 1 1 0 1 1
2 1 0 0 0 1
3 0 1 1 0 1
4 0 0 1 0 0

Table 9.1: Closure Properties of switching functions a′, ab and a+ b

Example 9.2.1. We want to find a circuit which realizes the Boolean function xyz′ + x′(y + z′).
This expression indicates a series connection of x, y, and z′ in parallel with a circuit corresponding to

x′(y′ + z′). This latter circuit consists of x′ in series with a parallel connection of y and z. Hence the circuit
diagram is that shown in fig. 9.2.3.

Figure 9.2.3

Example 9.2.2. We want to find the Boolean function which represents the circuit shown in fig. 9.2.4.

Figure 9.2.4

By inspection, the function is (x+ y′ + z)uv(yz′ + x+ y′u).

Example 9.2.3. Construct the table of closure properties for the function f(x, y, z) = x′y + z(x+ y′).
A table of closure properties for a function is identical, except for interpretation, to a truth table for a

propositional function. This function has the closure properties listed in table 9.2.

Exercise 9.2.4. 1. Draw circuits which realize each of the following expressions, without first simplifying
the expressions.

(a) abc+ ab(dc+ ef)

(b) a+ b(c+ de) + fg

2. Find the function which represents the circuits in the figure 9.2.5.

3. Find circuit which realize the function given in table 9.3.
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Row x y z x′y x+ y′ z(x+ y′) x′y + z(x+ y′)

1 1 1 1 0 1 1 1
2 1 1 0 0 1 0 0
3 1 0 1 0 1 1 1
4 1 0 0 0 1 0 0
5 0 1 1 1 0 0 1
6 0 1 0 1 0 0 1
7 0 0 1 0 1 1 1
8 0 0 0 0 1 0 0

Table 9.2

Figure 9.2.5

9.2.1 Simplification of circuits

In the previous section, we showed that the algebra of circuits is a Boolean algebra, and hence all the results
proved earlier for Boolean algebras hold. In particular, theorems and rules relating to simplification of Boolean
functions apply in the algebra of circuits.

Two basic problems that arise in connection with applications of Boolean algebra to switching circuits are
(a) simplification of a given circuit which is known to have the desired closure properties, and (b) the design
of circuits with given properties. The design problem will be discussed in later sections, and in this section
we will consider the problem of simplifying a given circuit. This problem has often been solved in specific
cases by trial-and-error methods. There are several known methods, based on the theory of Boolean functions,
for writing schematic charts for simplifying functions. We will emphasize instead a straightforward approach
using the properties of Boolean algebras directly to effect reasonable simplifications.

A general method of simplifying a circuit is first to find the Boolean function which represents the circuit,
then to simplify the function as we have done repeatedly in earlier sections, and finally to draw a new circuit
diagram realizing the simplified function. We give a simple illustration below.

Example 9.2.5. Simplify the circuit in fig. 9.2.6.
This circuit is represented by the Boolean function (xy + abc)(xy + a′ + b′ + c′), which simplifies to xy.

Hence the given circuit is equivalent to the series connection of the two switches x and y, with the diagram
given in fig. 9.2.7.

In using the basic laws of Boolean algebra, it often happens that a possible simplification is overlooked. It
may happen that a certain step is easier to recognize if stated in terms of one of the dual laws rather than in
terms of the other. This suggests another method of simplification which may help. To simplify a function f ,
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Row x y z f1
1 1 1 1 0
2 1 1 0 1
3 1 0 1 1
4 1 0 0 0
5 0 1 1 0
6 0 1 0 0
7 0 0 1 0
8 0 0 0 1

Table 9.3

Figure 9.2.6

the dual of f may be taken and the resulting expression simplified. If the dual is taken again, the function f is
obtained in a different form. This will usually be simpler than the original.

Example 9.2.6. Simplify the circuit in fig. 9.2.8. The circuit is represented by the function f = cb+ ab′cd+
cd′ + ac′ + a′bc′ + b′c′d′. Consider the first three terms as the function g, and the last three terms as the
function h. Then g = cb+ ab′cd+ cd′. The dual of g, which we write as d(g) is then

d(g) = (c+ b)(a+ b′ + c+ d)(c+ d′) = c+ abd′.

Taking the dual again, we find
g = c(a+ b+ d′).

Similarly,

h = ac′ + a′bc′ + b′c′d′

d(h) = (a+ c′)(a′ + b+ c′)(b′ + c′ + d′) = c′ + abd′,

Combining g and h yields
f = (c+ c′)(a+ b+ d′) = a+ b+ d′,

which corresponds to the circuit given in fig. 9.2.9.

Exercise 9.2.7. Simplify the circuits given in fig. 9.2.10.

9.3 Logical Circuit elements

Circuit elements involving diodes or vacuum tubes are very common. Rather than discuss the many types
of electronic apparatus that may be used, we will introduce the idea of a logical circuit element. It will be
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Figure 9.2.7

Figure 9.2.8

enough to know that these elements can be constructed; in fact, commercially packaged elements of these
types, suitable for use in many types of equipment, can be purchased directly. We will conceive of a logical
circuit element as a little box or package with one or more input leads (wire connections) and one or more
output leads. These leads will carry signals in the form of positive voltage corresponding to a value 1, or zero
voltage corresponding to a value 0. We will use a single letter, say x, to stand for the condition of the lead.
When the lead carries a signal, we will say that x takes on the value 1. When the lead does not carry a signal,
we say that x has the value 0. This represents only a slight modification of our earlier point of view, where
1 and 0 meant closed or open circuits, since we can think of a closed circuit as one carrying a signal, and of
an open circuit as one incapable of carrying a signal. Other signals than that of a positive voltage could be
used equally well, and in fact the signal used will in general depend on the type of components used in circuit
construction. We will use just this one type of signal for simplicity, and we will adapt all our circuits to its
use.

We will draw a circuit element as a circle with a letter inside to designate the type of element, and with lines
indicating inputs and outputs. Arrows on these lines will indicate the difference between input and output, an
arrow pointing toward the circle being used on each input.

The first logical circuit element we will consider has a single input and a single output. The function of
this element is to obtain the complement of a given signal; that is, the output is 0 when the input is 1, and
conversely. Fig. 9.3.1 shows the notation we will use, a circle with C in the center. The input is designated x,
so the output is x′.

The next two logical circuit elements correspond to the logical connections "and" and "or." Each may have
two or more inputs and only a single output. The "and" element is shown in diagrams as a circle with A in the
center. This element produces an output signal (output has value 1) if and only if every input carries a signal
(has value 1). If the inputs to an "and" element are x, y, and z, for example, the output function may be written
as xyz, where the notation is that of Boolean algebra. The "or" element, represented graphically by a circle
with O in the center, produces an output signal whenever one or more inputs carry a signal. If the inputs to an
"or" element are x, y, and z, for example, the output is the Boolean function x+ y + z. Fig. 9.3.2 shows the
symbolic notations for these elements. Each is shown with only two inputs.

9.4 Karnaugh Maps

A Karnaugh map provides a pictorial method of grouping together expressions with common factors and
therefore eliminating unwanted variables. The Karnaugh map can also be described as a special arrangement
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Figure 9.2.9

Figure 9.2.10

of a truth table.
The diagram below illustrates the correspondence between the Karnaugh map and the truth table for the

general case of a two variable problem (fig. 9.4.1).
The values inside the squares are copied from the output column of the truth table, therefore there is one

square in the map for every row in the truth table. Around the edge of the Karnaugh map are the values of the
two input variable. x is along the top and y is down the left hand side. The diagram 9.4.2 explains this:

The values around the edge of the map can be thought of as coordinates. So as an example, the square on
the top right hand corner of the map in the above diagram has coordinates x = 1 and y = 0. This square
corresponds to the row in the truth table where x = 1 and y = 0 and f = 1. Note that the value in the f
column represents a particular function to which the Karnaugh map corresponds.

Example 9.4.1. Consider the following map (fig. 9.4.3). The function plotted is:

f(x, y) = xy′ + xy.

Note that values of the input variables form the rows and columns. That is the logic values of the variables
x and y (with one denoting true form and zero denoting false form) form the head of the rows and columns
respectively. Bear in mind that the above map is a one dimensional type which can be used to simplify an
expression in two variables. There is a two-dimensional map that can be used for up to four variables, and a
three-dimensional map for up to six variables.

Using algebraic simplification,

f = xy′ + xy = x(y′ + y) = x.
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Figure 9.3.1

Figure 9.3.2

x y f

0 0 a
0 1 b
1 0 c
1 1 d

Figure 9.4.1

x y f

0 0 0
0 1 1
1 0 1
1 1 1

Figure 9.4.2

Variable B becomes redundant due to B4. Referring to the map 9.4.3, the two adjacent 1’s are grouped
together. Through inspection it can be seen that variable y has its true and false form within the group. This
eliminates variable y leaving only variable x which only has its true form. The minimised answer therefore is
f .

Example 9.4.2. Consider the expression f(x, y) = x′y′+xy′+x′y plotted on the Karnaugh map 9.4.4. Pairs
of 1’s are grouped as shown in the figure, and the simplified answer is obtained by using the following steps:

Note that two groups can be formed for the example given above, bearing in mind that the largest rectangu-
lar clusters that can be made consist of two 1’s. Notice that a 1 can belong to more than one group. The first
group labelled I, consists of two 1’s which correspond to x = 0, y = 0 and x = 1, y = 0. Put in another
way, all squares in this example that correspond to the area of the map where y = 0 contains 1’s, independent
of the value of x. So when y = 0, the output is 1. The expression of the output will contain the term y′.

For group labelled II corresponds to the area of the map where x = 0. The group can therefore be defined
as x′. This implies that when x = 0 the output is 1. The output is therefore 1 whenever y = 0 and x = 0.
Hence the simplified answer is f = x′ + y′.
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Figure 9.4.3

Figure 9.4.4

Few Probable Questions

1. Construct a table of closure properties and draw circuits which realize the function (a + b′ + c)(a +
bc′) + c′d+ d(b′ + c).

2. Find the function which represents the circuit in fig. 9.4.5.

Figure 9.4.5

3. Minimise the following problems using the Karnaugh maps method.

(a) f = x′y′z′ + x′y + xyz′ + xz;

(b) x′y + yz′ + yz + xy′z′.
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4. Find circuits which realize each of the functions given in table 9.6.

Row x y z f1 f2
1 1 1 1 1 1
2 1 1 0 0 1
3 1 0 1 0 0
4 1 0 0 1 1
5 0 1 1 1 1
6 0 1 0 1 0
7 0 0 1 0 1
8 0 0 0 1 1

Table 9.6

5. Simplify each of the circuits given in fig. 9.4.6.

Figure 9.4.6



Unit 10

Course Structure

• Combinatorics: Introduction, Basic counting principles, Permutation and combination, pigeonhole prin-
ciple, Recurrence relations and generating functions.

10.1 Introduction

Combinatorics studies the way in which discrete structures can be combined or arranged. Enumerative com-
binatorics concentrates on counting the number of certain combinatorial objects - e.g. the twelvefold way
provides a unified framework for counting permutations, combinations and partitions. Analytic combinatorics
concerns the enumeration (i.e., determining the number) of combinatorial structures using tools from complex
analysis and probability theory. In contrast with enumerative combinatorics which uses explicit combinatorial
formulae and generating functions to describe the results, analytic combinatorics aims at obtaining asymptotic
formulae. Design theory is a study of combinatorial designs, which are collections of subsets with certain in-
tersection properties. Partition theory studies various enumeration and asymptotic problems related to integer
partitions, and is closely related to q-series, special functions and orthogonal polynomials. Originally a part
of number theory and analysis, partition theory is now considered a part of combinatorics or an independent
field. Order theory is the study of partially ordered sets, both finite and infinite.

Objectives

After reading this unit, you will be able to

• learn the sum rule and product rule principles and solve examples related to them

• learn various mathematical functions such as factorial function, and solve examples related to them

• define permutation and combination and solve related problems

• learn pigeonhole and generalized pigeonhole principle and solve related sums

• learn Inclusion-Exclusion principle and solve related sums

• define tree diagrams and solve sums related to these

84
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10.2 Basic Counting principles

There are two basic counting principles used throughout this chapter. The first one involves addition and the
second one multiplication.

1. Sum Rule Principle: Suppose some event E can occur in m ways and a second event F can occur in
n ways, and suppose both events cannot occur simultaneously. Then E or F can occur in m+ n ways.

2. Product Rule Principle: Suppose there is an event E which can occur in m ways and, independent of
this event, there is a second event F which can occur in n ways. Then combinations of E and F can
occur in mn ways.

The above principles can be extended to three or more events. That is, suppose an event E1 can occur in n1
ways, a second event E2 can occur in n2 ways, and, following E2; a third event E3 can occur in n3 ways, and
so on.

Sum Rule: If no two events can occur at the same time, then one of the events can occur in:

n1 + n2 + · · · ways.

Product Rule: If the events occur one after the other, then all the events can occur in the order indicated
in:

n1 · n2 · · · ways.

Example 10.2.1. Suppose a college has 3 different history courses, 4 different literature courses, and 2 differ-
ent sociology courses.

1. The number m of ways a student can choose one of each kind of courses is m = 3(4)(2) = 24.

2. The number n of ways a student can choose just one of the courses is n = 3 + 4 + 2 = 9.

There is a set theoretical interpretation of the above two principles. Specifically, suppose n(A) denotes the
number of elements in a set A. Then:

1. Sum Rule Principle: Suppose A and B are disjoint sets. Then

n(A ∪B) = n(A) + n(B).

2. Product Rule Principle: Let A×B be the Cartesian product of sets A and B. Then

n(A×B) = n(A) · n(B).

Example 10.2.2. There are four bus lines between A and B, and three bus lines between B and C. Find the
number m of ways that a man can travel by bus: (a) from A to C by way of B; (b) roundtrip from A to C by
way of B; (c) roundtrip from A to C by way of B but without using a bus line more than once.

(a) There are 4 ways to go from A to B and 3 ways from B to C; hence n = 4 · 3 = 12.

(b) There are 12 ways to go from A to C by way of B, and 12 ways to return. Thus n = 12 · 12 = 144.
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(c) The man will travel from A to B to C to B to A. Enter these letters with connecting arrows as follows:

A→ B → C → B → A.

The man can travel four ways from A to B and three ways from B to C, but he can only travel two
ways from C to B and three ways from B to A since he does not want to use a bus line more than once.
Enter these numbers above the corresponding arrows as follows:

A
4−→ B

3−→ C
2−→ B

3−→ A.

Thus, by the Product Rule, n = 4 · 3 · 2 · 3 = 72.

10.3 Mathematical Functions

We discuss two important mathematical functions frequently used in combinatorics.

10.3.1 Factorial Function

The product of the positive integers from 1 to n inclusive is denoted by n!, read “n factorial.” Namely:

n! = 1 · 2 · 3 · · · (n− 2)(n− 1)n = n(n− 1)(n− 2) · · · 3 · 2 · 1.

Accordingly, 1! = 1, n! = n(n− 1)!. It is also convenient to define 0! = 1.

10.3.2 Binomial Coefficients

The symbol
(
n
r

)
, read nCr, or "n Choose r", where r and n are positive integers with r ≤ b, is defined as

follows (
n

r

)
=

n!

r!(n− r)!
.

Note that n− (n− r) = r. This yields the following lemma.

Lemma 10.3.1.
(

n
n−r

)
=
(
n
r

)
or equivalently,

(
n
a

)
=
(
n
b

)
, where a+ b = n.

Motivated by that fact that we defined 0! = 1, we define:(
n

0

)
=

n!

0!n!
= 1 and

(
0

0

)
=

0!

0!0!
= 1.

Binomial Coefficients and Pascal’s Triangle

The numbers
(
n
r

)
are called binomial coefficients, since they appear as the coefficients in the expansion of

(a+ b)n. Specifically:

Theorem 10.3.2. (Binomial Theorem)

(a+ b)n =

n∑
k=0

(
n

k

)
an−kbk.

The coefficients of the successive powers of a+ b can be arranged in a triangular array of numbers, called
Pascal’s triangle, as pictured in fig. 10.3.1. The numbers in Pascal’s triangle have the following interesting
properties:
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Figure 10.3.1

1. The first and last number in each row is 1.

2. Every other number can be obtained by adding the two numbers appearing above it.

Since these numbers are binomial coefficients, we state the above property formally.

Theorem 10.3.3. (
n+ 1

r

)
=

(
n

r − 1

)
+

(
n

r

)
.

Exercise 10.3.4. 1. Compute: (a) 4!, 5!; (b) 6!, 7!, 8!, 9!; (c) 50! [Hint: For large n, use Sterling’s approxi-
mation: n! =

√
2πnnπ e−n, where e ≈ 2.718].

2. Compute: (a)
(
18
5

)
, (b)

(
12
4

)
3. Prove (

17

6

)
=

(
16

5

)
+

(
16

6

)
.

10.4 Permutations

Definition 10.4.1. Any arrangement of a set of n objects in a given order is called a permutation of the
object (taken all at a time). Any arrangement of any r ≤ n of these objects in a given order is called an
"r-permutation" or "a permutation of the n objects taken r at a time."

Consider, for example, the set of letters A, B, C, D. Then:

• BDCA, DCBA, and ACDB are permutations of the four letters (taken all at a time).

• BAD, ACB, DBC are permutations of the four letters taken three at a time.

• AD, BC, CA are permutations of the four letters taken two at a time.

We usually are interested in the number of such permutations without listing them. The number of permuta-
tions of n objects taken r at a time will be denoted by P (n, r). We have the following theorem.

Theorem 10.4.2.
P (n, r) =

n!

(n− r)!
.
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We emphasize that there are r factors in n(n− 1)(n− 2) · · · (n− r + 1).

Example 10.4.3. Find the number m of permutations of six objects, say, A, B, C, D, E, F, taken three at a time.
In other words, find the number of "three-letter words" using only the given six letters without repetition. Let
us represent the general three-letter word by the following three positions:

, ,

The first letter can be chosen in 6 ways; following this the second letter can be chosen in 5 ways; and, finally,
the third letter can be chosen in 4 ways. Write each number in its appropriate position as follows:

6 , 5 , 4

By the Product Rule there are m = 6 · 5 · 4 = 120 possible three-letter words without repetition from the
six letters. Namely, there are 120 permutations of 6 objects taken 3 at a time. This agrees with the formula in
the previous theorem.

P (6, 30) = 6 · 5 · 4 = 120.

Consider now the special case of P (n, r) when r = n. We get the following result.

Corollary 10.4.4. There are n! permutations of n objects (taken all at a time).

For example, there are 3! = 6 permutations of the three letters A, B, C. These are:

ABC, ACB, BAC, BCA, CAB, CBA.

10.4.1 Permutations with Repetitions

Frequently we want to know the number of permutations of a multiset, that is, a set of objects some of which
are alike. We will let

P (n;n1, n2, . . . , nt)

denote the number of permutations of n objects of which n1 are alike, n2 are alike, . . ., nt are alike.

Theorem 10.4.5. We have,

P (n;n1, n2, . . . , nt) =
n!

n1!n2! · · ·nt!
.

We indicate the proof of the above theorem by a particular example. Suppose we want to form all possible
five-letter "words" using the letters from the word "BABBY." Now there are 5! = 120 permutations of the
objects B1, A,B2, B3, Y , where the three B’s are distinguished. Observe that the following six permutations

B1B2B3AY, B2B1B3AY, B3B1B2AY, B1B3B2AY, B2B3B1AY, B3B2B1AY

produce the same word when the subscripts are removed. The 6 comes from the fact that there are 3! =
3 · 2 · 1 = 6 different ways of placing the three B’s in the first three positions in the permutation. This is true
for each set of three positions in which the B’s can appear. Accordingly, the number of different five-letter
words that can be formed using the letters from the word "BABBY" is:

P (5; 3) =
5!

3!
= 20

Example 10.4.6. Find the number m of seven-letter words that can be formed using the letters of the word
"BENZENE."

We seek the number of permutations of 7 objects of which 3 are alike (the three E’s), and 2 are alike (the
two N’s). Thus,

m = P (7; 3, 2) =
7!

3!2!
= 420.
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Ordered Samples

Definition 10.4.7. Many problems are concerned with choosing an element from a set S, say, with n elements.
When we choose one element after another, say, r times, we call the choice an ordered sample of size r.

We consider two cases.

1. Sampling with replacement: Here the element is replaced in the set S before the next element is
chosen. Thus, each time there are n ways to choose an element (repetitions are allowed). The Product
rule tells us that the number of such samples is:

n · n · n · · ·n (r factors) = nr.

2. Sampling without replacement: Here the element is not replaced in the set S before the next element
is chosen. Thus, there is no repetition in the ordered sample. Such a sample is simply an r-permutation.
Thus the number of such samples is:

P (n, r) = n(n− 1)(n− 2) · · · (n− r + 1) =
n!

(n− r)!
.

Example 10.4.8. Three cards are chosen one after the other from a 52-card deck. Find the number m of ways
this can be done: (a) with replacement; (b) without replacement.

(a) Each card can be chosen in 52 ways. Thus m = 52(52)(52) = 140608.

(b) Here there is no replacement. Thus the first card can be chosen in 52 ways, the second in 51 ways, and
the third in 50 ways. Therefore, m = P (52, 3) = 52(51)(50) = 132600.

Exercise 10.4.9. 1. Find the number n of distinct permutations that can be formed from all the letters of
each word: (a) THOSE; (b) UNUSUAL; (c) SOCIOLOGICAL.

2. Find n if P (n, 2) = 72.

3. A class contains 8 students. Find the number n of samples of size 3: (a)With replacement; (b)Without
replacement.

10.5 Combinations

Definition 10.5.1. Let S be a set with n elements. A combination of these n elements taken r at a time is any
selection of r of the elements where order does not count. Such a selection is called an r-combination; it is
simply a subset of S with r elements. The number of such combinations will be denoted by C(n, r).

Before we give the general formula for C(n, r), we consider a special case.

Example 10.5.2. Find the number of combinations of 4 objects, A, B, C, D, taken 3 at a time.
Each combination of three objects determines 3! = 6 permutations of the objects as follows:

ABC : ABC, ACB, BAC, BCA, CAB, CBA

ABD : ABD, ADB, BAD, BDA, DAB, DBA

ACD : ACD, ADC, CAD, CDA, DAC, DCA

BCD : BDC, BDC, CBD, CDB, DBC, DCB.
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Thus the number of combinations multiplied by 3! gives us the number of permutations; that is,

C(4, 3) · 3! = P (4, 3) or C(4, 3) =
P (4, 3)

3!
.

But P (4, 3) = 4 · 3 · 2 = 24 and 3! = 6; hence C(4, 3) = 4 as noted above.

As indicated above, any combination of n objects taken r at a time determines r! permutations of the objects
in the combination; that is,

P (n, r) = r!C(n, r).

Accordingly, we obtain the following formula for C(n, r) which we formally state as a theorem.

Theorem 10.5.3. We have,

C(n, r) =
P (n, r)

r!
=

n!

r!(n− r)!
.

Recall that the binomial coefficient
(
n
r

)
was defined as(

n

r

)
=

n!

r!(n− r)!
.

Hence,

C(n, r) =

(
n

r

)
.

We shall use C(n, r) and
(
n
r

)
interchangeably.

Example 10.5.4. A farmer buys 3 cows, 2 pigs, and 4 hens from a man who has 6 cows, 5 pigs, and 8 hens.
Find the number m of choices that the farmer has.

The farmer can choose the cows in C(6, 3) ways, the pigs in C(5, 2) ways, and the hens in C(8, 4) ways.
Thus the number m of choices follows:

m =

(
6

3

)(
5

2

)(
8

4

)
= 20 · 10 · 70 = 14000.

Example 10.5.5. A class contains 10 students with 6 men and 4 women. We want to find the number n of
ways to:

(a) select a 4-member committee from the students. This concerns combinations, not permutations, since
order does not count in a committee. There are "10 choose 4" such committees. That is:

n = C(10, 4) =

(
10

4

)
= 210.

(b) select a 4-member committee with 2 men and 2 women. The 2 men can be chosen from the 6 men in
C(6, 2) ways, and the 2 women can be chosen from the 4 women in C(4, 2) ways. Thus, by the Product
Rule:

n =

(
6

2

)(
4

2

)
= 15 · 6 = 90.

(c) elect a president, vice president, and treasurer. This concerns permutations, not combinations, since
order does count. Thus, n = P (6, 3) = 6 · 5 · 4 = 120.

Exercise 10.5.6. 1. A box contains 8 blue socks and 6 red socks. Find the number of ways two socks can
be drawn from the box if: (a) They can be any color. (b) They must be the same color.

2. Find the number m of committees of 5 with a given chairperson that can be selected from 12 people.
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10.6 Pigeonhole Principle

Many results in combinational theory come from the following almost obvious statement.

Theorem 10.6.1. (Pigeonhole Principle) If n pigeonholes are occupied by n + 1 or more pigeons, then at
least one pigeonhole is occupied by more than one pigeon.

This principle can be applied to many problems where we want to show that a given situation can occur.

Example 10.6.2. 1. Suppose a department contains 13 professors, then two of the professors (pigeons)
were born in the same month (pigeonholes).

2. Find the minimum number of elements that one needs to take from the set S = {1, 2, . . . , 9} to be sure
that two of the numbers add up to 10.

Here the pigeonholes are the five sets {1, 9}, {2, 8}, {3, 7}, {4, 6}, {5}. Thus any choice of six elements
(pigeons) of S will guarantee that two of the numbers add up to ten.

The Pigeonhole Principle is generalized as follows.

Theorem 10.6.3. (Generalized Pigeonhole Principle) If n pigeonholes are occupied by kn + 1 or more
pigeons, where k is a positive integer, then at least one pigeonhole is occupied by k + 1 or more pigeons.

Example 10.6.4. Find the minimum number of students in a class to be sure that three of them are born in the
same month.

Here n = 12 months are the pigeonholes, and k+1 = 3, so k = 2. Hence among any kn+1 = 25 students
(pigeons), three of them are born in the same month.

Exercise 10.6.5. 1. Find the minimum number of students needed to guarantee that five of them belong to
the same class (Freshman, Sophomore, Junior, Senior).

2. Let L be a list (not necessarily in alphabetical order) of the 26 letters in the English alphabet (which
consists of 5 vowels, A, E, I, O, U, and 21 consonants).

(a) Show that L has a sublist consisting of four or more consecutive consonants.

(b) Assuming L begins with a vowel, say A, show that L has a sublist consisting of five or more
consecutive consonants.

10.7 Inclusion-Exclusion Principle

Let A and B be any finite sets. Then we know that

n(A ∪B) = n(A) + n(B)− n(A ∩B).

In other words, to find the number n(A∪B) of elements in the union of A and B, we add n(A) and n(B) and
then we subtract n(A ∩ B). This follows from the fact that, when we add n(A) and n(B), we have counted
the elements of n(A∩B) twice. The principle in fact holds for any finite number of sets. We state it for three
sets.

Theorem 10.7.1. For any finite sets A,B,C, we have

n(A ∪B ∪ C) = n(A) + n(B) + n(C)− n(A ∩B)− n(A ∩ C)− n(B ∩ C) + n(A ∩B ∩ C).
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Example 10.7.2. Find the number of mathematics students at a college taking at least one of the languages
French, German, and Russian, given the following data:

65 study French, 20 study French and German,

45 study German, 25 study French and Russian, 8 study all three languages.

42 study Russian, 15 study German and Russian.

We want to find n(F ∪G ∪ R), where F, G, and R denote the sets of students studying French, German, and
Russian, respectively.

By the Inclusion–Exclusion Principle,

n(F ∪G ∪R) = n(F ) + n(G) + n(R)− n(F ∩G)− n(F ∩R)− n(G ∩R) + n(F ∩G ∩R)
= 65 + 45 + 42− 20− 25− 15 + 8 = 100.

Namely, 100 students study at least one of the three languages.

Now, suppose we have any finite number of finite sets, say A1, A2, . . . , Am. Let sk be the sum of the
cardinalities

n(Ai1 ∩Ai2 ∩ . . . Aik)

of all possible k-tuple intersections of the givenm sets. Then we have the following general Inclusion–Exclusion
Principle.

Theorem 10.7.3. We have

n(A1 ∪A2 ∪ . . . ∪Am) = s1 − s2 + s3 − · · ·+ (−1)m−1sm.

Exercise 10.7.4. 1. Suppose among 32 people who save paper or bottles (or both) for recycling, there are
30 who save paper and 14 who save bottles. Find the number m of people who: (a) save both; (b) save
only paper; (c) save only bottles.

2. Let A, B, C, D denote, respectively, art, biology, chemistry, and drama courses. Find the number N of
students in a dormitory given the data:

2 take A, 5 take A and B, 4 take B and D, 2 take B, C, D,

20 take B, 7 take A and C, 3 take C and D, 3 take A, C, D,

20 take C, 4 take A and D, 3 take A, B, C, 2 take all four,

8 take D, 16 take B and C, 2 take A, B, D, 71 take none.

10.8 Tree Diagrams

Definition 10.8.1. A tree diagram is a device used to enumerate all the possible outcomes of a sequence of
events where each event can occur in a finite number of ways.

The construction of tree diagrams is illustrated in the following example

Example 10.8.2. (a) We want to find the product set A × B × C, where A = {1, 2}, B = {a, b, c} and
C = {x, y}. The tree diagram for A × B × C is shown in fig. 10.8.1 (a). Here the tree is constructed
from left to right, and the number of branches at each point corresponds to the possible outcomes of the
next event. Each endpoint (leaf) of the tree is labelled by the corresponding element of A×B ×C. As
noted previously, A×B × C has n = 2 · 3 · 2 = 12 elements.
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Figure 10.8.1

(b) Mark and Erik are to play a tennis tournament. The first person to win two games in a row or who wins
a total of three games wins the tournament. We want to find the number of ways the tournament can
occur.

The tree diagram showing the possible outcomes of the tournament appears in fig. 10.8.1 (b). Here
the tree is constructed from top-down rather than from left-right. (That is, the “root” is on the top of
the tree.) Note that there are 10 endpoints, and the endpoints correspond to the following 10 ways the
tournament can occur:

MM, MEMM, MEMEM, MEMEE, MEE, EMM, EMEMM, EMEME, EMEE, EE.

The path from the beginning (top) of the tree to the endpoint describes who won which game in the
tournament.

Exercise 10.8.3. 1. Teams A and B play in a tournament. The first team to win three games wins the
tournament. Find the number n of possible ways the tournament can occur. Construct the appropriate
tree diagram.

2. Construct the tree diagram that gives the permutations of {a, b, c}.

10.9 Few Probable Questions

1. State sum rule principle. A store sells clothes for men. It has 3 kinds of jackets, 7 kinds of shirts, and 5
kinds of pants. Find the number of ways a person can buy: (a) one of the items; (b) one of each of the
three kinds of clothes.

2. State product rule principle. Suppose a code consists of five characters, two letters followed by three
digits. Find the number of: (a) codes; (b) codes with distinct letter; (c) codes with the same letters.
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3. Find n if: (a) P (n, 4) = 42P (n, 2); (b) 2P (n, 2) + 50 = P (2n, 2).

4. Consider all positive integers with three different digits. (Note that zero cannot be the first digit.) Find
the number of them which are: (a) greater than 700; (b) odd; (c) divisible by 5.

5. A class contains l0 students. Find the number n of ordered samples of size 4: (a) with replacement; (b)
without replacement.

6. A women student is to answer 10 out of 13 questions. Find the number of her choices where she must
answer:

(a) the first two questions;

(b) the first or second question but not both;

(c) exactly 3 out of the first 5 questions;

(d) at least 3 of the first 5 questions.

7. Consider all integers from 1 up to and including 300. Find the number of them that are divisible by:

(a) at least one of 3, 5, 7;

(b) 3 and 5 but not by 7;

(c) by 5, but by neither 3 nor 7;

(d) by none of the numbers 3, 5, 7.

8. Find the number m of elements in the union of sets A, B, C, D where:

(a) A, B, C, D have 50, 60, 70, 80 elements, respectively.

(b) Each pair of sets has 20 elements in common.

(c) Each three of the sets has 10 elements in common.

(d) All four of the sets have 5 elements in common.

9. State pigeonhole principle. Suppose 5 points are chosen at random in the interior of an equilateral
triangle T where each side has length two inches. Show that the distance between two of the points
must be less than one inch.



Unit 11

Course Structure

• Grammar and Language: Introduction, Alphabet, Words, Free semi group, Languages, Regular expres-
sion and regular languages, Grammars.

11.1 Introduction

Words in the English language can be combined in various ways.The grammar of English tells us whether a
combination of words in a valid sentence. For example “the cat is reading book" is a valid sentence because
it is formed by a noun phrase the cat, followed by a verb phrase: is reading a book. We do not care that it is
meaningless. Since we are concerned only with the syntax and not with its semantics i.e. meaning. Research
in the automatic translation of one language to another has led to the concept of formal language. It is specified
by a well-defined set of rules of syntax. Rules of syntax are important not only in linguistic but also in the
study of programming languages.

So, a formal language is a language that is specified by a well-defined set of rules of syntax and a for-
mal grammar is any compact, precise definition of a language. A grammar implies an algorithm that would
generate all legal sentences of the language. Let us learn more in this unit.

Objectives

After reading this unit, you will be able to

• define alphabets, words, concatenation of words, subwords

• see that the set of all words form a semigroup with respect to the concatenation of words

• define language, regular expression and regular languages

• define grammar find its relation with languages

95
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11.2 Alphabet, Words, Free Semigroup

Definition 11.2.1. Consider a non-empty setA of symbols. A word or stringw on the setA is a finite sequence
of its elements.

For example, suppose A = {a, b, c}. Then the following sequences are words on A:

u = ababb, and v = accbaaa.

When discussing words on A, we frequently call A the alphabet, and its elements are called letters. We will
also abbreviate our notation and write a2 for aa, a3 for aaa, and so on. Thus, for the above words, u = abab2

and v = ac2ba3.
The empty sequence of letters, denoted by λ, or ϵ, or 1 is also considered to be a word on A, called the

empty word. The set of all words on A is denoted by A∗.

Definition 11.2.2. The length of a word u, written |u| or l(u), is the number of elements in its sequence of
letters.

For the above words u and v, we have l(u) = 5 and l(v) = 7. Also, l(λ) = 0.
Unless otherwise stated, the alphabet A will be finite, the symbols u, v, w will be reserved for words on A,

and the elements of A will come from the letters a, b, c.

Definition 11.2.3. (Concatenation) Consider two words u and v on the alphabet A. The concatenation of u
and v, written uv, is the word obtained by writing down the letters of u followed by the letters of v.

For the above words u and v, we have

uv = ababbaccbaaa = abab2ac2ba3

As with letters, for any word u, we define u2 = uu, u3 = uuu, and in general, un+1 = uun.
Clearly, for any words u, v, w, the words (uv)w and u(vw) are identical, they simply consist of the letters

of u, v, w written down one after the other. Also, adjoining the empty word before or after a word u does not
change the word u. That is:

Theorem 11.2.4. The concatenation operation for words on an alphabet A is associative. The empty word λ
is an identity element for the operation.

(Generally speaking, the operation is not commutative, e.g., uv ̸= vu for the above words u and v.)

Definition 11.2.5. (Subwords, Initial Segments) Consider any word u = a1a2 . . . an on an alphabet A. Any
sequence w = ajaj+1 . . . ak is called a subword of u. In particular, the subword w = a1a2 . . . ak beginning
with the first letter of u, is called an initial segment of u. In other words, w is a subword of u if u = v1wv2
and w is an initial segment of u if u = wv. Observe that λ and u are both subwords or uv since u = λu.

Consider the word u = abca. The subwords and initial segments of u are as follows:

1. Subwords: λ, a, b, c, ab, bc, ca, abc, bca, abca = u.

2. Initial segments: λ, a, ab, abc, abca = u.

Observe that the subword w = a appears in two places in u. The word ac is not a subword of u even though
all its letters belong to u.
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Definition 11.2.6. Let F denote the set of all non-empty words from an alphabet A with the operation of
concatenation. As noted above, the operation is associative. Thus F is a semigroup; it is called the free
semigroup over A or the free semigroup generated by A.

One can easily show that F satisfies the right and left cancellation laws. However, F is not commutative
when A has more than one element. We will write FA for the free semigroup over A when we want to specify
the set A.

Now letM = A∗ be the set of all words fromA including the empty word λ. Since λ is an identity element
for the operation of concatenation, M is a monoid, called the free monoid over A.

11.3 Languages

Definition 11.3.1. A language L over an alphabet A is a collection of words on A. Recall that A∗ denotes
the set of all words on A. Thus a language L is simply a subset of A∗.

Example 11.3.2. Let A = {a, b}. The following are languages on A.

1. L1 = {a, ab, ab2, . . .}, consisting of all words beginning with an a and followed by zero or more b’s.

2. L2 = {bmabn : m ≥ 0, n ≥ 0}, consisting of all words with exactly one a.

11.3.1 Operations on Languages

Suppose L and M are languages over an alphabet A. Then the "concatenation" of L and M , denoted by LM ,
is the language defined as follows:

LM = {uv : u ∈ L, v ∈ V }

That is, LM denotes the set of all words which come from the concatenation of a word from L with a word
from M . For example, for the languages L1 and L2 described in the preceding example, we would have

L1L2 = {abmabn : m ≥ 0, n ≥ 0}

Clearly, the concatenation of languages is associative since the concatenation of words is associative.
Powers of a language L are defined as follows:

L0 = λ, L1 = L, L2 = LL, Lm+1 = LmL, m > 1.

The unary operation L∗ of a language L, called the Kleene closure of L is defined as

L∗ =
∞⋃
k=0

Lk.

11.4 Regular Expressions and Regular Languages

Let A be a (nonempty) alphabet. This section defines a regular expression r over A and a language L(r) over
A associated with the regular expression r. The expression r and its corresponding language L(r) are defined
inductively as follows.

Definition 11.4.1. Each of the following is a regular expression over an alphabet A.

1. The symbol λ and the pair "()"(empty expression) are regular expressions;
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2. Each letter a in A is a regular expression;

3. If r is a regular expression, then r∗ is a regular expression;

4. If r1 and r2 are regular expressions, then (r1 ∨ r2) is a regular expression;

5. If r1 and r2 are regular expressions, then (r1r2) is a regular expression.

All regular expressions are formed in this way.

Definition 11.4.2. The Language L(r) over A defined by a regular expression r over A is as follows:

1. L(λ) = {λ} and L(()) = ∅;

2. L(a) = {a}, where a is a letter in A;

3. L(r∗) = (L(r))∗ (the Kleene closure of L(r));

4. L(r1 ∨ r2) = L(r1) ∪ L(r2) (union of the languages);

5. L(r1r2) = L(r1)L(r2) (concatenation of the languages).

And finally,

Definition 11.4.3. Let L be a language over A. Then L is called a regular language over A if there exists a
regular expression r over A such that L = L(r).

Example 11.4.4. Let A = {a, b}. Each of the following is an expression r and its corresponding language
L(r):

1. Let r = a∗. Then L(r) consists of all powers of a including the empty word.

2. Let r = aa∗. Then L(r) consists of all positive powers of a excluding the empty word.

3. Let r = a ∨ b∗. Then L(r) consists of a or any word in b, that is, L(r) = {a, λ, b, b2, . . .}.

4. Let r = (a ∨ b)∗. Then L(r) = {a} ∪ {b} = A. Hence, L(r) = A∗.

Example 11.4.5. Consider the following languages over A = {a, b}. Find a regular expression r over A such
that Li = L(r), for i = 1, 2.

1. L1 = {ambn : m > 0, n > 0}. L1 consists of those words beginning with one or more a’s followed
by one or more b’s. Thus we can set r = aa∗bb∗. Note that this r is not unique. We could also take
r = a∗abb∗.

2. L2 = {ambm : m > 0}. L2 consists of all words beginning with one or more a’s followed by the same
number of b’s. There exists no regular expression r such that L2 = L(r); that is, L2 is not a regular
language.

Exercise 11.4.6. 1. Let u = a2b and v = b3ab. Find (a) uvu; (b)λu, uλ.

2. State the difference between the free semigroup on an alphabet A and the free monoid on A.

3. Let A = {a, b, c}. Find where (a) L = {b2}; (b) L = {a, b, c3}

4. LetA = {a, b, c}. State whetherw belongs toL(r) or not, where (a) r = a∗∨(b∨c)∗; (b) r = a∗(b∨c)∗.
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11.5 Grammars

Fig. 11.5.1 shows the grammatical construction of a specific sentence. Observe that there are:

1. various variables, for example, (sentence), (noun phrase), etc.;

2. various terminal words, example, "The", "boy",etc.;

3. a beginning variable (sentence);

4. various substitutions or productions, for example,

⟨sentence⟩ → ⟨noun phrase⟩⟨verb phrase⟩
⟨object phrase⟩ → ⟨article⟩⟨noun⟩

⟨noun⟩ → apple

The final sentence only contains terminals, although both variables and terminals appear in its construction by
the productions. This intuitive description is given in order to motivate the following definition of a grammar
and the language it generates.

Figure 11.5.1

Definition 11.5.1. A phrase structure grammar or, simply, a grammar G consists of four parts:

1. A finite set (vocabulary) V ;

2. A subset T of V whose elements are called terminals; the elements of N = V \ T are called non-
terminals or variables;

3. A non-terminal symbol S called the start symbol;

4. A finite set P of productions. (A production is an ordered pair (α, β), usually written α → β, where α
and β are words in V , and the production must contain at least one non-terminal on its left side α.)
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Such a grammar G is denoted by G = G(V, T, S, P ).

The following notation, unless otherwise stated or implied, will be used for our grammars. Terminals will
be denoted by italic lower case Latin letters a, b, c . . ., and non-terminals will be denoted by italic capital Latin
letters A,B,C, . . ., with S as the start symbol. Also, Greek letters, α, β, . . ., will denote words in V , that is,
words in terminals and non-terminals. Furthermore, we will write α→ (β1, β2, · · · , βk).

11.5.1 Language L(G) of a Grammar G

Suppose w and w′ are words over the vocabulary set V of a grammar G. We write

w ⇒ w′

if w′ can be obtained from w by using one of the productions; that is, if there exist words u and v such that
w = uαv and w′ = uβv and there is a production α→ β. Furthermore, we write

w ⇒⇒ w′

if w′ can be obtained from w using a finite number of productions.
Now let G be a grammar with terminal set T . The language of G, denoted by L(G), consists of all words

in T that can be obtained from the start symbol S by the above process; that is,

L(G) = {w ∈ T ∗ : S ⇒⇒ w}

Example 11.5.2. The following defines a grammar G with S as the start symbol:

V = {A,B, S, a, b}, T = {a, b}, P = {S 1−→ AB,A
2−→ Aa,B

3−→ Bb,A
4−→ a,B

5−→ b}

Now, w = a2b4 can be obtained from the start symbol S as follows:

S ⇒ AB ⇒ AaB ⇒ aaB ⇒ aaBb⇒ aaBbb⇒ aaBbbb⇒ aabbbb = a2b4.

Here we used the productions 1, 2, 4, 3, 3, 3, 5, respectively. Thus, we write S ⇒⇒ a2b4 belongs to L(G).
More generally, the production sequence:

1, 2(r times), 4, 3(s times), 5

will produce the word w = arabsb, where r and s are non-negative integers. On the other hand, no sequence
of productions can produce an a after a b. Accordingly,

L(G) = {ambn : m > 0, n > 0}

That is, the language L(G) of the grammarG consists of all words which begin with one or more a’s followed
by one or more b’s.

Few Probable Questions

1. Define Language. Let A = {a, b}. Find a regular expression r such that L(r) consists of all words w
where:

(a) w begins with a2 and ends with b2;
(b) w contains an even number of a’s.

2. Find the language L(G) generated by the grammar G with variables S,A,B, terminals a, b, and pro-
ductions S → aB,B → b, B → bA,A→ aB.



Unit 12

Course Structure

• Finite Automata (FA).

12.1 Introduction

Automata theory is the study of abstract machines and automata, as well as the computational problems that
can be solved using them. It is a theory in theoretical computer science and discrete mathematics (a subject of
study in both mathematics and computer science). The word automata (the plural of automaton) comes from
a Greek word, which means "self-making".

Automata theory is closely related to formal language theory. An automaton is a finite representation of a
formal language that may be an infinite set. Automata are often classified by the class of formal languages
they can recognize, typically illustrated by the Chomsky hierarchy, which describes the relations between
various languages and kinds of formalized logics.

Automata play a major role in theory of computation, compiler construction, artificial intelligence, parsing
and formal verification.

Objectives

After reading this unit, you will be able to

• define finite state automata and related terms and find its relation with languages

12.2 Finite State Automata

Definition 12.2.1. A finite state automaton (FSA) or, simply, an automaton M , consists of five parts:

1. A finite set (alphabet) A of inputs.

2. A finite set S of (internal) states.

3. A subset Y of S (called accepting or "yes" states).

4. An initial state s0 in S.

101
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5. A next-state function F : S ×A→ A.

Such an automaton M is denoted by M = (A,S, Y, s0, F ) (The plural of automaton is automata).

Example 12.2.2. The following defines an automaton M with two input symbols and three states:

1. A = {a, b}, input symbols.

2. S = {s0, s1, s2}, internal states.

3. Y = {s0, s1}, "yes" states.

4. s0, initial state,

5. Next state function F : S ×A→ S defined explicitly as follows:

F (s0, a) = s0, F (s1, a) = s0, F (s2, a) = s2

F (s0, b) = s1, F (s1, b) = s2, F (s2, b) = s2.

12.2.1 State Diagram of an Automaton M

An automaton M is usually defined by means of its state diagram D = D(M) rather than by listing its five
parts. The state diagram D = D(M) is a labelled directed graph as follows.

1. The vertices of D(M) are the states in S and an accepting state is denoted by means of a double circle.

2. There is an arrow (directed edge) in D(M) from state sj to state sk labelled by an input a if F (sj , a) =
sk.

3. The initial state s0 is indicated by means of a special arrow which terminates at s0 but has no initial
vertex.

For each vertex sj and each letter a in the alphabet A, there will be an arrow leaving sj , which is labelled by
a; hence the outdegree of each vertex is equal to number of elements in A. For notational convenience, we
label a single arrow by all the inputs which cause the same change of state rather than having an arrow for
each such input.

The state diagram D = D(M) of the automaton M in the preceding Example is shown in fig. 12.2.1.

Figure 12.2.1
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Language L(M) Determined by an Automaton M

Each automaton M with input alphabet A defines a language over A, denoted by L(M), as follows.
Let w = a1a2 · · · am be a word on A. Then w determines the following path in the state diagram graph

D(M) where s0 is the initial state and F (si−1, ai) = si for i ≥ 1

P = (s0, a1, s1, a2, s2, . . . , am, sm).

We say that M recognizes the word w if the final state sm is an accepting state in Y . The language L(M) of
M is the collection of all words from A which are accepted by M .

Example 12.2.3. We determine whether or not the automaton M in fig. 12.2.1accepts the words

w1 = ababba, w2 = baab, w3 = λ.

Using fig. 12.2.1 and the words w1 and w2, we obtain the respective paths:

P1 = s0
a−→ s0

b−→ s1
a−→ s0

b−→ s1
b−→ s2

a−→ s2, and P2 = s0
b−→ s1

a−→ s0
a−→ s0

b−→ s1

The final state in P1 is s2 which is not in Y . Hence w1 is not accepted by M . Also, the final state of P2 is s1
which is in Y so w2 is accepted by M . The final state determined by w3 is the initial state s0 which is in Y .
Thus w3 is also accepted by M .

We also describe the language L(M). L(M) will consist of all words w on A which do not have two
successive b’s. This comes from the following facts:

1. We can enter the state s2 if and only if there are two successive b’s.

2. We can never leave s2.

3. The state s2 is the only rejecting (non-accepting) state.

Example 12.2.4. Consider the automaton M in fig. 12.2.2. We want to find the words w in language L that
are accepted by M . The system can reach the accepting state s2 only when there exists an a in w which
follows a b.

Figure 12.2.2

The fundamental relationship between regular languages and automata is contained in the following theo-
rem.

Theorem 12.2.5. (Kleene): A language L over an alphabet A is regular if and only if there is a finite state
automaton M such that L = L(M).
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Figure 12.2.3

Example 12.2.6. Let A = {a, b}. We construct an automaton M which will accept precisely those words
from A which end in two b’s. Since b2 is accepted, but not λ or b, we need three states, s0, the initial state, and
s1 and s2 with an arrow labelled b going from s0 to s1 and one from s1 to s2. Also, s2 is an accepting state,
but not s0 nor s1. This gives the graph in fig. 12.2.3(a). On the other hand, if there is an a, then we want to
go back to s0, and if we are in s2 and there is a b, then we want to stay in s2. These additional conditions give
the required automaton M which is shown in fig. 12.2.3(b).

Example 12.2.7. Let A = {a, b}. We construct an automaton M which will accept those words from A
which begin with an a followed by (zero or more) b’s in fig. 12.2.4.

Figure 12.2.4

Pumping Lemma

Let M be an automaton over A with k states. Suppose w = a1a2 · · · an is a word over A accepted by M and
suppose |w| = n > k, the number of states. Let P = (s0, s1, . . . , sn) be the corresponding sequence of states
determined by the word w. Since n > k, two of the states in P must be equal, say si = sj where i < j. Let
w be divided into subwords x, y, z as follows:

x = a1a2 · · · ai, y = ai+1 · · · aj , z = aj+1 · · · an.

As shown in fig. 12.2.5, xy ends in si = sj ; hence xym also ends in si. Thus, for every m, wm = xymz ends
in sn, which is an accepting state.

The above discussion proves the following important result.

Theorem 12.2.8. (Pumping Lemma): Suppose M is an automaton over A such that:

1. M has k states.
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Figure 12.2.5

2. M accepts a word w from A where |w| > k.

Then w = xyz where, for every positive m, wm = xymz is accepted by M .

The next example gives an application of the Pumping Lemma.

Example 12.2.9. We want to show that the language L = {ambm : m > 0} is not regular.
Suppose L is regular. Then by theorem 12.2.5, there exists a finite state automaton M which accepts L.

Suppose M has k states. Let w = akbk. Then |w| > k. By theorem 12.2.8, w = xyz where y is not empty
and w2 = xy2z is also accepted by M . If y consists of only a’s or only b’s, then w2 will not have the same
number of a’s as b’s. If y contains both a’s and b’s, then w2 will have a’s following b’s. In either case, w2

does not belong to L, which is a contradiction. Hence L is not regular.

Few Probable Questions

1. Define finite state automaton. Let M be the automaton with the following input set A, state set S with
initial state s0 and accepting set Y :

A = {a, b}, S = {s0, s1, s2}, Y = {s2}.

Also, the next-state function is given by

F (s0, a) = s0, F (s1, a) = s1, F (s2, a) = s2

F (s0, b) = s1, F (s1, b) = s2, F (s2, b) = s2.

Draw the State diagram D(M) of M . Also, describe the language L = L(M) accepted by M .

2. Let A = {a, b}. Construct an automaton M which will accept precisely those words from A which
have an even number of a’s.



Unit 13

Course Structure

• Finite State Machine. Non-deterministic and deterministic FA. Push Down Automation (PDA), Equiv-
alence of PDAs and Context Free Languages (CFLs).

13.1 Introduction

This unit discusses two types of "machines." The first is a finite state machine (FSM) which is similar to a
finite state automaton (FSA) except that the finite state machine “prints" an output using an output alphabet
which may be distinct from the input alphabet.

Objectives

After reading this unit, you will be able to

• define finite state machines and draw their state tables and diagrams

13.2 Finite State Machines

Definition 13.2.1. A finite state machine (or complete sequential machine) M consists of six parts:

1. A finite set A of input symbols;

2. A finite set S of "internal" states;

3. A finite set Z of output symbols;

4. An initial state s0 in S;

5. A next-state function f : S ×A→ S;

6. An output function g from S ×A into Z.

Such a machine M is denoted by M =M(A,S, Z, s0, f, g).

106
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Example 13.2.2. The following defines a finite state machineM with two input symbols, three internal states,
and three output symbols:

A = {a, b}, S = {s0, s1, s2}, Z = {x, y, z}, Initial state s0,

the next-state function f : S ×A→ S defined by

f(s0, a) = s1, f(s1, a) = s2, f(s2, a) = s0

f(s0, b) = s2, f(s1, b) = s1, f(s2, b) = s1.

and the output function g : S ×A→ Z defined by

g(s0, a) = x, g(s1, a) = x, g(s2, a) = z

g(s0, b) = y, g(s1, b) = z, g(s2, b) = y.

13.2.1 State Table and State Diagram of a Finite State Machine

There are two ways of representing a finite state machine M in compact form. One way is by a table called
the state table of the machine M , and the other way is by a labelled directed graph called the state diagram of
the machine M .

The state table combines the next-state function f and the output function g into a single table which
represent the function F : S ×A→ S × Z defined as follows

F (sj , aj) = [f(si, aj), g(si, aj)]

For instance, the state table of the machine M in the preceding example is given in table 13.1. The states are

F a b

s0 s1, x s2, y
s1 s2, x s1, z
s2 s0, z s1, y

Table 13.1

listed on the left of the table with the initial state first, and the input symbols are listed on the top of the table.
The entry in the table is a pair (sk, zr) where sk = f(si, aj) is the next state and zr = g(si, aj) is the output
symbol. The corresponding state diagram is given in fig. 13.2.1.

Figure 13.2.1
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The state diagram D = D(M) of a finite state machine M is a labelled digraph the vertices of which are
the states of M . Moreover, if

F (si, aj) = (sk, zr) or equivalently, sk = f(si, aj), zr = g(si, aj)

then there is an arc (arrow) from si to sk which is labelled with the pair aj , zr. We usually put the input
symbol ai near the base of the arrow (near si) and the output symbol zr near the center of the arrow. We also
label the initial state s0 by drawing an extra arrow into s0. See fig. 13.2.1.

Input and Output Tapes

The above discussion of a finite state machine M does not show the dynamic quality of M . Suppose M is
given a string (word) of input symbols, say

u = a1a2 · · · am

We visualize these symbols on an "input tape." The machine M "reads" these input symbols one by one and,
simultaneously, changes through a sequence of states

v = s0s1s2 · · · sm

where s0 is the initial state, while printing a string(word) of output symbols

w = z1z2 · · · zm

on an "output tape." Formally, the initial state s0 and the input string u determine the strings v and w as
follows, where i = 1, 2, . . . ,m:

si = f(si−1ai), and zi = g(si−1, ai).

Example 13.2.3. Consider the machine M of fig. 13.2.1. Suppose the input is the word u = abaab. We
calculate the sequence v of states and the output word w from the state diagram as follows. Beginning at the
initial state s0, we follow the arrows which are labelled by the input symbols as follows:

s0
a,x−−→ s1

b,z−→ s1
a,x−−→ s2

a,z−−→ s0
b,y−−→ s2

This yields the following sequence v of states and output word w:

v = s0s1s1s2s0s2 and w = xzxy.

Binary Addition

This subsection describes a finite state machine M which can do binary addition. By adding 0’s at the begin-
ning of our numbers, we can assume that our numbers have the same number of digits. If the machine is given
the input 1101011 + 0111011 then we want the output to be the binary sum 10100110. Specifically, the input
is the string of pairs of digits to be added:

11, 11, 00, 11, 01, 11, 10, b

where b denotes blank spaces, and the output should be the string:

0, 1, 1, 0, 0, 1, 0, 1
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We also want the machine to enter a state called "stop" when the machine finishes the addition.
The input symbols and output symbols are, respectively, as follows:

A = {00, 01, 10, 11, b} and Z = {0, 1, b}.

The machine M that we "construct" will have three states:

S = {carry(c), no carry(n), stop(s)}

Here n is the initial state. The machine is shown in fig. 13.2.2. In order to show the limitations of our

Figure 13.2.2

machines, we state the following theorem.

Theorem 13.2.4. There is no finite state machine M which can do binary multiplication.

If we limit the size of the numbers that we multiply, then such machines do exist. Computers are important
examples of finite state machines which multiply numbers, but the numbers are limited as to their size.

Few Probable Questions

1. Define finite state machine. Let M be a FSM with state table 13.2.

F a b

s0 s1, x s2, y
s1 s3, y s1, z
s2 s1, z s0, x
s3 s0, z s2, z

Table 13.2

(a) Find the input set A, the state set S, the output set Z, and the initial state.
(b) Draw the state diagram D = D(M) of M
(c) Suppose w = aababaabbab is an input word (string). Find the corresponding output word v.



Unit 14

Course Structure

• Computable Functions.

14.1 Introduction

Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a
function is computable if there exists an algorithm that can do the job of the function, i.e. given an input
of the function domain it can return the corresponding output. Computable functions are used to discuss
computability without referring to any concrete model of computation such as Turing machines or register
machines. Any definition, however, must make reference to some specific model of computation but all valid
definitions yield the same class of functions. Particular models of computability that give rise to the set of
computable functions are the Turing-computable functions and the general recursive functions.

Objectives

After reading this unit, you will be able to

• learn about Turing machines and how to work with them

• define computable functions and solve related problems

14.2 Turing Machines

There are a number of equivalent ways to formally define a "computable" function. We do it by means of
a Turing machine M . This section formally defines a Turing machine M , and the next section defines a
computable function.

Our definition of a Turing machine uses an infinite two-way tape, quintuples, and three halt states. Other
definitions use a one-way infinite tape and/or quadruples, and one halt state. However, all the definitions are
equivalent.

A Turing machine M involves three disjoint non-empty sets:

110
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1. A finite tape set where B = a0 is the blank symbol:

A = {a1, a2, . . . , am} ∪ {B}

2. A finite state set where s0 is the initial state:

S = {s1, s2, . . . , sn} ∪ {sH , sY , sN}

where sH (HALT) is the halting state, sY (YES) is the accepting state, and sN (NO) is the non-accepting
state.

3. A direction set where L denotes "left" and R denotes "right:"

d = {L,R}

Definition 14.2.1. An expression is a finite (possibly empty) sequence of elements from A ∪ S ∪ d. In other
words, an expression is a word whose letters (symbols) come from the sets A,S, and d.

Definition 14.2.2. A tape expression is an expression using only elements from the tape set A.

The Turing machine M may be viewed as a read/write tape head which moves back and forth along an
infinite tape. The tape is divided lengthwise into squares (cells), and each square may be blank or hold one
tape symbol. At each step in time, the Turing machine M is in a certain internal state si scanning one of the
tape symbols aj on the tape. We assume that only a finite number of non-blank symbols appear on the tape.

Fig. 14.2.1(a) is a picture of a Turing machineM in state s2 scanning the second symbol where a1a3Ba1a1
is printed on the tape. (Note again that B is the blank symbol.) This picture may be represented by the
expression α = a1s2a3Ba1a1 where we write the state s2 ofM before the tape symbol a3 thatM is scanning.
Observe that α is an expression using only the tape alphabet A except for the state symbol s2 which is not at
the end of the expression since it appears before the tape symbol a3 that M is scanning. Fig. 14.2.1 shows
two other informal pictures and their corresponding picture expressions.

Figure 14.2.1

Definition 14.2.3. A picture α is an expression as follows where P and Q are tape expressions (possibly
empty):

α = PsiakQ

Definition 14.2.4. Let α = PsiakQ be a picture. We say that the Turing machine M is in state si scanning
the letter ak and that the expression on the tape is the expression PakQ, that is, without its state symbol si.

As mentioned above, at each step in time the Turing machine M is in a certain state si and is scanning a
tape symbol ak. The Turing machine M is able to do the following three things simultaneously:
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1. M erases the scanned symbol ak and writes in its place a tape symbol al(where we permit al = ak);

2. M changes its internal states si to a state sj (where we permit sj = sj).

3. M moves one square to the left or moves one square to the right.

The above action byM may be described by a five-letter expression called a quintuple which we define below.

Definition 14.2.5. A quintuple q is a five-letter expression of the following form:

q =

(
si, ak, al, sj ,

{
L

R

})
That is, the first letter of q is a state symbol, the second is a tape symbol, the third is a tape symbol, the fourth
is a state symbol, and the last is a direction symbol L or R.

Next we give a formal definition of a Turing machine.

Definition 14.2.6. A Turing machine M is a finite set of quintuples such that:

1. No two quintuples begin with the same first two letters.

2. No quintuple begins with sH , sY , or sN .

First condition guarantees that the machine M cannot do more than one thing at any given step, and second
condition guarantees that M halts in state sH , sY , or sN .

The following is an alternative equivalent definition.

Definition 14.2.7. Turing machine M is a partial function from

S \ {sH , sY , sN} ×A into A× S × d

The term partial function simply means that domain of M is a subset of S \ {sH , sY , sN} ×A.

The action of the Turing machine described above can now be formally defined.

Definition 14.2.8. Let α and β be pictures. We write α → β if one of the following holds where a, b, c are
tape letters and P and Q are tape expressions (possibly empty):

1. α = PsiacQ, β = PbsjcQ and M contains the quintuple q = siabsjR;

2. α = PcsiaQ, β = PsjcbQ and M contains the quintuple q = siabsjL;

3. α = Psia, β = PbsjB and M contains the quintuple q = siabsjR;

4. α = siaQ, β = sjBbQ and M contains the quintuple q = siabsjL.

Observe that, in all four cases, M replaces a on the tape by b (where we permit b = a), and M changes its
state from si to sj (where we permit sj = si). Furthermore:

1. Here M moves to the right.

2. Here M moves to the left.

3. Here M moves to the right; however, since M is scanning the rightmost letter, it must add the blank
symbol B on the right.

4. HereM moves to the left; however, sinceM is scanning the leftmost letter, it must add the blank symbol
B on the left.

Definition 14.2.9. A picture α is said to be terminal if there is no picture β such that α→ β.
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14.2.1 Computing with a Turing Machine

Definition 14.2.10. A computation of a Turing machineM is a sequence of pictures α1, α2, . . . , αm such that
αi−1 → αi for i = 1, 2, . . . ,m and αm is a terminal picture.

Turing Machines with Input

Definition 14.2.11. An input for a Turing machine M is a tape expression W . The initial picture for an input
W is α(W ), where α(W ) = s0(W ).

Observe that the initial picture α(W ) of the inputW is obtained by placing the initial state s0 in front of the
input tape expression W . In other words, the Turing machine M begins in its initial state s0 and it is scanning
the first letter of W .

Definition 14.2.12. Let M be a Turing machine and let W be an input. We say M halts on W if there is a
computation beginning with the initial picture α(W ).

That is, given an input W , we can form the initial picture α(W ) = s0(W ) and apply M to obtain the
sequence

α(W ) → α1 → α2 → . . .

Two things can happen:

1. M halts on W . That is, the sequence ends with some terminal Picture αr.

2. M does not halt on W . That is, the sequence never ends.

Grammars and Turing Machines

Turing machines may be used to recognize languages. Specifically, suppose M is a Turing machine with tape
set A. Let L be the set of words W in A such that M halts in the accepting state sY when W is the input. We
will then write L = L(M), and we will say that M recognizes the language L. Thus an input W does not
belong to L(M) if M does not halt on W or if M halts on W but not in the accepting state sY .

Theorem 14.2.13. A language L is recognizable by a Turing machineM if and only if L is a type 0 language.

14.3 Computable Functions

Computable functions are defined on the set of non-negative integers. We denote the set of non-negative
integers by N0. Throughout this section, the terms number, integer, and nonnegative integer are used synony-
mously. The preceding section described the way a Turing machine M manipulates and recognizes character
data. Here we show how M manipulates numerical data. First, however, we need to be able to represent our
numbers by our tape setA. We will write 1 for the tape symbol a1 and 1n for 111 . . . 1, where 1 occur n times.

Definition 14.3.1. Each number n will be represented by the tape expression ⟨n⟩ where ⟨n⟩ = 1n+1.

Thus, ⟨4⟩ = 11111 = 15, ⟨0⟩ = 1.

Definition 14.3.2. Let E be an expression. Then [E] will denote the number of times 1 occurs in E.

Then [11Bs2a3111ba4] = 5.
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Definition 14.3.3. A function f : N0 → N0 is computable if there exists a Turing machine M such that, for
every integer n, M halts on ⟨n⟩ and

f(n) = [term(α(⟨n⟩)].

We then say that M computes f .

That is, given a function f and an integer n, we input ⟨n⟩ and apply M . If M always halts on ⟨n⟩ and
the number of 1’s in the final picture is equal to f(n), then f is a computable function and we say that M
computes f .

Example 14.3.4. The function f(n) = n+3 is computable. The input is W = 1n+1. Thus we need only add
two 1’s to the input. A Turing machine M which computes f follows:

M = {q1, q2, q3} = {s01s0L, s0B1s1L, s1B1sHL}.

Observe that:

1. q1 moves the machine M to the left.

2. q2 writes 1 in the blank square B, and moves M to the left.

3. q3 writes 1 in the blank square B, and halts M .

Accordingly, for any positive integer n,

s01
n+1 → s0B1n+1 → s1B1n+2 → sHB1n+3

Thus M computes f(n) = n + 3. It is clear that, for any positive integer k, the function f(n) = n + k is
computable.

Theorem 14.3.5. Suppose f : N0 → N0 and g : N0 → N0 are computable. Then the composition function
h = g ◦ f is computable.

14.3.1 Functions of Several Variables

This subsection defines a computable function f(n1, n2, . . . , nk) of k variables. First we need to represent the
list m = (n1, n2, . . . , nk) in our alphabet A.

Definition 14.3.6. Each list m = (n1, n2, . . . , nk) of k integers is represented by the tape expression

⟨m⟩ = ⟨n1⟩B⟨n2⟩B · · ·B⟨nk⟩

For example, ⟨(2, 0, 4)⟩ = 111B1B11111 = 13B11B15.

Definition 14.3.7. The function f(n1, n2, . . . , nk) of k variables is computable if there is a Turing machine
M such that, for every list m = (n1, n2, . . . , nk), M halts on ⟨m⟩ and

f(m) = [term(α(⟨m⟩))]

We then say that M computes f .

Example 14.3.8. The addition function f(m,n) = m + n is computable. The input is W = 1m+1B1n+1.
Thus we need only erase two of the 1’s. A Turing machine M which computes f follows:

M = {q1, q2, q3, q4} = {s01Bs1R, s11BsHR, s1BBs2R, s21BsHR}

Observe that:
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1. q1 erases the first 1 and moves M to the right.

2. If m ̸= 0, then q2 erases the second 1 and halts M .

3. If m = 0, q3 moves M to the right past the blank square B.

4. q4 erases the 1 and halts M .

Accordingly, if m ̸= 0, we have,

s01
m+1B1n+1 → s11

mB1n+1 → sH1m−1B1n+1

but if m = 0 and m+ n = n, we have

s01B1n+1 → s1B1n+1 → s21
n+1 → sH1n

Thus, M computes f(m,n) = m+ n.

Few Probable Questions

1. Define Turing machine. Suppose α = aas2ba is a picture. Find β such that α → β if the Turing
machine M has the quintuple q where: (a) q = s2bas1L; (b) q = s2bbs3R.

2. Define computable functions. Show that the function f is computable where:

(a) f(n) = n− 1, when n > 0, and f(0) = 0.

(b) f(x, y) = y.



Unit 15

Course Structure

• Fields and σ-fields of events. Probability as a measure. Random variables. Probability distribution.

15.1 Introduction

The theory of probability had its origin in gambling and games of chance. It owes much to the curiosity
of gamblers who pestered their friends in the mathematical world with all sorts of questions. A random (or
statistical) experiment is an experiment in which

• All outcomes of the experiment are known in advance.

• Any performance of the experiment results in an outcome that is not known in advance.

• The experiment can be repeated under identical conditions.

In probability theory we study this uncertainty of a random experiment. It is convenient to associate with
each such experiment a set Ω, the set of all possible outcomes of the experiment. To engage in any meaningful
discussion about the experiment, we associate with Ω a σ-field S of subsets of Ω. We recall that a σ-field is a
non-empty class of subsets of Ω that is closed under the formation of countable unions and complements and
contains the null set ϕ.

The sample space of a statistical experiment is a pair (Ω, S), where

• Ω is the set of all possible outcomes of the experiment.

• S is a σ-field of subsets of Ω.

The elements of Ω are called sample points. Any set A ∈ S is known as an event. Clearly, A is a collection
of sample points. We say that an event A happens if the outcome of the experiment corresponds to a point in
A. Each one point set is known as a simple or elementary event. If the set Ω contains only a finite number of
points, we say that (Ω, S) is a finite sample space. If Ω contains at most a countable number of points, we call
(Ω, S) a discrete sample space. If, however, Ω contains uncountably many points, we say that (Ω, S) is an
uncountable sample space. In particular, if Ω = Rk or some rectangle in Rk, we call it a continuous sample

116
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space.

Let us toss a coin. The set Ω is the set of symbols H and T , where H denotes head and T represents tail.
Also, S is the class of all subsets of Ω, namely {{H}, {T}, {H,T}, ϕ}. If the coin is tossed two times, then

Ω = {(H,H), (H,T ), (T,H), (T, T )},

and

S =
{
ϕ, {(H,H)}, {(H,T )}, {(T,H)}, {(T, T )}, {(H,H)}

{(H,H), (H,T )}, {(H,H), (T,H)}, {(H,H), (T, T )}, {(H,T ), (T,H)},
{(T, T ), (T,H)}, {(T, T ), (H,T )}, {(H,H), (H,T ), (T,H)},

{(H,H), (H,T ), (T, T )}, {(H,H), (T,H), (T, T )}, {(H,T ), (T,H), (T, T )},Ω
}

(15.1.1)

where the first element of a pair denotes the outcome of the first toss, and the second element, the outcome of
the second toss. The event at least one head consists of sample points (H,H), (H,T ), (T,H). The event at
most one head is the collection of sample points (H,T ), (T,H), (T, T ).

15.2 Random Variables

Suppose that to each point of a sample space we assign a number. We then have a function defined on the
sample space. This function is called a random variable (or stochastic variable) or more precisely a random
function (stochastic function). It is usually denoted by a capital letter such as X or Y. In general, a random
variable has some specified physical, geometrical, or other significance.

Assume Ω is the sample space of an experiment. A function that takes real values, X : Ω → R, is called
a random variable if for any interval I ⊂ R, the set {ω ∈ Ω : X(ω) ∈ I} is an event of the sample space Ω.
The probability that X takes values on I will be simply denoted by P (X ∈ I).

Example 15.2.1. Suppose that a coin is tossed twice so that the sample space is S = {HH, HT, TH, TT}. Let
X represent the number of heads that can come up. With each sample point we can associate a number for X
as shown in Table 19.4.1. Thus, for example, in the case of HH (i.e., 2 heads), X = 2 while for TH (1 head), X
= 1. It follows that X is a random variable.

Figure 15.2.1

A random variable that takes on a finite or countably infinite number of values is called a discrete random
variable while one which takes on a non-countably infinite number of values is called a non-discrete random
variable.

If X is a random variable wich can take a finite number or countably infinite number of values X is called
discrete random variable. When random variable is discrete, the possible values of X may be assumed as x1,
x2,..., xn, ... .

If X is a random variable which can take all values in an interval, then X is called a continuous random
variable.
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Example 15.2.2. The time it takes to complete an exam for a 60 min test. Possible values = all real numbers
on the interval [0, 60]

15.3 Probability Distribution

While dealing with random variables and their probabilities it is often found that there exists a functional
relationship between the value taken by the random variable and the corresponding probability. This initi-
ates to express the relation between random variables and their probabilities whit the help of mathematical
functions. These functions are called as probability distributions. Depending on the nature of the random
variable distributions can be either discrete or continuous. If the random variable X takes discrete values
only, then its probability distribution is called a discrete probability distribution or probability mass function
(pmf). However if the random variable X , is such that it can take any value within a given interval them
the corresponding distribution is called as continuous probability distribution or probability density function
(pdf). Binomial distribution, Poisson distribution, geometric distribution and negative binomial distribution
are some examples of discrete random variable. Examples of continuous distribution are normal distribution,
beta distribution, gamma distribution etc.

For any discrete variable X , a real-valued function f : R → R defined by

f(x) = P (X = x), x ∈ R (15.3.1)

is called the probability function of X (sometimes also called the probability mass function associated with
X).

or,
If X is a discrete random variable which can take the values x1, x2, x3, . . . such that P (X = xi) = pi,

then pi is called the probability function or probability mass function or point probability function, provided
pi (i = 1, 2, 3, . . .) satisfies the following conditions:

1. pi ≥ 0 for all i, and

2.
∑
i
pi = 1.

The collection of pairs (xi, pi), i = 1, 2, 3, . . . , is called the probability distribution of the random variable
X , which is sometimes displayed in the form of a table as given below:

X = xi P (X = xi)

x1 p1
x2 p2
... ...
xr pr
... ...

15.4 Discrete Probability Distribution

Let X be a discrete random variable, and suppose that the possible values that it can assume are given by
x1, x2, x3, . . ., arranged in some order. Suppose also that these values are assumed with probabilities given by

P (X = xk) = f(xk) k = 1, 2, . . . (15.4.1)
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It is convenient to introduce the probability function, also referred to as probability distribution, given by

P (X = x) = f(x) (15.4.2)

For x = xk, this reduces to (15.4.1) while for other values of x, f(x) = 0. In general, f(x) is a probability
function if

1. f(x) ≥ 0

2.
∑
x
f(x) = 1

where the sum in 2 is taken over all possible values of x.

15.5 Continuous Probability Distribution

A continuous distribution describes the probabilities of a continuous random variable’s possible values. Since
a continuous random variable can take any value within its range, we cannot list all the possible values and
their probabilities as in the discrete case.
For continuous random variables we represent probabilities using a probability density function (pdf) (some-
times just called the probability distribution). The pdf of a continuous random variable X , is a function f(x)
defined such that:

• Its curve lies on or above the x-axis, i.e. f(x) ≥ 0 for all x in its range.

• The area under the entire curve is 1.

• The probability P (a < X < b) that X lies between a and b is the area under the curve between a and b.

Below is an example of what a pdf might look like. The region green is P (2 ≤ X ≤ 3). Tho total shaded
area (purple and green) is equal to 1.

Figure 15.5.1: Example of a continuous pdf.
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15.6 Distribution Functions for Random Variables

The cumulative distribution function, or briefly the distribution function, for a random variable X is defined
by

F (x) = P (X ≤ x) (15.6.1)

where x is any real number, i.e., −∞ < x <∞.
If X is discrete,

F (x) =
∑

j
Xj≤x

pj (15.6.2)

If X is continuous,

F (x) = P (−∞ < X ≤ x) =

∫ x

−∞
f(x) dx (15.6.3)

The distribution function F(x) has the following properties:

1. F (x) is non-decreasing [i.e., F (x) ≤ F (y) if x ≤ y].

2. lim
x→∞

F (x) = 1 and lim
x→−∞

F (x) = 0.

3. F (x) is continuous from the right [i.e., lim
h→0+

F (x+ h) = F (x) for all x].

4. Let {xn}n≥1 be a decreasing sequence of real numbers such that lim
n→∞

xn = x. Then lim
n→∞

F (xn) =

F (x).

15.7 Continuous Random Variables

A non-discrete random variable X is said to be absolutely continuous, or simply continuous, if its distribution
function may be represented as

F (x) = P (X ≤ x) =

∫ x

−∞
f(u) du (−∞ < x <∞) (15.7.1)

where the function f(x) has the properties

1. f(x) ≥ 0

2.

∞∫
−∞

f(x) dx = 1

It follows from the above that if X is a continuous random variable, then the probability that X takes on any
one particular value is zero, whereas the interval probability that X lies between two different values, say, a
and b, is given by

P (a < X < b) =

b∫
a

f(x) dx (15.7.2)

Example 15.7.1. A random variable X has the following probability distribution.
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x -2 -1 0 1 2 3
p(x) 0.1 K 0.2 2K 0.3 3K

(a) Find K, (b) evaluate P (X < 2) and P (−2 < X < 2), (c) find the distribution function of X and (d)
evaluate the mean of X .

Solution: (a) Since
∑
P (x) = 1, 6K + 0.6 = 1

So, K = 1
15 .

Therefore, the probability distribution becomes

x -2 -1 0 1 2 3
p(x) 1/10 1/15 1/5 2/15 3/10 1/5

(b) P (X < 2) = P (X = −2,−1, 0 or 1)
= P (X = −2) + P (X = −1) + P (X = 0) + P (X = 1)
= 1

10 + 1
15 + 1

5 + 2
15 = 1

2
(c)

F (x) = 0, when x < −2

=
1

10
, when − 2 ≤ x < −1

=
1

6
, when − 1 ≤ x < 0

=
11

30
, when 0 ≤ x < 1

=
1

2
, when 1 ≤ x < 2

=
4

5
, when 2 ≤ x < 3

= 1, when 3 ≤ x

(d) The mean of X is defined as E(X) =
∑
xp(x).

Therefore, mean of X =
(
−2× 1

10

)
+
(
−1× 1

15

)
+
(
0× 1

5

)
+
(
1× 2

15

)
+
(
2× 3

10

)
+
(
3× 1

5

)
= −1

5 − 1
15 + 2

15 + 3
5 + 3

5 = 16
15

Example 15.7.2. Find the constant c such that the function

f(x) =

{
cx2 0 < x < 3
0 otherwise

is a density function and compute P (1 < X < 2).

Solution: Since f(x) satisfies Property 1 if c ≥ 0, it must satisfy Property 2 in order to be a density function.
Now

∞∫
−∞

f(x) dx =

3∫
0

cx2 dx =
cx3

3

∣∣∣∣∣
3

0

= 9c

and since this must equal 1, we have c = 1/9. Now

P (1 < X < 2) =

2∫
1

1

9
x2 dx =

x3

27

∣∣∣∣∣
2

1

=
8

27
− 1

27
=

7

27
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15.8 Joint Distributions

15.8.1 Discrete Case:

If X and Y are two discrete random variables, we define the joint probability function of X and Y by

P (X = x, Y = y) = f(x, y) (15.8.1)

where

1. f(x, y) ≥ 0

2.
∑
x

∑
y
f(x, y) = 1

The joint distribution function of X and Y is defined by

F (x, y) = P (X ≤ x, Y ≤ y) =
∑
u≤x

∑
v≤y

f(u, v) (15.8.2)

Continuous case:

The case where both variables are continuous is obtained easily by analogy with the discrete case on replacing
sums by integrals. Thus the joint probability function for the random variables X and Y (or, as it is more
commonly called, the joint density function of X and Y ) is defined by

1. f(x, y) ≥ 0

2.
∞∫

−∞

∞∫
−∞

f(x, y) dx dy = 1

Properties of F (x, y):

1. F (−∞, y) = 0 = F (x,−∞) and F (∞,∞) = 1

2. P (a < X < b, Y ≤ y) = F (b, y)− F (a, y)

3. P (X ≤ x, c < Y < d) = F (x, d)− F (x, c)

4. P (a < X < b, c < Y < d) = F (b, d)− F (a, d)− F (b, c) + F (a, c)

5. At points of continuity of f(x, y), ∂2F
∂x∂y = f(x, y)

The joint distribution function of X and Y in this case is defined by

F (x, y) = P (X ≤ x, Y ≤ y) =

x∫
u=−∞

y∫
v=−∞

f(u, v) du dv (15.8.3)

From (15.8.3), we obtain

P (X ≤ x) = F1(x) =

x∫
u=−∞

∞∫
v=−∞

f(u, v) du dv (15.8.4)

P (Y ≤ y) = F2(y) =

∞∫
u=−∞

y∫
v=−∞

f(u, v) du dv (15.8.5)
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Eq. (15.8.4) and (15.8.5) are called the marginal distribution functions, or simply the distribution functions,
of X and Y , respectively. The derivatives of (15.8.4) and (15.8.5) with respect to x and y are then called the
marginal density functions, or simply the density functions, of X and Y and are given by

f1(x) =

∞∫
v=−∞

f(x, v) dv f2(y) =

∞∫
u=−∞

f(u, y) du (15.8.6)

15.9 Change of Variables

Given the probability distributions of one or more random variables, we are often interested in finding distri-
butions of other random variables that depend on them in some specified manner. Procedures for obtaining
these distributions are presented in the following theorems for the case of discrete and continuous variables.

15.9.1 Discrete Variables

Theorem 15.9.1. Let X be a discrete random variable whose probability function is f(x). Suppose that a
discrete random variableU is defined in terms ofX byU = ϕ(X), where to each value ofX there corresponds
one and only one value of U and conversely, so that X = ψ(U). Then the probability function for U is given
by

g(u) = f [ψ(u)] (15.9.1)

Theorem 15.9.2. Let X and Y be discrete random variables having joint probability function f(x, y). Sup-
pose that two discrete random variables U and V are defined in terms of X and Y by U = ϕ1(X,Y ), V =
ϕ2(X,Y ), where to each pair of values of X and Y there corresponds one and only one pair of values of U
and V and conversely, so that X = ψ1(U, V ), Y = ψ2(U, V ). Then the joint probability function of U and V
is given by

g(u, v) = f [ψ1(u, v), ψ2(u, v)] (15.9.2)

Continuous variables

Theorem 15.9.3. Let X be a continuous random variable with probability density f(x). Let us define U =
ϕ(X) where X = ψ(U) as in Theorem 15.9.1. Then the probability density of U is given by g(u) where

g(u)|du| = f(x)|dx| (15.9.3)

or g(u) = f(x)

∣∣∣∣dxdu
∣∣∣∣ = f [ψ(u)]

∣∣∣ψ′(u)
∣∣∣ (15.9.4)

Theorem 15.9.4. Let X and Y be continuous random variables having joint density function f(x, y). Let us
define U = ϕ1(X,Y ), V = ϕ2(X,Y ) where X = ψ1(U, V ), Y = ψ2(U, V ) as in Theorem 15.9.2. Then the
joint density function of U and V is given by g(u, v) where

g(u, v)|du dv| = f(x, y)|dx dy| (15.9.5)

or g(u, v) = f(x, y)

∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ = f [ψ1(u, v), ψ2(u, v)]|J | (15.9.6)

where Jacobian determinant or briefly Jacobian, is given by

J =
∂(x, y)

∂(u, v)
=

∣∣∣∣∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ (15.9.7)
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Example 15.9.5. The probability function of a random variable X is

f(x) =

{
2−x x = 1, 2, 3, . . .
0 otherwise

Find the probability function for the random variable U = x4 + 1.

Solution: Since U = X4 + 1, the relationship between the values u and x of the random variables U and
X is given by u = x4 + 1 or x = 4

√
u− 1, where u = 2, 17, 82, . . . and the real positive root is taken. Then

the required probability function for U is given by

g(u) =

{
2−

4√u−1 u = 2, 17, 82, . . .
0 otherwise

Example 15.9.6. If the random variables X and Y have joint density function

f(x) =

{
xy/96 0 < x < 4, 1 < y < 5
0 otherwise

then, find the joint density function U = XY 2, V = X2Y .

Solution: Consider u = xy2, v = x2y. Dividing these equations, we obtain y/x = u/v so that y = ux/v.
This leads to the simultaneous solution x = v2/3u−1/3, y = u2/3v−1/3. The image of 0 < x < 4, 1 < y < 5
in the uv-plane is given by

0 < v2/3u−1/3 < 4 1 < u2/3v−1/3 < 5

which are equivalent to
v2 < 64u v < u2 < 125v

The Jacobian is given by

J =

∣∣∣∣−1
3v

2/3u−4/3 2
3v

−1/3u−1/3

2
3u

−1/3v−1/3 −1
3u

2/3v−4/3

∣∣∣∣ = −1

3
u−2/3v−2/3

Thus the joint density function of U and V is

g(u, v) =

{
(v2/3u−1/3)(u2/3v−1/3)

96

(
1
3u

−2/3v−2/3
)

v2 < 64u, v < u2 < 125v
0 otherwise

⇒ g(u, v) =

{
u−1/3v−1/3/288 v2 < 64u, v < u2 < 125v
0 otherwise

15.10 Convolutions

As a particular consequence of the above theorems, we can show the density function of the sum of two
continuous random variables X and Y , i.e., of U = X + Y , having joint density function f(x, y) is given by

g(u) =

∞∫
−∞

f(x, u− x) dx (15.10.1)
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In special case where the X and Y are independent, f(x, y) = f1(x)f2(y), and (15.10.1) reduces to

g(u) =

∞∫
−∞

f1(x)f2(u− x) dx (15.10.2)

which is called the convolution of f1 and f2, abbreviated, f1∗f2. The following are some important properties
of the convolution:

1. f1 ∗ f2 = f2 ∗ f1

2. f1 ∗ (f2 ∗ f3) = (f1 ∗ f2) ∗ f3

3. f1 ∗ (f2 + f3) = (f1 ∗ f2) + (f1 ∗ f3)

These results show that f1, f2, f3 obey the commutative, associative and distributive laws of algebra with
respect to the operation of convolution.

Theorem 15.10.1. Let X and Y be random variables having joint density function f(x, y). Prove that the
density function of U = X + Y is

g(u) =

∞∫
−∞

f(v, u− v) dv

Proof. Let U = X +Y , V = X , where we have arbitrary added the second equation. Corresponding to these
we have u = x+ y, v = x or x = v, y = u− v. The Jacobian of the transformation is given by

J =

∣∣∣∣∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ = ∣∣∣∣0 1
1 −1

∣∣∣∣ = −1

Thus, the joint density function of U and V is

g(u, v) = f(v, u− v)

Therefore, the marginal density function of U is

g(u) =

∞∫
−∞

f(v, u− v) dv

Example 15.10.2. If X and Y are independent random variables having density functions

f1(x) =

{
2e−2x x ≥ 0
0 x < 0

f2(x) =

{
3e−3y y ≥ 0
0 y < 0

find the density function of their sum, U = X + Y .

Solution: The required density function is the the convolution of f1 and f2 is given by

g(u) = f1 ∗ f2 =
∞∫

−∞

f1(v)f2(u− v) dv
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In the integrand f1 vanish when v < 0 and f2 vanishes when v > u. Hence

g(u) =

u∫
0

(2e−2v)(3e−3(u−v)dv

= 6e−3u

u∫
0

evdv = 6e−3u(eu − 1) = 6(e−2u − e−3u)

if u ≥ 0 and g(u) = 0 if u < 0. Check

∞∫
−∞

g(u) du = 6

∞∫
0

(e−2u − e−3u) du = 6

(
1

2
− 1

3

)
= 1



Unit 16

Course Structure

• Expectation. Moments. Moment inequalities, Characteristic function. Convergence of sequence of
random variables-weak convergence, strong convergence and convergence in distribution, continuity
theorem for characteristic functions. Weak and strong law of large numbers. Central Limit Theorem.

16.1 Mathematical Expectation

A very important concept in probability and statistics is that of the mathematical expectation, expected value,
or briefly the expectation, of a random variable. For a discrete random variable X having the possible values
x1, . . . , xn, the expectation of X is defined as

E(X) = x1P (X = x1) + . . .+ xnP (X = xn) =
n∑

j=1

xjP (X = xj) (16.1.1)

For a continuous random variable X having density function f(x), the expectation of X is defined as

E(X) =

∞∫
−∞

x f(x) dx (16.1.2)

Another quantity of great importance in probability and statistics is called the variance and is defined by

Var(X) = E[(X − µ)2] (16.1.3)

The variance is a non-negative number. The positive square root of the variance is called the standard deviation
and is given by

σX =
√

Var(X) =
√
E[(X − µ)2] (16.1.4)

If X is a continuous random variable having density function f(x), then the variance is given by

σ2X = E[(X − µ)2] =

∞∫
−∞

(x− µ)2f(x) dx (16.1.5)

provided that the integral converges.

127
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Example 16.1.1. Two cards are drawn at random with replacement from a box which contains 4 cards num-
bered 1, 1, 2 and 2. If X denotes the sum of the numbers shown on the two cards, find the mean and variance
of X

Solution: X can take the values 2, 3 and 4.

P (X = 2) = P (two 1’s are drawn)

=
2C2

4C2
=

1

6

P (X = 3) = P (one 1 and one 2 are drawn)

=
2C1.

2C1

4C2
=

4

6

P (X = 4) = P (two 2’s are drawn)

=
2C1

4C2
=

1

6

The probability distribution of X is as shown.

X = xi 2 3 4
pi

1
6

4
6

1
6

E(X) =
∑
pixi =

2
6 + 12

6 + 4
6 = 3

E(X2) =
∑
pixi

2 = 4
6 + 36

6 + 16
6 = 28

3

V ar(X) = E(X2)− E(X)2 = 28
3 − 9 = 1

3

16.2 Moments

The r-th moment of a random variable X about the mean µ , also called the r-th central moment, is defined as

µr = E[(X − µ)r] (16.2.1)

where r = 0, 1, 2, . . .. It follows that µ0 = 1, µ1 = 0 and µ2 = σ2, i.e., the second central moment or second
moment about the mean is the variance. We have, assuming absolute convergence,

µr =
∑

(x− µ)rf(x) (discrete variable) (16.2.2)

µr =

∞∫
−∞

(x− µ)rf(x) dx (continuous variable) (16.2.3)

The r-th moment of X about the origin, also called the r-th raw moment, is defined as

µ′r = E(Xr) (16.2.4)

where r = 0, 1, 2, . . . , and in this case there are formulas analogous to (16.2.2) and (16.2.3) in which µ = 0.
The relation between these moments is given by

µr = µ′r −
(
r

1

)
µ′r−1µ+ . . .+ (−1)j

(
r

j

)
µ′r−jµ

j + . . .+ (−1)rµr0µ
r (16.2.5)
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Proof.

µr = E(X − µ)r]

= E

[
Xr −

(
r

1

)
Xr−1µ+ · · ·+ (−1)j

(
r

j

)
Xr−jµj + . . .+ (−1)r−1

(
r

r − 1

)
Xµr−1 + (−1)rµr

]
= E(Xr)−

(
r

1

)
E(Xr−1)µ+ . . .+ (−1)j

(
r

j

)
E(Xr−j)µj + . . .+ (−1)r−1

(
r

r − 1

)
E(X)µr−1

+(−1)rµr

= µ′r −
(
r

1

)
µ′r−1µ+ . . .+ (−1)j

(
r

j

)
µ′r−jµ

j + . . .+ (−1)r−1rµr + (−1)−rµr

where the last two terms can be combined to give (−1)r−1(r − 1)µr.

16.3 Moment Generating Functions

The moment generating function of X is defined by

MX(t) = E(etX) (16.3.1)

Using the power series expansion, we have

MX(t) = E(etX) = E

(
1 + tX +

t2X2

2!
+
t3X3

3!
+ . . .

)
= 1 + tE(X) +

t2

2!
E(X2) +

t3

3!
E(X3) + . . .

= 1 + µt+ µ′2
t2

2!
+ µ′3

t3

3!
+ . . . (16.3.2)

Since the coefficients in this expansion enable us to find the moments, the reason for the name moment
generating function is apparent. From the expansion we can show that

µ′r =
dr

dtr
MX(t)

∣∣∣∣∣
t=0

(16.3.3)

i.e., µ′r is the r-th derivative of MX(t) evaluated at t = 0.

Example 16.3.1. A random variable X has density function given by

f(x) =

{
2e−2x x ≥ 0
0 x < 0

(16.3.4)

Find the moment generating function and the first four moments about origin.

Solution: We have

M(t) = E(etX) =

∞∫
−∞

etXf(x) dx

=

∞∫
0

etX(2e−2x) dx = 2

∞∫
0

e(t−2x)dx

=
2e(t−2)x

t− 2

∣∣∣∣∣
∞

0

=
2

2− t
, assuming t < 2



130 UNIT 16.

If |t| < 2, we have
2

2− t
=

1

1− t
2

= 1 +
t

2
+
t2

4
+
t3

8
+
t4

16
+ · · ·

But

M(t) = 1 + µt+ µ′2
t2

2!
+ µ′3

t3

3!
+ µ′4

t4

4!
+ · · ·

Therefore, on comparing terms, we have µ =
1

2
, µ′2 =

1

2
, µ′3 =

3

4
, µ′4 =

3

2
.

16.4 Characteristic Function

If we let t = iω , where i is the imaginary unit, in the moment generating function we obtain an important
function called the characteristic function. We denote this by

ϕX(ω) =MX(iω) = E(eiωX) (16.4.1)

It follows that

ϕX(ω) =
∑

eiωxf(x) (discrete variable) (16.4.2)

ϕX(ω) =

∞∫
−∞

eiωxf(x) (continuous variable) (16.4.3)

Since |eiωt| = 1, the series and the integral always converge absolutely.
The corresponding results (16.3.2) and (16.3.3) becomes

ϕX(ω) = 1 + iµω − µ′2
ω2

2!
+ · · ·+ irµ′r

ωr

r!
+ · · · (16.4.4)

where

µ′r = (−1)rir
dr

dωr
ϕX(ω)

∣∣∣∣∣
ω=0

(16.4.5)

Theorem 16.4.1. If ϕX(ω) is the characteristic function of the random variable X and a and b (b ̸= 0) are
constants, then the characteristic function of (X + a)/b is

ϕ(X+a)/b(ω) = eaiω/bϕX

(ω
b

)
(16.4.6)

Theorem 16.4.2. If X and Y are independent random variables having characteristic functions ϕX(ω) and
ϕY (ω), respectively, then

ϕX+Y (ω) = ϕX(ω)ϕY (ω) (16.4.7)

Example 16.4.3. Find the characteristic function of the random variable X having density function given by

f(x) =

{
1/2a |x| < a
0 otherwise

Solution: The characteristic function is given by

E(eiωX) =

∞∫
−∞

eiωxf(x) dx =
1

2a

a∫
−a

eiωxdx

=
1

2a

eiωx

iω

∣∣∣∣∣
a

−a

=
eiaω − e−iaω

2iaω
=

sin aω

aω
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Example 16.4.4. Find the characteristic function of the random variable X having density function f(x) =
ce−a|x|, −∞ < x <∞, where a > 0, and c is a suitable constant.

Solution: Since f(x) is a density function, we must have
∞∫

−∞

f(x) dx = 1

so that

c

∞∫
−∞

e−a|x|dx = c

 0∫
−∞

e−a(−x)dx+

∞∫
0

e−axdx


= c

eax

a

∣∣∣∣∣
0

−∞

+ c
e−ax

−a

∣∣∣∣∣
∞

0

=
2c

a
= 1

Then c = a/2. The characteristic function is therefore given by

E(eiωX) =

∞∫
−∞

eiωxf(x) dx

=
a

2

 0∫
−∞

eiωxe−a(−x)dx+

∞∫
0

eiωxe−axdx


=

a

2

 0∫
−∞

e(a+iω)xdx+

∞∫
0

e−(a−iω)xe−axdx


=

a

2

e(a+iω)x

a+ iω

∣∣∣∣∣
0

−∞

+ a
e−(a−iω)x

−(a− iω)

∣∣∣∣∣
∞

0

=
a

2(a+ iω)
+

a

2(a− iω)

=
a2

a2 + ω2

16.5 Chebyshev’s Inequality

Suppose thatX is a random variable (discrete or continuous) having mean µ and variance σ2, which are finite.
Then if ϵ is any positive number,

P (|X − µ| ≥ ϵ) ≤ σ2

ϵ2
(16.5.1)

or, with ϵ = kσ

P (|X − µ| ≥ kσ) ≤ 1

k2
(16.5.2)

Proof. We shall present the proof fro continuous random variables. A proof for discrete variables is similar if
integrals are replaced by sums. If f(x) is the density function of X , then

σ2 = E[(X − µ)2] =

∞∫
−∞

(x− µ)2f(x) dx
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Since the integrand is non-negative, the value of the integral can only decrease when the range of integration
is diminished. Therefore,

σ2 ≥
∫

|x−µ|≥ϵ

(x− µ)2f(x) dx ≥
∫

|x−µ|≥ϵ

ϵ2f(x) dx = ϵ2
∫

|x−µ|≥ϵ

f(x) dx

But the last integral is equal to P (|X − µ| ≥ ϵ). Hence,

P (|X − µ| ≥ ϵ) ≤ σ2

ϵ2

16.6 Law of Large Numbers

Theorem 16.6.1. Let X1, X2, . . . , Xn be mutually independent random variables (discrete or continuous),
each having finite mean µ and variance σ2. Then if Sn = X1 +X2 + · · ·+Xn(n = 1, 2, . . .),

lim
n→∞

P

(∣∣∣∣Snn − µ

∣∣∣∣ ≥ ϵ

)
= 0 (16.6.1)

Proof. We have

E(X1) = E(X2) = · · · = E(Xn) = µ

Var(X1) = Var(X2) = · · · = Var(Xn) = σ2

Then

E

(
Sn
n

)
= E

(
X1 + · · ·+Xn

n

)
=

1

n
[E(X1) + · · ·+ E(Xn)] =

1

n
(nµ) = µ

Var(Sn) = Var(X1 + · · ·+Xn) = Var(X1) + · · ·+ Var(Xn) = nσ2

so that

Var
(
Sn
n

)
=

1

n2
Var(Sn) =

σ2

n

Therefore, by Chebyshev’s inequality with X = Sn/n, we have

P

(∣∣∣∣Snn − µ

∣∣∣∣ ≥ ϵ

)
≤ σ2

nϵ2

Taking the limit as n→ ∞, this becomes, as required,

lim
n→∞

P

(∣∣∣∣Snn − µ

∣∣∣∣ ≥ ϵ

)
= 0

Note: Since Sn/n is the arithmetic mean of X1, . . . , Xn, this theorem states that the probability of the
arithmetic mean Sn/n differing from its expected value µ by more than ϵ approaches zero as n → ∞. A
stronger result which we might expect to be true, is that

lim
n→∞

Sn
n

= µ,

but this is actually false. However, we can prove that lim
n→∞

Sn/n = µ with probability one. This result is
often called the strong law of large numbers, and, by contrast Theorem 16.6.1 is called the weak law of large
numbers.
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16.7 Special Probability Distributions

16.7.1 The Binomial Distribution

Let p be the probability that an event will happen in any single Bernoulli trial (called the probability of
success). Then q = 1 − p is the probability that the event will fail to happen in any single trial (called the
probability of failure). The probability that the event will happen exactly x times in n trials (i.e., x successes
and n− x failures will occur) is given by the probability function

f(x) = P (X = x) =

(
n

x

)
pxqn−x =

n!

x!(n− x)!
pxqn−x (16.7.1)

where the random variable X denotes the number of successes in n trials and x = 0, 1, . . . , n.

1. Mean of Binomial Distribution, µ = np

2. Variance of Binomial Distribution, σ2 = npq

3. Moment generating function M(t) = (q + pet)n

4. Characteristic function ϕ(ω) = (q + peiω)n

16.7.2 The Normal Distribution

One of the most important examples of a continuous probability distribution is the normal distribution, some
times called the Gaussian distribution. The density function for this distribution is given by

f(x) =
1

σ
√
2π
e−

(x−µ)2

2σ2 , −∞ < x <∞ (16.7.2)

where µ and σ are the mean and standard deviation, respectively. The corresponding distribution function is
given by

F (x) = P (X ≤ x) =
1

σ
√
2π

x∫
−∞

e−
(v−µ)2

2σ2 dv (16.7.3)

If X has the distribution function given by (16.7.3), we say that the random variable X is normally distributed
with mean µ and variance σ2. If we let Z be the standardized variable corresponding to X , i.e., if we let

Z =
X − µ

σ
(16.7.4)

then the mean or expected value of Z is 0 and the variance is 1. In such case the density function for Z can be
obtained from (16.7.2) by formally placing µ = 0 and σ = 1, yielding

f(z) =
1√
2π
e−

z2

2 (16.7.5)

This is often referred to as the standard normal density function.

1. Mean of Normal Distribution, µ

2. Variance of Binomial Distribution, σ2

3. Moment generating function M(t) = eut+(σ2t2/2)

4. Characteristic function ϕ(ω) = eiµω−(σ2ω2/2)
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16.7.3 Relation Between Binomial and Normal Distributions

If n is large and if neither p nor q is too close to zero, the binomial distribution can be closely approximated
by a normal distribution with standardized random variable given by

Z =
X − np
√
npq

(16.7.6)

Here X is the random variable giving the number of successes in n Bernoulli trials and p is the probability of
success. The approximation becomes better with increasing n and is exact in the limiting case. The fact that
the binomial distribution approaches the normal distribution can be described by writing

lim
n→∞

P

(
a ≤ X − np

√
npq

≤ b

)
=

1√
2π

b∫
a

e−u2/2du (16.7.7)

In words, we say that the standardized random variable (X − np)/
√
npq is asymptotically normal.

16.7.4 The Poisson Distribution

Let X be a discrete random variable that can take on the values 0, 1, 2, . . . such that the probability function
of X is given by

f(x) = P (X = x) =
λxe−λ

x!
, x = 0, 1, 2, . . . (16.7.8)

where λ is a given positive constant. This distribution is called the Poisson distribution and random variable
having this distribution is said to be Poisson distributed.

1. Mean of Poisson Distribution, µ = λ

2. Variance of Poisson Distribution, σ2 = λ

3. Moment generating function M(t) = eλ(e
t−1)

4. Characteristic function ϕ(ω) = eλ(e
iω−1

16.7.5 Relation Between the Poisson and Normal Distribution

We can show that if X is the Poisson random variable of (16.7.8) and (X − λ)/
√
λ is the corresponding

standardized random variable, then

lim
λ→∞

P

(
a ≤ X − λ√

λ
≤ b

)
=

1√
2π

b∫
a

e−u2/2du (16.7.9)

i.e., the Poisson distribution approaches the normal distribution as λ→ ∞ or (X − λ)/
√
λ is asymptotically

normal.

16.8 The Central Limit Theorem

The similarity between (16.7.7) and (16.7.9) naturally leads us to ask whether there are any other distribu-
tion besides the binomial and Poisson that have the normal distribution as the limiting case. The following
remarkable theorem reveal that actually a large class of distribution have this property.
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Theorem 16.8.1. Let X1, X2, . . . , Xn be independent random variables that are identically distributed (i.e.,
all have the same probability function in the discrete case or density function in the continuous case) and have
finite mean µ and variance σ2. Then is Sn = X1 +X2 + . . .+Xn (n = 1, 2, . . .),

lim
n→∞

P

(
a ≤ Sn − nµ

σ
√
n

≤ b

)
=

1√
2π

b∫
a

e−u2/2du (16.8.1)

that is, the random variable (Sn − nµ)/σ
√
n, which is the standardized variable corresponding to Sn, is

asymptotically normal

Proof. For n = 1, 2, . . ., we have Sn = X1 +X2 + . . . +Xn. Now X1, X2, . . . , Xn each have mean µ and
variance σ2. Thus,

E(Sn) = E(X1) + E(X2) + · · ·+ E(Xn) = nµ

and, because the Xk are independent,

Var(Sn) = Var(X1) + Var(X2) + · · ·+ Var(Xn) = nσ2

It follows that the standardized random variable corresponding to Sn is

S∗
n =

Sn − nµ

σ
√
n

The moment generating function for S∗
n is

E(etS
∗
n) = E[et(Sn−nµ)/σ

√
n]

= E[et(X1−µ)/σ
√
net(X2−µ)/σ

√
n · · · et(Xn−µ)/σ

√
n]

= E[et(X1−µ)/σ
√
n] · E[et(X2−µ)/σ

√
n] · · ·E[et(Xn−µ)/σ

√
n]

= {E[et(X1−µ)/σ
√
n]}n

where, in the last two steps, we have respectively used the facts that theXk are independent and are identically
distributed. Now, by a Taylor series expansion,

E[et(X1−µ)/σ
√
n] = E

[
1 +

t(X1 − µ)

σ
√
n

+
t2(X1 − µ)2

2σ2n
+ · · ·

]
= E(1) +

t

σ
√
n
E(X1 − µ) +

t2

2σ2n
E[(X1 − µ)2] + · · ·

= 1 +
t

σ
√
n
(0) +

t2

2σ2n
(σ2) + · · ·

= 1 +
t2

2n
+ · · ·

so that

E(etS
∗
n) =

(
1 +

t2

2n
+ · · ·

)n

But the limit of this as n → ∞ is et
2/2, which is the moment generating function of the standardized normal

distribution. Hence, the required result follows.
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Course Structure

• Definition and classification of stochastic processes

• Markov chains with finite and countable state space

• Classification of states.

17.1 Introduction

Since the last century there have been marked changes in the approach to scientific enquiries. There has been
greater realisation that probability (or non-deterministic) models are more realistic than deterministic models
in many situations. Observations taken at different time points rather than those taken at a fixed period of time
began to engage the attention of probabilist. This lead to a new concept of indeterminism: indeterminism in
dynamic studies. This has been called “dynamic indeterminism”. Many phenomenon occurring in physical
and life sciences are studied now not only as a random phenomenon but also as one changing with time or
space. Similar considerations are also made in other areas, such as, social sciences, engineering and manage-
ment and so on. The scope of applications of random variables which are functions of time or space or both
has been on the increase.

Families of random variables which are functions of say, time, are known as stochastic processes (or random
processes, or random functions). A few simple examples are given as illustrations.

Example 17.1.1. Consider a simple experiment like throwing a true die.

(i) Suppose that Xn is the outcome of the n-th throw, n ≥ 1. Then {Xn, n ≥ 1} is a family of random
variables such that for a distinct value of n (= 1, 2, . . .), one get a distinct random variable Xn; {Xn, n ≥ 1}
constitutes a stochastic process, known as Bernoulli process.

(ii) Suppose thatXn is the number of sixes in the first n throws. For a distinct value of n = 1, 2, . . . , we get
a distinct binomial variableXn; {Xn, n ≥ 1} which gives a family of random variables is a stochastic process.

(iii) Suppose that Xn is the maximum number shown in the first n throws. Here {Xn, n ≥ 1} constitutes
a stochastic process.

136
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Example 17.1.2. Consider that there are r cells and an infinitely large number of identical balls and that balls
are thrown at random, one by one, into the cells, the ball thrown being equally likely to go into any one of
the cells. Suppose that Xn is the number of occupied cells after n throws. Then {Xn, n ≥ 1} constitutes a
stochastic process.

17.2 Specification of Stochastic Processes

The set of possible values of a single random variable Xn of a stochastic process {Xn, n ≥ 1} is known as
its state space. The state space is discrete if it contains a finite or a denumerable infinity of points; otherwise,
it is continuous.

For example, if Xn is the toal number of sixes appearing in the first n throws of a die, the set of possible
values of Xn is finite set of non-negative integers 0, 1, . . . , n. Here, the state space of Xn is discrete. We can
write

Xn = Y1 + Y2 + . . .+ Yn,

where Yi is a discrete random variable denoting the outcome of the i-th throw and Yi = 1 or 0 according as
the i-th throw shows six or not. Secondly, consider

Xn = Z1 + Z2 + . . .+ Zn,

where Zi is a continuous random variable assuming values [0,∞). Here, the set of possible values of Xn is
the interval [0,∞), and so the state space of Xn is continuous.

In the above two examples, we assume that the parameter n of Xn is restricted to the non-negative integers
n = 0, 1, 2, . . . We consider the state of the system at distinct time points n = 0, 1, 2, . . . , only. Here the
word time is used in a wide sense. We note that in the first case considered above the “time n” implies throw
number n.

On the other hand, one can visualise a family of random variables {Xt, t ∈ T} (or {X(t), t ∈ T}) such
that the state of the system is characterized at every instant over a finite or infinite interval. The system is then
defined for a continuous range of time and we say that we have a family of random variable in continuous
time. A stochastic process in continuous time may have either a discrete or a continuous state space. For
example, suppose that X(t) gives the number of incoming calls at a switchboard in an interval (0, t). Here
the state space of X(t) is discrete through X(t) is defined for a continuous range of time. We have a process
in continuous time having a discrete state space. Suppose that X(t) represents the maximum temperature at
a particular place in (0, t), then the set of possible values of X(t) is continuous. Here we have a system in
continuous time having a continuous state space.

So far we have assumed that the values assumed by the random variableXn (orX(t)) are one-dimensional,
but he process {Xn} (or {X(t)}) may be multi-dimensional. Consider X(t) = (X1(t), X2(t)), where X1

represents the maximum and X2 the minimum temperature at a place in an interval of time (0, t), We have
here a two-dimensional stochastic process in continuous time having continuous state space. One can similarly
have multi-dimensional processes. One-dimensional processes can be classified, in general, into the following
four types of processes:

• Discrete time, discrete state space

• Discrete time, continuous state space
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• Continuous time, discrete state space

• Continuous time, continuous state space.

All the four types may be represented by {X(t), t ∈ T}. In case of discrete time, the parameter generally
used is n, i.e., the family is represented by {Xn, n = 0, 1, 2, . . .}. In case of continuous time both the symbols
{Xt, t ∈ T} and {X(t), t ∈ T} (where T is a finite or infinite interval) are used . The parameter t is usually
interpreted as time, though it may represent such characters as distance, length, thickness and so on. We shall
use the notation {X(t), t ∈ T} both in the cases of discrete and continuous parameters and shall specify,
whenever necessary.

Relationship

In some of the cases, the random variable Xn, i.e., members of the family {Xn, n ≥ 1} are mutually in-
dependent, but more often they are not. We generally come across processes whose members are mutually
dependent. The relationship among them is often of great importance.

The nature of dependence could be infinitely varied. Here dependence of some special types, which occurs
quite often and is of great importance, will be considered. We may broadly describe some stochastic processes
according to the nature of dependence relationship existing among the members of the family.

Processes with independent increments

If for all t1, . . . , tn, t1 < t2 < . . . < tn, the random variables

X(t2)−X(t1), X(t3)−X(t2), . . . , X(tn)−X(tn−1)

are independent, then {X(t), t ∈ T} is said to be a process with independent increments.

Suppose that we wish to consider the discrete parameter case. Consider a process in discrete time with
independent increments. Writing

T = {0, 1, 2, . . .}, ti = i− 1, X(ti) = Xi−1,

Zi = Xi −Xi−1, i = 1, 2, . . . and Z0 = X0,

We have a sequence of independent random variables {Zn, n ≥ 0}.

Markov Process If {X(t), t ∈ T} is a stochastic process such that, given the value X(s), the values of
X(t), t > s, do not depend on the values of X(u), u < s, then the process is said to be a Markov process. A
definition of such a process is given below. If, for, t1 < t2 < . . . < tn < t,

P
{
a ≤ X(t) ≤ b|X(t1) = x1, . . . , X(tn) = xn

}
= P

{
a ≤ X(t) ≤ b|X(tn) = xn}

the process {X(t), t ∈ T} is a Makrov process. A discrete parameter Markov process is known as a Markov
chain.

17.3 Markov Chains

Consider a simple coin tossing experiment repeated for a number of times. The possible outcomes at each
trial are two: head with probability, say, p and tail with probability q, p+ q = 1. Let us denote head by 1 and
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tail by 0 and the random variable denoting the result of the n-th toss by Xn. Then for n = 1, 2, 3, . . .

P{Xn = 1} = p, P{Xn = 0} = q.

Thus we have a sequence of random variables X1, X2, . . .. The trials are independent and the result of the n-
th trial does not depend in any way on the previous trials numbered 1, 2, . . . , (n− 1). The random variables
are independent.

Consider now the random variable given by the partial sum Sn = X1 + . . . +Xn. The sum Sn gives the
accumulated number of heads in the first n trials and its possible values are 0, 1, . . . , n.

We have Sn+1 = Sn +Xn+1. Given that Sn = j (j = 0, 1, . . . , n), the random variable Sn+1 can assume
only two possible values: Sn+1 = j with probability q and Sn+1 = j+1 with probability p; these probabilities
are not at all affected by the values of the variables S1, S2, . . . , Sn−1. Thus

P{Sn+1 = j + 1|Sn = j} = p

P{Sn+1 = j|Sn = j} = q.

We have an example of a Markov chain, a case of simple dependence that the outcome of (n + 1)-st trial
depends directly on that of n-th trial and only on it. The conditional probability of Sn+1 given Sn depends on
the value of Sn and the manner in which the value of Sn was reached is of no consequence.

Definition 17.3.1. The stochastic process {Xn, n = 0, 1, 2, . . .} is called a Markov chain, if, for j, k, j1, . . . , jn−1 ∈
N (or any subset of I),

P{Xn = k|Xn−1 = j, Xn−1 = j1, . . . , X0 = jn−1}
P{Xn = k|Xn−1 = j} = pjk (say)

whenever the first member is defined.

The outcomes are called the states of the Markov chain; ifXn has the outcome j (i.e., Xn = j), the process
is said to be at state j at n-th trial. To a pair of states (j,k) at the two successive trials (say, n-th and (n+1)-th
trials) there is an associated conditional probability pjk. It is the probability of transition from the state j at
n-th trial to the state k at (n+1)-th trial. The transition probabilities pjk are basic to the study of the structure
of the Markov chain.

The transition probability may or may not be independent of n. If the transition probability pjk is indepen-
dent of n, the Markov chain is said to be homogeneous (or to have stationary transition probabilities). If it is
dependent on n, the chain is said to be non-homogeneous. Here we shall confine to homogeneous chains.

17.4 Transition Probabilities and Transition Matrix

For a finite Markov chain with m states E1, E2, . . . , Em, introduce the notation

pij = P{Xn = j|Xn−1 = i} (17.4.1)

where i, j = 1, 2, . . . ,m. The numbers pij are known as the transition probabilities of the chain, and must
satisfy

pij ≥ 0,

m∑
j=1

pij = 1
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for each i = 1, 2, . . . ,m.

Transition probabilities form an m×m array which can be assembled into a transition matrix T , where

T = [pij ] =


p11 p12 · · · p1m
p21 p22 · · · p2m

...
...

...
...

pm1 pm2 · · · pmm

 (17.4.2)

Note that each row of T is a probability distribution. Any square matrix for which pij ≥ 0 and
m∑
j=1

pij = 1 is

said to be row-stochastic.

Example 17.4.1. The matrix A = [aij ] and B = [bij ] are m×n row-stochastic matrices. Show that C = AB
is also row-stochastic.

Solution: By the multiplication rule for the matrices

C = AB = [aij ][bij ] =
m∑
k=1

aikbkj .

Since aij ≥ 0 and bij ≥ 0 for all i, j = 1, 2, . . . ,m, it follows that cij ≥ 0. Also

m∑
j=1

cij =
m∑
j=1

m∑
k=1

aikbkj =
m∑
k=1

aik

m∑
j=1

bkj =
m∑
k=1

aik · 1 = 1,

since,
m∑
j=1

bkj = 1 and
m∑
k=1

aik = 1.

It follows from this example that any power Tn of the transition matrix T must also be row-stochastic.

17.5 Classification of States

Let us consider the general m-state chain with states E1, E2, . . . , Em and transition matrix

T = [pij ], (1 ≤ i, j ≤ m)

For a homogeneous chain, recollect that pij is the probability that a transition occurs between Ei and Ej at
any step or change of state in the chain. We intend to investigate and classify some of the more common types
of states which can occur in Markov chains.

(a) Absorbing state: An absorbing state Ei is characterised by the probabilities

pii = 1, pij = 0, (i ̸= j, j = 1, 2, . . . ,m)

in the i-th row of T .

(a) Periodic state: The probability of a return to Ei at step n is p(n)ii . Let t be an integer greater than 1.
Suppose that

p
(n)
ii = 0 for n ̸= t, 2t, 3t, . . .

p
(n)
ii ̸= 0 for n = t, 2t, 3t, . . .
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In this case, the state Ei is said to be periodic with period t. If, for a state, no such t exists with this
property, then the state is described as aperiodic. Let

d(i) = gcd{n|p(n)ii > 0}, (17.5.1)

that is, the greatest common divisor of the set of integers n for which p(n)ii > 0. Then the state Ei is said
to be periodic if d(i) > 1 and aperiodic if d(i) = 1.

Example 17.5.1. A four-state Markov chain has the transition matrix

T =


0 1

2 0 1
2

0 0 1 0
1 0 0 0
0 0 1 0


Show that all states have period 3.

Solution: The transition diagram is shown in Fig. 17.5.1, from which it is clear that all states are period
3. For example, if the chain start in E1, then returns to E1 are only possible at steps 3, 6, 9, . . . . either
through E2 or E3.
The analysis of chains with periodic states can be complicated. However, one can check for a suspected

Figure 17.5.1: The transition diagram for Example 17.5.1

periodicity as follows. By direct computation

S = T 3 =


0 0 0 0
0 1

2 0 1
2

0 0 1 0
0 1

2 0 1
2


In this example,

S2 = T 6 = S · S = S,

so that
Sr = T 3r = S, (r = 1, 2, . . .),

which always has non-zero elements on its diagonal. On the other hand,

Sr+1 = SrS =


0 1

2 0 1
2

0 0 1 0
1 0 0 0
0 0 1 0

 , Sr+2 = SrS2 =


0 0 1 0
1 0 0 0
0 1

2 0 1
2

1 0 0 0

 ,
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and both these matrices have zero diagonal elements for r = 1, 2, 3 . . .. Hence, for i = 1, 2, 3, 4,

p
(n)
ii = 0 for n ̸= 3, 6, 9, . . . ,

p
(n)
ii ̸= 0 for n = 3, 6, 9, . . . ,

which means that all the states are period 3.

(c) Persistent State: Let f (n)j be the probability that the first return or visit to Ej occurs at the n-th step.

This probability is not the same as p(n)jj which is the probability that a return occurs at the n-th step, and
includes possible returns at steps 1, 2, 3, . . ., n− 1 also. It follows that

p
(1)
jj (= pjj) = f

(1)
j , (17.5.2)

p
(2)
jj = f

(2)
j + f

(1)
j p

(1)
jj , (17.5.3)

p
(3)
jj = f

(3)
j + f

(1)
j p

(2)
jj + f

(2)
j p

(1)
jj , (17.5.4)

and, in general,

p
(n)
jj = f

(n)
j +

n−1∑
r=1

f
(r)
j p

(n−r)
jj (n ≥ 2). (17.5.5)

The terms in Eqn.(17.5.4) imply that the probability of a return at the third step is the probability of a
first return at the third step, or the probability of a first return at the first step and a return two steps later,
or the probability of a first return at the second step and a return one step later.

Equations (17.5.2) and (17.5.5) become iterative formulas for the sequence of first returns f (n)j which
can be expressed as:

f
(1)
j = pjj , (17.5.6)

f
(n)
j = p

(n)
jj −

n−1∑
r=1

f
(r)
j p

(n−r)
jj (n ≥ 2). (17.5.7)

The probability that a chain returns at some step to the state Ej is

fj =

j∑
n=1

f
(n)
j .

If fj = 1, then a return to Ej is certain, and Ej is called a persistent state.

Example 17.5.2. A three-state Markov chain has the transition matrix

T =

 p 1− p 0
0 0 1

1− q 0 q


where 0 < p < 1, 0 < q < 1. Show that the state E1 is persistent.

Solution: For simple chains a direct approach using the transition diagram is often easier than the for-
mula (17.5.7) for f (n)j . For this example the transition diagram is shown in Fig. 17.5.2.
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Figure 17.5.2: The transition diagram for Example 17.5.2

If a sequence starts in E1, then it can be seen that first returns to E1 can be made to E1 at every step
except for n = 2, since after two steps the chain must be in state E3. From the figure it can be argued
that

f
(1)
1 = p, f

(2)
1 = 0, f

(3)
1 = (1− p) · 1 · (1− q),

f
(n)
1 = (1− p) · 1 · qn−3 · (1− q), (n ≥ 4).

The last result for f (n)1 for n ≥ 4 follows from the following sequence of transitions:

E1E2E3E3 · · ·E3︸ ︷︷ ︸
(n−3) times

E1.

The probability f1 that the system returns at least once to E1 is

f1 =
∞∑
n=1

= f
(n)
1 = p+

∞∑
n=3

(1− p)(1− q)qn−3

= p+ (1− p)(1− q)

∞∑
s=0

qs (s = n− 3)

= p+ (1− p)
(1− q)

(1− q)

= 1

Hence, f1 = 1, and consequently the state E1 is persistent.

The mean recurrence time µj of a persistent state Ej , for which
∞∑
n=1

f
(n)
j = 1, is given by

µj =

∞∑
n=1

nf
(n)
j . (17.5.8)
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In Example 17.5.2, the state E1 is persistent and its mean recurrence time is given by

µ1 =

∞∑
n=1

nf
(n)
1 = p+ (1− p)(1− q)

∞∑
n=3

nqn−3

= p+ (1− p)(1− q)

[
3− 2q

(1− q)2

]
=

3− 2p− 2q + pq

1− q

which is finite. For some chains, however, the mean recurrence time can be infinite; in other words, the
mean number of steps to a first return is unbounded.

A persistent state Ej is said to be null if µj = ∞ and nonnull if µj <∞.

Example 17.5.3. A three-state inhomogeneous Markov chain has the transition matrix

Tn =

 1
2

1
2 0

0 0 1
1/(n+ 1) 0 n/(n+ 1)


where Tn is transition matrix at step n. Show that E1 is a persistent null state.

Solution: The transition diagram at a general step n is shown in Fig. 17.5.3 From the figure, we have

Figure 17.5.3: The transition diagram for Example 17.5.3
.

f
(1)
1 =

1

2
, f

(2)
1 = 0, f

(3)
1 =

1

2
· 1 · 1

4
,

f
(n)
1 =

1

2
· 1 · 3

4
· 4
5
· · · n− 1

n
· 1

n+ 1
=

3

2n(n+ 1),
(n ≥ 4).

Hence,

f1 =
1

2
+

1

8
+

3

2

∞∑
n=4

1

n(n+ 1)
.

Since
1

n(n+ 1)
=

1

n
− 1

n+ 1
,
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it follows that

∞∑
n=4

1

n(n+ 1)
= lim

N→∞

N∑
n=4

(
1

n
− 1

n+ 1

)
= lim

N→∞

(
1

4
− 1

N + 1

)
=

1

4
.

Hence
f1 =

5

8
+

3

8
= 1,

which means E1 is persistent. On the other hand, the mean recurrence time

µj =

∞∑
n=1

nf
(n)
1 =

7

8
+

3

2

∞∑
n=4

n

n(n+ 1)

=
7

8
+

3

2

(
1

5
+

1

6
+

1

7
+ · · ·

)
=

7

8
+

3

2

∞∑
n=5

1

n
.

The series in the previous equation is the harmonic series

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+ · · · , (17.5.9)

minus the first four terms. The harmonic series is a well-known divergent series, which means that
µ1 = ∞. Hence E1 is persistent and null.

(d) Transient state: For a persistent state the probability of a first return at some step in the future is certain.
For some states,

fj =
∞∑
n=1

f
(n)
j < 1, (17.5.10)

which means that the probability of a first return is not certain. Such states are described as transient.

Example 17.5.4. A four state Markov chain has the transition matrix

T =


0 1

2
1
4

1
4

1
2

1
2 0 0

0 0 1 0
0 0 1

2
1
2


Show that E1 is a transient state.

Solution: The transition diagram is shown in Fig. 17.5.4. From the figure

f
(1)
1 = 0, f

(2)
1 =

1

2
· 1
2
=

(
1

2

)2

, f
(3)
1 =

(
1

2

)3

, f
(n)
1 =

(
1

2

)n

.

Hence

f1 =
∞∑
n=1

f
(n)
1 =

∞∑
n=2

(
1

2

)n

=
1

2
< 1

implying that E1 is a transient state. The reason for the transience of E1 can be seen from Fig. 17.5.4,
where transitions from E3 or E4 to E1 or E2 are not possible.
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Figure 17.5.4: The transition diagram for Example 17.5.4

(d) Ergodic states: A state which is persistent, nonnull and aperiodic is called ergodic state.

Example 17.5.5. A three-state Markov chain has the transition matrix

T =

 p 1− p 0
0 0 1

1− q 0 q


where 0 < p < 1, 0 < q < 1. Show that the state E1 is ergodic.

Solution: It was already shown in Example 17.5.2, that E1 is persistent with

f
(1)
1 = p, f

(2)
1 = 0, f

(n)
1 = (1− p)(1− q)qn−3, (n ≥ 3).

It follows that its mean recurrence time is

µ1 =
∞∑
n=1

nf
(1)
1 = p+ (1− p)(1− q)

∞∑
n=3

nqn−3 =
3− 2q

(1− q)2
<∞.

The convergence of µ1 implies that E1 is nonnull. Also the diagonal elements p(n)ii > 0 for n ≥ 3 and
i = 1, 2, 3, which means that E1 is aperiodic. Hence from the definition above E1 (and E2 and E3 also)
is ergodic.



Unit 18

Course Structure

• Statistical Inference

• Estimation of Parameters

• Minimum Variance Unbiased Estimator

• Method of Maximum Likelihood for Estimation of a parameter

18.1 Introduction

To study the features of any population we first select a sample from the population. A carefully selected
sample may be expected to possess the characteristics of the population. A scientific theory developed to get
an idea regarding the properties of a population on the basic of the knowledge of the properties of a sample
drawn from it is known as Statistical Inference.

Statistical Inference may be classified into two main categories :

(i) Problems of Estimation.

(ii) Problems of Testing of Hypothesis or Testing of Significance.

18.2 Estimation of Parameters

Let the distribution function of a population contains one or more unknown parameters and let our task is to
make a guess about them on the basis of a sample. The theory regarding this is called theory of estimation.
In particular, let x1, x2, . . . , xn be n samples drawn from a population whose distribution has an unknown
parameter θ. The problem to replace this unknown θ by a suitable statistic (i.e., a function of the sample
values) θ̂(x1, x2, . . . , xn) is the problem of estimation.

There are two types of estimation:

147
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(i) Point Estimation, and (ii) Interval Estimation.

In the case of point estimation, the value of θ may vary from sample to sample and this function is known
as ‘estimator’ of the parameter and its value for a particular sample is called and ‘estimate’.

In the case of interval estimation, two statistics θ̂1(x1, x2, . . . , xn) and θ̂2(x1, x2, . . . , xn) are selected
within which the value of the parameter θ is expected to lie. This interval is known as Confidence Interval and
the two quantities used to specify the interval are known as Confidence Limits.

According to R. A. Fisher, a good estimator must have the following characteristics:

(i) Unbiasedness,

(ii) Consistency,

(iii) Efficiency,

(iv) Sufficiency.

18.3 Unbiasedness

A statistic T is said to be an unbiased estimator of a parameter θ if the expected value of the statistic coincides
with the actual value of the parameter, i.e., if

E(T ) = θ

Otherwise, the estimation will be called biased. E(T )− θ is called the bias of the statistic T in estimating θ.
It will be called positively or negatively biased according as E(T )− θ is greater or less than zero.

Theorem 18.3.1. The sample mean is an unbiased estimate of the population mean.

Proof. Let x1, x2, . . . , xn be n simple samples drawn from a finite population X1, X2, . . . , XN with replace-
ment. In this case, each xi have equal chance to be selected from any of the N population values. Therefore,

E(xi) =
1

N
X1 +

1

N
X2 + . . .+

1

N
XN

=
1

N
(X1 +X2 + . . .+XN )

= m, the population mean, i = 1, 2, . . . , n (18.3.1)

Again,

x = sample mean

=
x1 + x2 + . . .+ xn

n
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Now,

E(x) = E

(
x1 + x2 + . . .+ xn

n

)
=

1

n

[
E(x1) + E(x2) + . . .+ E(xn)

]
=

1

n

[
m+m+ . . .+m

]
=

nm

n
= m = population mean (18.3.2)

Therefore, the sample mean x is an unbiased estimate of the population mean m.

Theorem 18.3.2. The sample variance is a biased estimator of the population variance.

Proof. Let m and σ2 be the population mean and variance respectively and let x and S2 be the corresponding
sample mean and variance.

It is easy to note that E(xi) = m and V ar(xi) = E{(xi −m)2} = σ2 for i = 1, 2, . . . , n.

Again, Sample mean x =
x1 + x2 + . . .+ xn

n
and sample variance

S2 =
1

n

n∑
i=1

(xi − x)2 =
1

n

n∑
i=1

(xi −m+m− x)2

=
1

n

n∑
i=1

{(xi −m)2 − 2(xi −m)(x−m) + (x−m)2}

=
1

n

[
n∑

i=1

(xi −m)2 − 2(x−m)

n∑
i=1

(xi −m) + n(x−m)2

]

=
1

n

[
n∑

i=1

(xi −m)2 − 2(x−m)

(
n∑

i=1

xi − nm

)
+ n(x−m)2

]

=
1

n

[
n∑

i=1

(xi −m)2 − 2(x−m)(nx− nm) + n(x−m)2

]

=
1

n

[
n∑

i=1

(xi −m)2

]
− (x−m)2.
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Therefore,

E(S2) = E

{
1

n

n∑
i=1

(xi −m)2

}
− E{(x−m)2}

=
1

n

n∑
i=1

E{(xi −m)2} − V ar(x)

=

n∑
i=1

σ2

n
− σ2

n

= σ2 − σ2

n

=
n− 1

n
σ2

Since, E(S2) ̸= σ2, so S2 is not an unbiased estimate of σ2. Again,

bias = E(S2)− σ2

=
n− 1

n
σ2 − σ2

= −σ
2

n
.

Again, if we write

s2 =
n

n− 1
S2, (18.3.3)

then E(s2) =
n

n− 1
E(S2)

=
n

n− 1
· n− 1

n
σ2

= σ2.

Thus s2 as defined by (18.3.3) is an unbiased estimate of σ2.

18.4 Minimum-Variance Unbiased (M.V.U.) Estimator

Among all the unbiased estimators the minimum-variance unbiased estimator will be that one which has
the minimum variance. Thus, if Tm be the minimum-variance unbiased estimator of any parameter θ, then
E(Tm) = θ and Var(Tm) < Var(T ), where T is any other unbiased estimator of θ, i.e., E(T ) = θ.

18.4.1 Consistent Estimator:

A statistic Tn computed from a sample of n observations is said to be a consistent estimator of a population
parameter θ if

Tn −−→
in P

θ as n→ ∞. (18.4.1)

In other notation,
lim
n→∞

P (|Tn − θ| < ϵ) = 1 (18.4.2)
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or its equivalent,
lim
n→∞

P (|Tn − θ| ≥ ϵ) = 0 (18.4.3)

Thus, a consistent estimator is expected to come more closer to the parameter as the size of the sample be-
comes larger.

It may be shown that two sufficient conditions for an estimator Tn to be consistent estimator of θ are

(i) E(Tn) → θ and (ii) Var (Tn) → 0 as n→ ∞.

18.5 Efficient Estimator

Among all consistent estimators that one which has minimum asymptotic variance is called the most efficient
estimator. Thus a consistent estimator T ′

n is said to be most efficient estimator if its sampling variance is less
than that of any other consistent estimator Tn, i.e., in this case

Var(T ′
n) < Var(Tn).

If Vm be the variance of the most efficient estimator and V be the variance of another estimator for a parameter
θ, then the efficiency of the estimator is defined as

Efficiency =
Vm
V
.

Since, Vm ≤ V , so efficiency cannot exceed 1.

18.6 Sufficient Estimator

A statistic T is said to be a sufficient estimator for a parameter θ if it contains all information in the sample
about θ. In this case, the joint distribution of the sample can be expressed as the product of two factors, one
of which is the sampling distribution of T and contains θ, but the other factor is independent of θ.

Thus for a random sample x1, x2, . . . , xn from a population whose probability density function (p.m.f) is
f(x, θ) if T be a sufficient estimator of θ, then

f(x1, θ) · f(x2, θ) . . . f(xn1 , θ) = f1(T, θ) · f2(x1, x2, . . . , xn)

where f1(T, θ) is the sampling of T and contains θ, but f2(x1, x2, . . . , xn) is independent of θ.

18.7 Method of Maximum Likelihood for Estimation of a parameters

There are many methods generally used for estimation of parameters of a distribution. Among these, the
Method of Maximum Liklihood is one of the most familiar methods.

Let x1, x2, . . . , xn be a random sample of size n drawn from a population and let θ1, θ2, . . . , θk be k param-
eters of the distribution. This event can be denoted by (X1 = x1, X2 = x2, . . . , Xn = xn) and the probability
of this is clearly a function of sample values x1, x2, . . . , xn and the parameters θ1, θ2, . . . , θk. This function
is known as likelihood function of the sample and it is generally denoted by L(x1, x2, . . . , xn; θ1, θ2, . . . , θk).
Thus,
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L(x1, x2, . . . , xn; θ1, θ2, . . . , θk) = P (X1 = x1, X2 = x2, . . . , Xn = xn)

Since X1, X2, . . . , Xn are mutually independent random variables each having the distribution of the popula-
tion, then in the discrete case

P (X = xi) = fxi(θ1, θ2, . . . , θk)

and in the continuous case
P (X = xi) = f(xi, θ1, θ2, . . . , θk).

Then the liklihood function L in the two cases are given as

L(x1, x2, . . . , xn; θ1, θ2, . . . , θn) = P (X1 = x1)P (X2 = x2) . . . P (Xn = xn)

(In discrete case) = fx1(θ1, θ2, . . . , θk)fx2(θ1, θ2, . . . , θk) . . . fxn(θ1, θ2, . . . , θk)

(In continuous case) = f(x1, θ1, θ2, . . . , θk)f(x2, θ1, θ2, . . . , θk) . . . f(xn, θ1, θ2, . . . , θk)

Now, this method states that regarding the sample values as fixed, we shall try to find the values of θ1, θ2, . . . , θk
such that for these values the likelihood function L will be maximised. Since L > 0, so when L is maximum,
then logL is also maximum. The corresponding equations for determining θ1, θ2, . . . , θk are

∂ logL

∂θ1
= 0,

∂ logL

∂θ2
= 0, . . . ,

∂ logL

∂θk
= 0,

which are called likelihood equations. Solving these k equations we get likelihood estimates of θ1, θ2, . . . , θk
and they are generally denoted by

θ1 = θ̂1(x1, x2, . . . , xn), θ2 = θ̂2(x1, x2, . . . , xn), . . . , θk = θ̂k(x1, x2, . . . , xn).

Also it may tested that for these values of θ̂1, θ̂2, . . . , θ̂k, L is maximum.

Example 18.7.1. Let T1 and T2 be two estimators of the parameter θ. Under what condition aT1 + bT2 will
be an unbiased estimator of θ?

Solution: Since T1 and T2 are two unbiased estimator of θ, so E(T1) = E(T2) = θ. Again, if (aT1 + bT2)
be an unbiased estimator of θ, then

E(aT1 + bT2) = θ

⇒ aE(T1) + bE(T2) = θ

⇒ aθ + bθ = θ

⇒ a+ b = 1, which is the required condition.

Example 18.7.2. If X1, X2, . . . , Xn is a random sample from N(µ, σ2) population, show that the estimator

T =
1

n+ 1

n∑
i=1

Xi

is a biased but consistent for µ. Hence obtain the unbiased estimator for µ.

Solution: We have

T =
1

n+ 1

n∑
i=1

Xi

=
n

n+ 1
· 1
n

n∑
i=1

Xi

=
n

n+ 1
X
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We know, X
in p−−→ as n→ ∞ and

n

n+ 1
→ 1 as n→ ∞. So

T
in p−−→ µ as n→ ∞.

Thus, T is a consistent estimator of µ. Again

E(T ) =
1

n+ 1

n∑
i=1

E(Xi) =
1

n+ 1
nµ =

n

n+ 1
µ (̸= µ)

So T is a biased estimator of µ. If we put T1 =
n+ 1

n
, then, E(T1) =

n+ 1

n
E(T ) = µ.

Thus, T1 =
n+ 1

n
T is the unbiased estimator for µ.

Example 18.7.3. Maximum likelihood estimate of the parameter p of the Binomial (N, p) population for n
sample values.

Solution: For Binomial (N,P ) population, the density function is given by

fxi =
NCxip

xi(1− p)N−xi , i = 0, 1, 2, . . . , n.

Now, the likelihood function L is given by

L = fx1 · fx2 · · · fxn

= NCx1p
x1(1− p)N−x1 · NCx2p

x2(1− p)N−x2 · · ·NCxnp
xn(1− p)N−xn

= NCx1
NCx2 · · ·NCxnp

x1+x2+···+xn(1− p)nN−(x1+x2+...+xn)

So,

logL = (x1 + x2 + . . .+ xn) log p+ [nN − (x1 + x2 + . . .+ xn)] log(1− p) + terms independent of p.

Now,
∂ logL

∂p
=
nx

p
=
nN − nx

1− p

[
∵ x =

1

n
(x1 + x2 + . . .+ xn)

]
Thus,

∂ logL

∂p
= 0 gives

nx

p
=
nN − nx

1− p

⇒ p =
x

N
.

Thus, p̂ =
x

N
is the likelihood estimate of p.

It can be verified that [
∂2L

∂p

]
p=p̂

< 0.

Example 18.7.4. Maximum likelihood estimator of the parameter of a Poisson distribution.
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Solution: Let x1, x2, . . . , xn be n sample values drawn from a Poisson distribution having parameter µ.
Then

f(x, µ) =
e−µµx

x!
(x = 0, 1, 2, . . . ,∞)

The likelihood function L of the sample observations is given by

L = f(x1, µ) · f(x2, µ) · · · f(xn, µ)

=
e−µµx1

x1!
· e

−µµx2

x2!
· · · e

−µµxn

xn!

=
e−nµµx1+x2+...+xn

(x1!)(x2!) . . . (xn!)
(18.7.1)

So

logL = log(e−nµ) + log(µx1+x2+...+xn)− log(x1! x2! · · ·xn!)

= −nµ+

(
n∑

i=1

xi

)
logµ−

n∑
i=1

log(xi!).

If µ̂ be the likelihood estimator of µ, then it will be given by[
∂ logL

∂µ

]
µ=µ̂

= 0 and
[
∂2 logL

∂µ2

]
µ=µ̂

< 0.

From above, we have

∂ logL

∂µ
= −n+

1

µ
+

n∑
i=1

xi and
∂2 logL

∂µ2
= − 1

µ2
+

n∑
i=1

xi

Now,
∂ logL

∂µ
= 0 gives,

−n+
1

µ

n∑
i=1

xi = 0

⇒ µ =
1

n

n∑
i=1

xi = x.

Therefore, µ = x. Again [
∂2 logL

∂µ2

]
µ=µ̂

= − 1

µ̂2

n∑
i=1

xi = − nx

(x)2
= −n

x
< 0.

Thus, µ̂ = x, the sample means is the likelihood estimate of the parameter µ of a Poisson distribution.

Example 18.7.5. Maximum likelihood estimates of the parameter m and σ in Normal (m,σ) population for
a sample of size n.

Solution: We know for a Normal (m,σ) distribution

f(x) =
1√
2πσ

e−
(x−m)2

2
σ2
, −∞ < x <∞.
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So, the likelihood function L is given by

L = f(x1)f(x2) · · · f(xn)

=

(
1√
2πσ

)n

e−

n∑
i=1

(xi−m)2

2σ2 .

Then,

logL = −n log(
√
2π)− n log σ − 1

2σ2

n∑
i=1

(xi −m)2.

Then,
∂L

∂m
= 0 gives

n∑
i=1

(xi −m) = 0 ⇒ m =

n∑
i=1

xi

n
⇒ m̂ = x.

Also,
∂ logL

∂σ
= 0 gives

−n
σ
+

1

σ3

n∑
i=1

(xi −m)2 = 0

⇒ σ2 =
1

n

n∑
i=1

(xi −m)2 =
1

n

n∑
i=1

(xi − x)2 = S2.

Thus, σ̂2 = S2.

Example 18.7.6. Find the maximum likelihood estimate of the parameter λ for the Weibuzl distribution

f(x) = λαxα−1e−λxα
, (x > 0)

using a sample of size n assuming that α is known.

Solution: If x1, x2, . . . , xn be n sample values, then the maximum likelihood function L is given by

L = λnαn(x1, x2, . . . , xn)
n−1e−λ(xα

1+xα
2+...+xα

n)

Then,
logL = n log λ− λ(xα1 + xα2 + . . .+ xαn) + terms independent of λ.

So, the likelihood equation
∂ logL

∂λ
= 0 gives

n

λ
− (xα1 + xα2 + . . .+ xαn) = 0

⇒ λ̂ =
n

n∑
i=1

xαi

Again
[
∂2 logL

∂λ2

]
λ=λ̂

= − n

λ2
. So for this λ̂, L is maximum.

Example 18.7.7. Prove that the maximum likelihood estimate of the parameter α of a population having
density function

2

α2
(α− x), 0 < x < α,

for a sample of unit size is 2x, x being the sample value. Show also that the estimate is biased.
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Solution: Since the sample is of unit size, so the likelihood function L is given by

L =
2

α2
(α− x)

⇒ logL = log 2− 2 logα+ log(α− x)

Now, the likelihood equation
∂ logL

∂α
= 0 gives

− 2

α
+

1

α− x
= 0

⇒ α = 2x

So, α̂ = 2x. Also it can be shown that

∂2 logL

∂α2
=

2

α2
− 1

(α− x)2
< 0 for α̂ = 2x.

Thus, the maximum likelihood estimate of α is α̂ = 2x. Again,

E(2x) =

α∫
0

2x · 2

α2
(α− x) dx =

4

α2

α∫
0

(αx− x2) dx

=
4

α2

[
α
x2

2
− x3

3

]α
0

=
4

α2

[
α3

2
− α3

3

]
=

2α

3
̸= α

Thus, α̂ is a biased estimate of α.
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Course Structure

• Interval estimation

• Method for finding confidence intervals

• Statistical hypothesis

• Level of significance; Power of the test

19.1 Introduction

We have studied the problem of estimation of a parameter occurring in a distribution such an estimate is called
parameter estimate and the corresponding problem is known as the problem of estimation. Such and estimate
always associated with random error. For this reason, it is sometime desirable to find a δ > 0 for a given small
ϵ where 0 < ϵ < 1 such that an estimate θ̂ for the parameter θ satisfies

P (θ̂ − δ < θ < θ̂ + δ) = 1− ϵ

19.2 Interval Estimation

Let θ be a population parameter and let T1 and T2 be two functions based on sample observations such that

P (T1 ≤ θ ≤ T2) = 1− ϵ (19.2.1)

where ϵ(0 < ϵ < 1) is a parameter. Then the interval (T1, T2) is called an interval estimate or a confidence
interval for the parameter θ with confidence coefficient 1 − ϵ; the statistics T1 and T2 are respectively called
the lower and upper confidence limits for θ.

A practical interpretation of this result is that if a long sequence of random samples, are drawn from a
population under uniform conditions and the statistics T1 and T2 are computed in each time, then

The number of times the interval (T1, T2) includes the true parameter θ
The total number of samples drawn

= 1− ϵ

157
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The number ϵ is usually chosen to be very small, like 0.05, 0.01, 0.001 etc. and the corresponding confidence
coefficients are 0.95, 0.99, 0.999 etc. and then the corresponding confidence intervals will be called 95%,
99%, 99.9% etc. confidence intervals.

The length of the interval (T2 − T1) is used as an inverse measure of precision of the interval estimate.

19.3 Method for finding confidence intervals

To find the confidence interval for a parameter θ, the following steps to be followed.

1. We choose, if possible, a suitable statistic z = z(x1, x2, . . . , xn, θ) whose sampling distribution is
independent of the parameter θ but which itself depends on θ.

2. Now we choose two numbers αϵ, βϵ(> αϵ) such that

P (αϵ < z < βϵ) = 1− ϵ (19.3.1)

3. We rewrite the above equation (19.3.1) as

P (T1 < θ < T2) = 1− ϵ (19.3.2)

Then (T1, T2) is the desired confidence interval for the population parameter θ.

19.4 Confidence interval for some special cases

(a) The confidence interval for m for a Normal (m,σ) population.
Case 1. σ known: The suitable statistic for this case will be chosen as

z =
x−m

σ/
√
n

whose sampling distribution is normal (0, 1) and which depends on the parameter m.

Since normal curve is symmetrical curve, so we take two points ±uϵ symmetrically about the origin, Fig.
19.4.1, such that

P (−uϵ < z < uϵ) = 1− ϵ

⇒ P

(
−uϵ <

x−m

σ/
√
n
< uϵ

)
= 1− ϵ

which can be rewritten as

P

(
x− σuϵ√

n
< m < x+

σuϵ√
n

)
= 1− ϵ.

Hence a confidence interval for m having confidence coefficient 1− ϵ is(
x− σuϵ√

n
, x+

σuϵ√
n

)
(19.4.1)
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Figure 19.4.1

where uϵ is given by P (−uϵ < z < uϵ) = 1 − ϵ or from symmetry P (z > uϵ) =
1
2ϵ. For 95% confidence

interval, 1 − ϵ = 0.95 and uϵ = 1.96, then the corresponding confidence interval for the population mean m
will be (

x− 1.96
σ√
m
,x+ 1.96

σ√
m

)
(19.4.2)

Case II: σ unknown: In this case, the suitable statistic will be

t =
x−m

s/
√
n
, s2 =

1

n− 1

n∑
i=1

(xi − x)2

whose sampling distribution has t-distribution with n− 1 degrees of freedom.

Now procedding exactly as in the Case I, we can calculate two numbers ±tϵ, Fig. 19.4.2, by

P (−tϵ < t < tϵ) = 1− ϵ

which gives the confidence interval of m as(
x− stϵ√

n
, x+

stϵ√
n

)
(19.4.3)

Here tϵ is given by P (−tϵ < t < tϵ) = 1− ϵ or by P (t > tϵ) =
1
2ϵ. In case of large samples, if σ is unknown,

then the approximate call interval for m may be obtained by replacing σ by s or S in (19.4.2).

Figure 19.4.2

(b) Confidence interval for σ

It is known that the statistic

χ2 =
nS2

σ2
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is a χ2-distributed with (n − 1) degrees of freedom, where S2 is the sample variance, σ is the population
variance and n is the size of the sample.

We choose any positive number χ2
ϵ1 and determine χ2

ϵ2 such that

P (χ2
ϵ1 < χ2 < χ2

ϵ2 = 1− ϵ

⇒ P

(
χ2
ϵ1 <

nS2

σ2
< χ2

ϵ2

)
= 1− ϵ

⇒ P

(
S

√
n

χ2
ϵ2

< σ < S

√
n

χ2
ϵ1

)
= 1− ϵ

Therefore,
(
S

√
n

χ2
ϵ2

, S

√
n

χ2
ϵ1

)
is the confidence interval for σ having confidence coefficient 1− ϵ.

In practice, χ2
ϵ1 and χ2

ϵ2 are given by

P (χ2 > χ2
ϵ1) = 1− 1

2
ϵ and P (χ2 > χ2

ϵ2) =
1

2
ϵ. (19.4.4)

Figure 19.4.3

Example 19.4.1. A sample 2.3, -0.2, -0.4, -0.9 is taken from a normal population with variance 9. Find a 95%
confidence interval for the population mean. (Given P (U) > 1.960) = 0.025, where U is a normal (0, 1)
variate.

Solution: With usual notation, we have

x =
2.3 + (−0.2) + (−0.4) + (−0.9)

4
= 0.2

Also, n = 4 and σ2 = 9, ϵ = 0.05, uϵ = 1.96. Hence, the confidence interval for mean when σ is known is(
x− 1.96

σ√
m
,x+ 1.96

σ√
m

)
=

(
0.2− 1.96× 3

2
, 0.2 + 1.96× 3

2

)
= (−2.74, 3.14)

Example 19.4.2. The mean and variance of a sample of size 400 from a normal population are found to be
18.35 and 3.25 respectively. Given P (U > 1.96) = 0.025, U being a standard normal variate, find 95%
confidence interval for the population mean.
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Solution: From the given data

x = 18.35, S2 = 3.25, n = 400, ϵ = 0.05

Now
s2 =

n

n = 1
S2 =

400

399
× 3.25 = 3.26]

Hence the confidence interval for mean when σ is unknown is(
x− 1.96

s√
n
, x+ 1.96

s√
n

)
=

(
18.35− 1.96× 1.80

20
, 18.35 + 1.96× 1.80

20

)
= (18.17, 18.53)

Example 19.4.3. Obtain 99% confidence interval of the population standard deviation (σ) on the basis of the

data
10∑
i=1

xi = 620 and
10∑
i=1

x2i = 39016. (It is given that χ2
0.005,9 = 23.59 and χ2

0.995,9 = 1.74)

Solution:

Sample variance S2 =
1

10

10∑
i=1

x2i −

(
1

10

10∑
i=1

xi

)2

=
39016

10
−
(
620

10

)2

= 3901.6− 3844

= 57.6

For 99% confidence interval

1− ϵ = 0.99, i.e., ϵ = 0.01 and
1

2
ϵ = 0.005

Here, n = 10. We know that confidence interval of σ is(
S

√
n

χ2
ϵ2

, S

√
n

χ2
ϵ1

)
=

(√
57.6× 10

23.59
,

√
57.6× 10

1.74

)
= (4.94, 18.19)

19.5 Statistical Hypothesis

To make decision regarding a statistical population on the basis of sample observation is called a Statistical
Hypothesis. It is an assertion or conjecture about the distribution of one or more random variables.

There are two types of hypothesis, viz. simple and composite. When a statistical hypothesis completely
specifies the population distribution, it will be called a simple hypothesis and when it will not completely
specify the population distribution, it will be called a composite hypothesis. In the case of composite hypoth-
esis the number of unspecified parameters is called the degrees of freedom of the composite hypothesis.

As an illustration, let us consider a Normal (m,σ) distribution and let m0 and σ0 be taken to be two given
values of m and σ respectively. Then
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(i) Hypothesis m = m0 is simple if σ is known and m is unknown.

(ii) Hypothesis σ = σ0 is simple if m is known and σ is unknown.

(iii) Hypothesis m = m0 is composite if both m and σ are unknown and its degrees of freedom is 1.

19.6 Null Hypothesis and Alternative Hypothesis

Let a population has only one parameter θ. Then a hypothesis about the parameter θ which we want to test is
called Null Hypothesis. This is generally written as

H0 : θ = θ0

Any other hypothesis about the parameter θ against which we wish to test the null hypothesis is called Alter-
native Hypothesis and this is written as

H1 : θ = θ1

Generally, the hypothesis wishing to be rejected by the test is taken as null hypothesis. Say we have two
alternatives i.e., either θ = θ0 or θ = θ1 and we have a priori reason to be more inclined to believe the second
hypothesis, then we take the hypothesis H0 : θ = θ0 as null hypothesis.

19.7 Critical Region

Any sample x1, x2, . . . , xn of size n may be considered to be a point in n-dimensional space and it will be
called a sample point. All such sample points corresponding to various random samples of size n constitute a
sample space S, Fig. 19.7.1, so every sample is a point in S.

Figure 19.7.1

Let us divide the sample space S into two disjoint parts W and W (= S − W ). Let us assume that we
reject the null hypothesis H0 : θ = θ0 if the observed sample point falls in W and in this case we accept
H1 : θ = θ1. On the other hand we accept H0 if the point fall in W . Technically the region W , i.e., the region
of rejection of the null hypothesis H0 is called the critical region or region of rejection.

19.8 Two Types of Errors

The decision whether the null hypothesis to be reject or accepted is taken on the basis of the information
supplied by the observed sample observations. The conclusion drawn on the basis of a particular sample may



19.9. LEVEL OF SIGNIFICANCE 163

not be always true in respect of the population. The following two cases are called Type I and Type II errors.

Type I Error: When the null hypothesis H0 is rejected i.e., H1 is accepted but H0 is true, the error arising
in this situation is called Type I Error. If α be the probability of Type I Error, then

α = Probability of Type I Error

= Probability of rejecting H0 where H0 is true

= P (x ∈W/H0 = θ0), where x = (x1, x2, . . . , xn) (19.8.1)

Type II Error: When the null hypothesis H0 is accepted i.e., H1 is rejected but H0 is false, the error arising
in this situation will be called Type II error. If β be the probability of Type II Error, then

β = Probability of Type II Error

= Probability of accepting H0 where H0 is false

= P (x ∈W/H1 = θ1), where x = (x1, x2, . . . , xn) (19.8.2)

19.9 Level of Significance

The probability of Type I Error, α, is called level of significance of the test. It is also called the size of the
critical region.

19.10 Power of the test

If β be the probability of Type II Error, then 1− β is defined as the power function of the test hypothesis. The
graph obtained by plotting power on the y-axis against various values of the parameter θ on the x-axis on a
graph paper is called a power curve. The value of the power function at a parameter point is called the power
of the test at that point.

Example 19.10.1. A random sample of size 10 is taken from a normal population and the following values
were calculated for the variable (x) under study:

10∑
i=1

xi = 620,

10∑
i=1

x2i = 39016.

Test the null hypothesis H0 : σ = 8 against H1 : σ > 8 on the basis of the above data. Use α = 0.05 as level
of significance. (Given χ2

0.05 for 9 degrees of freedom = 16.92)

Solution: Here

n = 10,

10∑
i=1

xi = 620,

10∑
i=1

x2i = 39016.

Then

S2 =

10∑
i=1

x2i

n
−


10∑
i=1

xi

n


2

=
39016

10
−
(
620

10

)
= 3901.6− 3844

= 57.6
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We make the null hypothesis H0 : σ = 8 against H1 : σ > 8. Again

χ2 =
nS2

σ2

=
10× 57.6

(8)2

= 9

Since χ2
observed = 9 < χ2

0.05,9 = 16.92, so, H0 is accepted and thus we conclude that the value of σ may be
taken as 8 at 95% level of significance.

Example 19.10.2. For a large lot of freshly minted coins a random sample of size 50 is taken. The mean
weight of coins in the sample is found to be 28.57 gm. Assuming that the population standard deviation of
weight is 1.25 gm., will it it be reasonable to suppose that the population mean is 28 gm ?

Solution: The size of the sample is 50 and so n = 50. Population mean m = 28 gm and population s.d.
σ = 1.25 gm. Let the null hypothesis H0 and the alternative hypothesis H1 be given by

H0 : m = 28

H1 : m ̸= 28

S.E. of x =
σ√
n
=

1.25√
50

=
1.25

7.071
= 0.18

Let us consider the statistic
z =

x−m

S.E. of (x)

which is standard normal. Therefore,

z =
28.57− 28

0.18
= 3.17

Since the observed value of z exceeds 1.64, thus z falls in the critical region at 5% level of significance and
so the null hypothesis H0 is rejected at 5% level of significance. So it will not be reasonable to suppose that
the population mean is 28 gm. at 5% level of significance.

Example 19.10.3. The mean life time of a sample of 100 electric bulbs produced by a manufacturing company
is estimated to be 1570 hours with a standard deviation of 120 hours. If µ be the mean life time of all the bulbs
produced by the company, test the hypothesis µ = 1600 hours against the alternative hypothesis µ ̸= 1600
hours, using level of significance 0.05.

Solution: Here n = size of the sample = 100, population mean µ = 1570 and population S.D. σ = 120.
We test the null hypothesis H0 = µ = 1600 against the alternative hypothesis H1 : µ ̸= 1600 at 5% level of
significance.

Here x = 1570 and S.E. of x =
σ√
n
=

120√
100

= 12

Therefore,

z =
x− µ

S.E. of (x)

=
1570− 1600

12
= −2.5
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Hence z falls in the critical region at 5% level of significance and so we reject the null hypothesis.

Thus at 5% level of significance it will not be reasonable to suppose that the mean life of the bulb will be
1600 hours.

Example 19.10.4. In a sample of 600 students of a certain college, 400 are found to use dot pens. In another
college from a sample of 900 students 450 were found to use dot pens. Test whether the colleges are signifi-
cantly different with respect to the habit of using dot pens. (Null and alternative hypothesis should be stated
clearly.)

Solution: With usual notations, null hypothesis will be that the the population proportions of the two
colleges regarding the habit of using dot pen are equal. So H0 : (P1 = P2) and alternative hypothesis is
H1 : (P1 ̸= P2).

Here,

n1 = 600, p1 =
400

600
= 0.667

n2 = 900, p2 =
450

900
= 0.5

If for the null hypothesis P1 = P2 = P , then sample estimate of P is

p =
n1p1 + n2p2
n1 + n2

=
600× 0.667 + 900× 0.5

600 + 900
= 0.567

Now,

S.E. of (p1 − p2) =

√
pq

(
1

p1
+

1

p2

)

=

√
0.567× (1− 0.567)×

(
1

600
+

1

900

)
=

√
0.567× 0.433× (0.0017 + 0.0011)

= 0.026

Now,

z =
p1 − p2

S.E.
=

0.667− 0.5

0.026
= 6.42

At 1% level the critical region is |z| > 2.58. So this z falls in the critical region and hence H0 is rejected. So
the two colleges are significantly different with respect to the habit of using dot pens.



Unit 20

Course Structure

• Analysis of variance

• One factor experiments

• Linear mathematical model for ANOVA

20.1 Introduction

Suppose that in an agricultural experiment, four different chemical treatments of soil produced mean wheat
yields of 28, 22, 18 and 24 bushels per acre, respectively. Is there a significant difference in these means, or is
the observed spread simply due to chance?

Such problem can be solved by using an important technique known as the analysis of variance, developed
by Fisher. It makes use of the F distribution already considered in previous unit. Basically, in many situations
there is a need to test the significance of differences among three or more sample means, or equivalently to
test the null hypothesis that the sample means are all equal.

20.2 One-Way Classification or One-Factor Experiments

In a one-factor experiment measurements or observations are obtained for a independent groups of samples,
where the number of measurements in each group is b. We speak of a treatments, each of which has b repeti-
tions or replications. In the above example, a = 4.

The results of a one-factor experiment can be presented in a table having a rows and b columns (Table.
16.1). Here xjk denotes the measurement in the j-th row and k-th column, where j = 1, 2, . . . , a and k =
1, 2, . . . , b. For example, x35 refers to the fifth measurement for the third treatment.

Table 16.1
Treatment 1 x11 x12 · · · x1b x1
Treatment 2 x21 x22 · · · x2b x2

...
...

Treatment a xa1 xa2 · · · xab xa

166
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We shall denote by xj· the mean of the measurements in the j-th row. We have

xj· =
1

b

b∑
k=1

xjk, j = 1, 2, . . . , a (20.2.1)

The dot in xj· is used to show that the index k has been summed out. The values xj· are called group means
or treatment means or row means. The grand mean or overall mean is the mean of all the measurement in all
the groups and is denoted by x, i.e.,

x =
1

ab

∑
j,k

xjk =
1

ab

a∑
j=1

b∑
k=1

xjk. (20.2.2)

20.3 Total Variation, Variation Within Treatments, Variation Between Treat-
ments

We define the total variation, denoted by v, as the sum of the squares of the deviations of each measurement
from the grand mean x, i.e.,

Total variation = v =
∑
j,k

(xjk − x2). (20.3.1)

By writing the identity,

xjk − x = (xjk − xj) + (xj − x) (20.3.2)

and then squaring and summing over j and k, we can show that∑
j,k

(xjk − x)2 =
∑
j,k

(xjk − xj)
2 +

∑
j,k

(xj − x)2 (20.3.3)

⇒
∑
j,k

(xjk − x)2 =
∑
j,k

(xjk − xj)
2 + b

∑
j

(xj − x)2 (20.3.4)

We call the first summation on the right side of (20.3.4) the variation within the treatments (since it involves
the squares of the deviations of xjk from the treatment means xj) and denoted it by vw. Therefore,

vw =
∑
j,k

(xjk − xj)
2 (20.3.5)

The second summation on the right side of (20.3.4) is called the variation between treatments (since it involves
the squares of the deviation of the various treatment means xj from the grand mean x and is denoted by vb).
Therefore,

vb =
∑
j,k

(xj − x)2 = b
∑
j

(xj − x)2 (20.3.6)

Equation (20.3.4) can thus be written as

v = vw + vb. (20.3.7)



168 UNIT 20.

20.4 Shortcut Methods for Obtaining Variations

To minimize the labour in computing the above variations, the following forms are convenient:

v =
∑
j,k

x2jk −
τ2

ab
(20.4.1)

vb =
1

b

∑
j

τ2j − τ2

ab
(20.4.2)

vw = v − vb (20.4.3)

where τ is the total of all values xjk and τj· is the total of all values in the j-th treatment, i.e.,

τ =
∑
j,k

xjk τj· =
∑
k

xjk (20.4.4)

In practice it is convenient to subtract some fixed value from all the data in the table; this has no effect on the
final results.

20.5 Linear Mathematical Model for Analysis of Variance

We can consider each row of Table 16.1 as a random sample of size b from the population fro that particu-
lar treatment. Therefore, for treatment j we have the independent, identically distributed random variables
Xj1, Xj2, . . . , Xjb, which respectively, take on the values xj1, xj2, . . . , xjb. Each of the Xjk(k = 1, 2, . . . , b)
can be expressed as the sum of its expected value and a “chance” or “error” term:

Xjk = µj +∆jk (20.5.1)

The ∆jk can be taken as independent (relative to j as well as to k), normally distributed random variables with
mean zero and variance σ2. This is equivalent to assuming the the Xjk(j = 1, 2, . . . , a; k = 1, 2, . . . , b) are
mutually independent, normal variables with means µj and common variance σ2. Let us define the constant
µ by

µ =
1

a

∑
j

µj

We can think of µ as the mean for a sort of grand population comprising all the treatment populations. Then
(20.5.1) can be rewritten as

Xjk = µ+ αj +∆jk where
∑
j

αj = 0 (20.5.2)

The constant αj can be viewed as the special effect of the j-th treatment.
The null hypothesis that all treatment means are equal is given by (H0 : αj = 0; j = 1, 2, . . . , a) or equiva-
lently by (H0 = µj = µ; j = 1, 2, . . . , a). If H0 is true, the treatment populations, which by assumption are
normal, have a common mean as well as a common variance. Then there is just one treatment population, and
all treatments are statistically identical.
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20.6 Expected Values of the Variations

The between-treatments variation Vb, the within-treatments variation Vw, and the total variation V are random
variables that, respectively, assume the values vb, vw, and v as defined in (20.3.6), (20.3.5) and (20.3.1), we
can show that

E(Vb) = (a− 1)σ2 + b
∑
j

α2
j (20.6.1)

E(Vw) = a(b− 1)σ2 (20.6.2)

E(V ) = (ab− 1)σ2 + b
∑
j

α2
j (20.6.3)

From (20.6.2) it follows that

E

[
Vw

a(b− 1)

]
= σ2 (20.6.4)

so that
Ŝ2
w =

Vw
a(b− 1)

(20.6.5)

is always a best (unbiased estimate of σ2 regardless of whether H0 is true or not. On the other hand, from
(20.6.1) and (20.6.3), we see that only if H0 is true will we have have

E

[
Vb
a− 1

]
= σ2 E

[
V

ab− 1

]
= σ2 (20.6.6)

so that only in such case will

Ŝ2
b =

Vb
a− 1

Ŝ2 =
V

ab− 1
(20.6.7)

provide unbiased estimates of σ2. If H0 is not true, however, then we have from (20.6.1)

E[Ŝ2
b ] = σ2 +

b

a− 1

∑
j

α2
j (20.6.8)

20.7 Distributions of the Variations

Theorem 20.7.1.
Vw
σ2

is chi-square distributed with a(b− 1) degrees of freedom.

Theorem 20.7.2. Under the null hypothesis H0,
Vb
σ2

and
V

σ2
are chi-square distributed with a− 1 and ab− 1

degrees of freedom, respectively.

20.8 The F Test for the Null Hypothesis of Equal Means

If the null hypothesis H0 is not true, i.e., if the treatment means are not equal, we see from (20.6.8) that we
can expect Ŝ2

b to be greater than σ2, with the effect becoming more pronounced as the discrepancy between
means increases. On the other hand, from (20.6.4) and (20.6.5) we can expect Ŝ2

w to be equal to σ2 regardless
of whether the means are equal or not. It follows that a good statistic for testing the hypothesis H0 is provided

by
Ŝ2
b

Ŝ2
w

. If this is significantly large, we can conclude that there is a significant difference between treatment

means and thus reject H0. Otherwise, we can either accept H0 or reserve judgement pending further analysis.

Theorem 20.8.1. The statistic F =
Ŝ2
b

Ŝ2
w

has the F distribution with a− 1 and a(b− 1) degrees of freedom.
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20.9 Analysis of Variance Tables

The calculations required for the above test are summarized in Table 16.2, which is called an analysis of
variance table. In practice we would compute v and vb using either the long method, (20.3.1) and (20.3.6),
or the short method, (20.4.1) and (20.4.2), and then compute vw = v − vb. It should be noted that the
degrees of freedom for the total variation, i.e., ab − 1, is equal to the sum of the degrees of freedom for the
between-treatment and within-treatments variations.

Table 16.2

Example 20.9.1. Table 16.3 shows the yields in bushels per acre of a certain variety of wheat grown in a
particular type of soil treated with chemicals A, B, or C.

Table 16.3

Find (a) the mean yields for the different treatments, (b) the grand mean for all treatments, (c) the total
variation, (d) the variation between treatments, (e) the variation within treatments. Use the long method.

Solution: To simplify the arithmetic, we may subtract some suitable number, say, 45, from all the data
without affecting the values of the variations. We then obtain the data of Table 16.4

Table 16.4
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(a) The treatment (row) means for Table 16.4 are given, respectively, by

x1 =
1

4
(3 + 4 + 5 + 4) = 4,

x2 =
1

4
(2 + 4 + 3 + 3) = 3,

x3 =
1

4
(4 + 6 + 5 + 5) = 5,

Therefore, the mean yields, obtained by adding 45 to these, are 49, 48 and 50 bushels per acre for A, B and
C respectively.

(b) x =
1

12
(3 + 4 + 5 + 4 + 2 + 4 + 3 + 3 + 4 + 6 + 5 + 5) = 4

Therefore, the grand mean for the original set of data is 45 + 4 = 46 bushels per acre.
(c)

Total variation = v =
∑
j,k

(xjk − x)2

= (3− 4)2 + (4− 4)2 + (5− 4)2 + (4− 4)2

+(2− 4)2 + (4− 4)2 + (3− 4)2 + (3− 4)2

+(4− 4)2 + (6− 4)2 + (5− 4)2 + (5− 4)2

= 14

(d)

Variation between treatments = vb = b
∑
j

(xj − x)2

= 4[(4− 4)2 + (3− 4)2 + (5− 4)2] = 8

(e)
Variation within treatments = vw = v − vb = 14− 8 = 6

Example 20.9.2. Referring to Example 20.9.1, find an unbiased estimate of the population variance σ2 from
(a) the variation between treatments under the null hypothesis of equal treatment means, (b) the variation
within treatments.

Solution:
(a)

ŝ2b =
vb

a− 1
=

8

3− 1
= 4

(b)

ŝ2w =
vw

a(b− 1)
=

6

3(4− 1)
=

2

3

Example 20.9.3. Referring to Example 20.9.1, can we reject the null hypothesis of equal means at (a) the
0.05 significance level? (b) the 0.01 significance level? (Given that F0.95,2,9 = 4.26 and F0.99,2,9 = 8.02).

Solution: We have

F =
ŝ2b
ŝ2w

=
4

2/3
= 6

with a− 1 = 3− 1 = 2 and a(b− 1) = 3(4− 1) = 9 degrees of freedom.
(a) Since F = 6 > F0.95,2,9 = 4.26, we can reject the null hypothesis of equal means at the 0.05 level.
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Table 16.5

(b) Since F = 6 > F0.99,2,9 = 8.02, we cannot reject the null hypothesis of equal means at the 0.01 level.

The analysis of variance table for Examples 20.9.1 - 20.9.3 is shown in Table 16.5.

Exercise 20.9.4. Use the shortcut formulas (20.4.1) through (20.4.3) to obtain the results of Example 20.9.1.

20.10 Modifications for Unequal Number of Observations

In case the treatments 1, . . . , a have different numbers of observations equal to n1, . . . , na, respectively, the
above results are easily modified. We therefore obtain

v =
∑
j,k

(xjk − x)2 =
∑
jk

x2jk −
τ2

n
(20.10.1)

vb =
∑
j,k

(xj· − x)2 =
∑
j

nj(xj· − x)2 =
∑
j

τ2j·
nj

− τ2

n
(20.10.2)

vw = v − vb (20.10.3)

where
∑
j,k

denotes the summation over k from 1 to nj and then over j from 1 to a, n =
∑
j
nj is the total

number of observations in all treatments, τ is the sum of all observations, τj· is the sum of all values in the
j-th treatment, and

∑
j

is the sum from j = 1 to a. The analysis of variance table for this case is given in Table

16.6.

Example 20.10.1. Table 16.7 shows the lifetimes in hours of samples from three different types of television
tubes manufactured by a company. Using the long method, test at (a) the 0.05, (b) the 0.01 significance level
whether there is a difference in the three types. (Given that F0.95,2,9 = 4.26 and F0.99,2,9 = 8.02).

Solution. It is convenient to subtract a suitable number, say, 400, obtaining Table 16.8. In this table we
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Table 16.6

Table 16.7

have indicated the row total, the sample or group means, and the grand mean. We then have

v =
∑
j,k

(xjk − x)2 = (7− 7)2 + (11− 7)2 + · · ·+ (8− 7)2 = 72

vb =
∑
j,k

(xj· − x)2 =
∑
j

nj(xj· − x)2 = 3(9− 7)2 + 5(7− 5)2 + 4(8− 7)2 = 36

vw = v − vb = 72− 36 = 36

The data can be summarized in the analysis of variance table, Table 16.9. Now, for 2 and 9 degrees of freedom
we have F0.95,2,9 = 4.26 and F0.99,2,9 = 8.02. Therefore, we can reject the hypothesis of equal means (i.e.,
there is no difference in the tree types of tubes) at the 0.05 level but not at the 0.01 level.
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Table 16.8

Table 16.9

Exercise 20.10.2. Use the shortcut formulas (20.10.1) through (20.10.3) to obtain the results of Example
20.10.1.
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